
Introduction

Concern over widespread loss and fragmentation
of natural resources has led to calls for managing
ecosystems in the context of their regional settings
(e.g., Holling 1978; Franklin 1993; Everett et al.
1994). It is a challenge to plan, manage, and assess
changes at such scales, if only because biological
systems are rarely studied with a regional, long-
term perspective (Brown and Roughgarden 1990).
Effective risk assessment and resource manage-
ment requires a set of measurements or indicators
to quantify biologically- and socially-relevant end-
points (Suter 1990). While there is an abundance
of data for this purpose, particularly from remote
sensing, regional biological systems are large and
complicated, and there are few theories to suggest
the critical measurements.

As part of a nation-wide effort to assess land-
scape ecological conditions, the Environmental
Monitoring and  Assessment Program–Landscapes
(EMAP–L) of the Environmental Protection

Agency is developing indicators which can be
measured from remotely-sensed images – primar-
ily land cover maps derived from satellite images
(U.S. Environmental Protection Agency 1994).
Many candidate indicators relate to the spatial pat-
terning of land cover and various scaling rela-
tionships among landscape elements (Turner and
Gardner 1991). Spatial pattern is a central feature
of landscape ecology (Forman and Godron 1986);
regional pattern often determines, and usually con-
strains finer-scale ecological condition (Turner
1989; Wiens 1989). For monitoring regional
ecosystem conditions over time, EMAP-L must
develop biologically-relevant indicators that are
statistically independent, sensitive to real change
but not to wild data, and estimable by remote sens-
ing.

A large number of indicators can be calculated
from mapped data (e.g., Turner and Gardner 1991;
Baker and Cai 1992; McGarigal and Marks 1994).
But taken together, these indicators measured only
six independent dimensions of pattern in a typical
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collection of land cover maps (Riitters et al. 1995).
More information is needed before a reduced set
of indicators can be reliably implemented in the
assessment effort. As a part of the overall EMAP–
L project, the objective of this study was to exam-
ine statistical independence of pattern indicators
for land cover maps of different scales and her-
itages, and to see whether the choice of landscape
analyis unit (“watershed” versus “arbitrary rectan-
gle”) affects that independence.

Earlier research (Riitters et al. 1995) used U.S.
Geological Survey Land Use Data Analysis
(LUDA) maps which were created as vector cov-
erages (Fegeas et al. 1983) and then rasterized at
200-meter resolution for analysis (Hunsaker et al.
1994). But EMAP–L intends to use raster satellite
images (primarily TM/MSS) with 25 to 100 m res-
olution and fewer land cover attribute classes than
the LUDA maps. Landscape elements (such as
patches) are hand-drawn in vector maps but are
computed for raster maps, and the scales of the
two procedures may differ. A further complication
is that the results of multivariate analyses are not
necessarily independent of the choice of scale or
stratification (Fotheringham and Wong 1991).
Thus, a comparison of vector and raster maps was
necessary.

Differences are expected for some indicators as
the map parameters change; indeed, that is the
basis for using indicators to assess real landscape
changes. For example, indicators of fragmentation
and dominance are sensitive to spatial resolution
and the number of attribute classes (Turner 1990).
The question addressed here is whether the cor-
relations among indicators change for different
types of maps. If the correlations do change, then
separate sets of metrics will have to be chosen to
summarize the pattern information in each type of
map. Conversely, stability of the correlation struc-
ture will make it possible to use the same set of
metrics for many different types of maps.

Test maps were created by altering Landsat
Thematic Mapper (TM) land cover maps of the
Chesapeake Bay Watershed (CBW) and the Ten-
nessee River Watershed (TRW). The test maps
were subdivided into analysis units, and 28 indi-
cators  were calculated for each unit. Factor analy-
sis was used to summarize the correlation struc-
ture among the indicators, and to suggest subsets

of indicators applicable for each type of map. The
utility of these subsets for describing patterns in
different types of maps was then evaluated by rel-
ative ability to discriminate among units, when the
units had been grouped based on overall similari-
ty of pattern.

Methods

Regional setting

Regional land cover patterns in the eastern Unit-
ed States reflect very broad-scale geophysical pat-
terns, more or less modified by human influences.
On regional vegetation maps, the visually obvious
patterns are created by topography and human
development. For example, ridge-and-valley zones
are characterized by alternating corridors of ridge-
top forest and bottomland non-forest vegetation,
while mountainous zones contain rather large
patches of forest, split by zones of human activi-
ty in river valleys. Humans dominate most low-
elevation areas.

The Tennessee River Watershed drains over 10
million hectares in six states, westward from
headwaters in the southern Appalachian Moun-
tains (Fig. 1). There are four main physiographic
regions – Appalachian Mountain, Ridge and Val-
ley, Cumberland Plateau, and the Mississippi
Embayment. The predominant land cover is forest
(60%). Agricultural uses (crops and pasture) com-
prise 34%, with water (4.0%) and urban (1.4%)
accounting for most of the rest.

The Chesapeake Bay Watershed drains almost
18 million hectares in six states, eastward from
headwaters in the northern and central Appalachi-
an Mountains (Fig. 2). The physiographic regions
include the Appalachian Plateau, Ridge and Val-
ley, Piedmont, and Coastal Plain. Forest accounts
for 55% of the land cover in the watershed, fol-
lowed by agriculture/pasture (33%), water (7.5%,
mostly in Chesapeake Bay proper), and urban
(4.5%) (U.S. Environmental Protection Agency
1994a).
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Map generation

Land cover maps were available for both regions.
Composite Landsat Thematic Mapper (TM)
images had been classified by using both super-
vised and unsupervised classification procedures.
The nominal resolution was 25 m for both maps.
Twelve land cover classes were recognized in the
TRW map, compared to six in the CBW map.
Ground truth information came from aerial pho-
tography, maps, and other sources. The overall
accuracy of land cover classification was reported
as 85% for the TRW map and 80% for the CBW
map. The high- and low-density urban classes in
the CBW map were condensed into one urban
class for this analysis.

Each map was split into “map sets” of rectan-
gular  equal-area analysis units. The units were
~1200 km2 in the TRW map and ~1800 km2 in
the CBW map. 85 units were selected for analy-
sis from the TRW map (denoted as T12_25), and
97 were selected from the CBW map (denoted as
C5_25Q). The CBW map was also split into 46
sub-watersheds (C5_25W) defined by U.S. Geo-
logical Survey 8-digit hydrologic unit codes
(HUC’s, Seaber et al. 1987).

Test data sets were created as follows. The orig-
inal TRW land cover map set (T12_25) was
altered to create new sets with different spatial and
attribute scales. To simulate a larger minimum
mapping unit, a 5×5 majority rule filter was
applied, and the 25-meter resolution was kept
(T12_25M). To simulate a different grain size, the
same filter was used but the output grain was set
at 125 meters (T12_125M). A third map set was
created by using the Arc/Info (ESRI 1992) near-
est-neighbor algorithm which assigns the attribute
class of the center cell to all cells in a 5×5 win-
dow (T12_125N). Finally, the attribute scale was
varied by recoding the original 12-class map into
just five classes (T5_25).

Land cover pattern indicators

Turner and Gardner (1991) provide an overview
of pattern and scaling indicators of interest to land-
scape ecologists, including contagion, dominance,
patch shape, and fractal dimension. Contagion

quantifies the extent to which land covers coalesce
to form larger patches, while dominance and diver-
sity indicators measure the prevalence of one or a
few land covers. Shape metrics quantify the shapes
of landscape elements such as patches, sometimes
in relation to standard shapes like circles or
squares. Fractal models have been used to estimate
land cover texture and the complexity of the
perimeters of landscape elements. Additional
information about pattern indicators may also be
found in the literature of image processing (e.g.,
Gonzalez and Woods 1992) or geography (e.g.,
Lam and De Cola 1993).

Table 1 lists the indicators used in this study.
The computing formulas and references for these
indicators are given by Riitters et al. (1995).
Briefly, most of the indicators are based on the
frequencies of different attribute classes (e.g.,
dominance), the frequencies of attribute class adja-
cencies (e.g., contagion), or on the size and shape
of contiguous clusters (“patches”) of the same
attribute class (e.g., average patch size). A few
others come from allometric relationships between
two measures of landscape features (e.g., fractal
dimension). All 28 indicators were calculated for
each of the analysis units.

Factor analysis

We conducted factor analyses on each of the data
sets using the 28 indicators. Factor analysis (e.g.,
Johnston 1980) is a multivariate procedure de-
signed to reduce a large number  of variables to
a smaller set of “factors” which account for most
of the variance among the original variables. Fac-
tors are typically extracted by applying principal
components analysis to a standardized correlation
matrix. A table of factor loadings shows which
variables are grouped together on which common
factors, and the degree of correlation between indi-
vidual variables and the factors. The factors are
interpreted as axes in state space, and the mean-
ings of the axes are inferred from the variables
which are most correlated with them. Highly-cor-
related variables are said to “load heavily” on that
factor. Factors can be rotated in an attempt to
account for additional variance, but non-orthogo-
nal rotations produce correlated factors.
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Consider one type of map, for example. If all
pattern indicators are mutually and highly corre-
lated, then a single vector in pattern state space
“explains” their variance, and a single factor will
be identified. In that case, the choice of a partic-
ular indicator to represent the factor is easy
because they all measure the same aspect of pat-
tern. If there are two groups of indicators, then
factor analysis will identify two vectors, and at
least two indicators are needed to represent the
state space, and so on. Ideally, representative indi-
cators are strongly correlated with just one factor.
In this way, factor analysis identifies both the
number of different axes in pattern state space and

the indicators which are associated with each axis.
The results of factor analyses for different test

maps were compared by coefficients of congru-
ence (Johnston 1980). The coefficient describes
the similarity of the two factor patterns from dif-
ferent factor analyses by the following equation.

n

Σ Lki Lkj
k=1

Gij 
________________

n          ng Σ L2
ki Σ L2

kj
k=1      k=1

where

Lki and Lkj

are the factor loadings for variable k in map types
i and j, respectively;
n is the number of variables; and
Gij is the coefficient of congruence between matri-
ces i and j.

Large coefficients of congruence mean that the
pattern indicators were extracted in similar fash-
ions for two types of maps. The measure ap-
proaches a value of one when the loadings are pro-
portional, and is effective in revealing similarities
in different data sets (McDonald 1985). In a matrix
of congruence statistics for two factor analyses,
the rows and columns correspond to factors. High
values on the diagonal indicate that the corre-
sponding factors have similar loadings for each of
the variables. Large off-diagonal values indicate
situations where the same variables loaded on dif-
ferent factors in two types of maps. Similarly, the
results of many factor analyses can be compared,
one factor at a time, by constructing a second
matrix which contains just the diagonal elements
of the first matrix. The rows and columns of the
new matrix are the different test data sets. If a giv-
en factor is consistently congruent across all test
data sets, then all values of the new matrix will
be large.
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Table 1. Indicators of land cover pattern and structure used
in this study.

NTYP: Number of Types
PMAX: Maximum Attribute Class Proportion
SIDI: Simpson Diversity of Attribute Classes
SIEV: Simpson Evenness of Attribute Classes
SHDI: Shannon Diversity of Attribute Classes
SHEV: Shannon Evenness of Attribute Classes
SUMD Sum of Diagonal Elements of Adjacency Matrix, A
SIDA: Simpson Diversity of Adjacency Matrix
SICO Simpson Contagion
SHDA: Shannon Diversity of Adjacency Matrix
SHCO: Shannon Contagion
FDDA: Area-Weighted Average of Fractal Dimension from

Density-area Scaling
NPAT: Number of Patches
LPAT: Largest Patch
PSIZ: Average Patch Size
P005: Proportion of Area in which Patches are Greater than

Five Pixels
PA-1: Average Perimeter-Area Ratio
PA-2: Average Adjusted Perimeter-Area Ratio
DSTA: Average Adjusted Perimeter-Area Ratio using Gard-

ner’s D-statistic
NASQ: Average Normalized Area, Square Model
RGYR: Average Radius of Gyration
PTRD: Average Patch Topology Ratio Dimension
ABRR: Average Bounding Rectangle Ratio
ABSR: Average Area Boxside Ratio
ACCR: Average Circumscribing Circle Ratio
ALAR: Average Area-by-Longest Axis Ratio
OCFC: Perimeter-Area Scaling-Pixels
OEFC: Perimeter-Area Scaling-Edges

Note: For explanation of indicators see Riitters et al. 1995. A
Factor Analysis of Landscape Pattern and Structure Metrics.
Landscape Ecology 10: 23–39.



Selection of representative indicators

A representative set of indicators was selected as
follows. For each type of map, groups of indica-
tors were identified that loaded together on each
of the extracted factors. The consistency of these
groups for different types of maps was evaluated
using congruence statistics. Individual metrics
were selected to represent each group on the basis
of a high correlation with a given factor and a low
correlation with all others.

A discriminant analysis was done to test the
adequacy of selected individual indicators in each
map set. First, the factor scores were calculated
for each anaysis unit. A factor score is an abstract
quantity, simply a linear combination of indicator
values, weighted by the corresponding correlation
(loading) for that indicator with a particular fac-
tor. The analysis units were then grouped by using
cluster analysis of the factor scores (using Ward’s
minimum variance algorithm, SAS 1982). Each
group has similar values for all factor scores, and

thus similar overall land cover patterns. Once clus-
ters had been formed, the selected subset of indi-
vidual indicators was tested for its ability to dis-
criminate among the clusters. A stepwise method
was used initially to test for statistical significance
of the selected variables based on their discrimi-
natory power as measured by Wilks’ lambda sta-
tistic. The results are reported as mis-classification
rates for the case where all selected variables were
used in the discriminant function.

Results and discussion

From preliminary analyses1, it was decided to
extract six factors from each of the seven data sets
using the principal components method applied to
the standardized correlation matrix, followed by
an orthogonal (varimax) rotation of axes. The six
factors explained from 92% to 97% of the varia-
tion among indicators in the test data sets (Table
2). For all but one data set, the last one or two of
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Table 2. Eigenvalues and cumulative proportion of variance explained by factor analysis of land cover pattern indicators.

Data set Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

T12_25
Eigenvalue 14.296 5.635 3.474 1.342 1.135 .720
Cum. Variance .511 .712 .836 .884 .924 .950
T12_125M
Eigenvalue 13.948 4.890 3.533 1.465 1.221 1.028
Cum. Variance .498 .673 .799 .851 .895 .932
T12_25M
Eigenvalue 16.340 4.414 2.540 1.285 .866 .690
Cum. Variance .605 .769 .863 .910 .942 .968
T12_125N
Eigenvalue 13.581 4.822 3.484 1.952 1.273 .952
Cum. Variance .485 .657 .782 .851 .897 .931
T5_25
Eigenvalue 13.749 6.116 2.768 1.353 1.264 .931
Cum. Variance .491 .710 .808 .857 .902 .935
C5_25Q
Eigenvalue 11.522 8.040 2.889 1.645 1.016 .838
Cum. Variance .412 .699 .802 .861 .897 .927
C5_25W
Eigenvalue 13.144 7.444 2.336 1.522 1.018 .749
Cum. Variance .469 .735 .819 .873 .909 .936

Note: See text for explanation of data sets

1Space does not permit showing the results of all seven factor analyses here. Details may be found in Cain,  D.H. 1995. A mul-
tivariate analysis of metrics describing landscape pattern and structure. M.S. Thesis, Department of Geography, University of Ten-
nessee, Knoxville, TN, 151 pp.



the factors would be declared insignificant by the
criterion that the eigenvalue be greater than 1.0
(e.g., Johnson and Wichern 1982). All six factors
were retained to facilitate comparisons among data
sets.

The factor loadings are illustrated for the 12-
class, 25-meter Tennessee River data set (T12_25)
in Table 3. In  this example, indicators of land
cover dominance and contagion were highly cor-
related with the first factor but not the others. The
second, third, and fourth factors are dominated by

indicators of average patch shape (e.g., perimeter-
area ratios, compaction), while indicators of
perimeter complexity and the number of attribute
classes appear on the fifth and sixth factors,
respectively. Note that the magnitude (but not the
signs) of the loadings are important. Because most
of the tested indicators are measures of texture,
many of them were correlated with the first fac-
tor. In contrast, there was just one measure of the
number of attribute classes, and consequently it
alone was correlated with the last factor. This
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Table 3: Results of principal components analysis and varimax rotation for the Tennessee River Watershed original data set
(T12_25).

Metric Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Communality

Factor pattern after varimax rotation 
NTYP -.160 .104 -.068 .092 .140 .917 .911
PMAX .889 -.318 .054 .113 .113 -.144 .941
SIDI -.923 .259 -.127 -.109 -.102 .153 .980
SIEV -9.31 .246 -.120 -.125 -.120 .072 .977
SHDI -.912 .212 -.245 -.044 -.077 .128 .960
SHEV -.917 .169 -.220 -.092 -.131 -.131 .960
SUMD .940 .149 -.028 .002 -.190 .057 .945
SIDA -.938 .236 -.097 -.106 -.076 .142 .982
SICO .941 -.232 .095 .110 .080 -.122 .982
SHDA -.948 .153 -.212 -.034 -.031 .102 .980
SHCO .943 -.105 .185 .083 .089 .171 .979
TMAS .936 -.201 .076 -.120 -.039 -.019 .939
NPAT -.783 -.535 -.079 -.019 .172 -.085 .942
LPAT .809 -.236 .173 .147 .142 -.301 .872
PSIZ .799 .474 .038 -.053 -.184 .025 .902
P005 .686 .643 .071 .057 -.146 .068 .919
PA-1 .347 -.896 .056 -.193 .057 .001 .967
DSTA -.270 .877 .034 .340 -.153 .010 .983
PA-2 -.397 .356 -.328 -.618 .338 .221 .937
NASQ .283 .152 .467 .723 -.302 .075 .941
RGYR -.254 .855 -.208 -.173 -.087 .264 .947
PTRD .394 -.106 .874 .012 -.009 -.094 .940
ABRR .066 .432 .142 .820 -.186 .168 .946
ABSR -.303 .551 .662 .191 -.228 -.148 .944
ACCR .383 -.615 .633 .157 -.083 .013 .958
ALAR .219 -.069 .904 .285 -.110 .013 .963
OCFC .115 -.089 -.222 -.217 .904 .144 .955
OEFC .205 -.521 .014 -.353 .715 .021 .951

Sum 26.603

Variance explained by each factor after rotation 
Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

12.892 5.118 3.156 2.207 1.918 1.311

Notes: 1. See text for explanation of data sets
2. Numbers in bold indicate factor loadings greater than 0.5



emphasizes the role of factor analysis in parti-
tioning orthogonal subsets of indicators; the par-
ticular order in which factors emerge is partly a
result of the indicators which are included in the
analysis.

Table 4 summarizes the factor loadings obtained
for all seven data sets and identifies the factor(s)
which each indicator was most highly correlated
with in each data set. For example, the first col-
umn in Table 4 is comparable to the factor pat-
terns for the T12_25 data set as shown in Table
3. Consistency of these factor-indicator associa-
tions across data sets suggested reasonable group-
ings of indicators. The first group (those primari-
ly loading on the first factor) contains the texture
(e.g., contagion and diversity) indicators and (for

the TRW data sets) the indicators related to patch
size and density-area scaling. The latter indicators
shift to other factors and are grouped with other
indicators of patch shape and compaction in the
CBW data sets.

The second group is comprised of indicators
related to patch shape and compaction, composed
primarily of indicators loading on factors 2−4.
Included are the indicators PA-1, DSTA, PA-2,
NASQ, RGYR, PTRD, ABRR, ABSR, ACCR,
and ALAR. However, this group is not very sta-
ble, in the sense that individual indicators are cor-
related with different factors (usually the second
or third factor) depending on the data set. It seems
plausible that the second and third factors are mea-
suring a similar dimension, and although it is
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Table 4. Summary of factor analysis results for seven data sets using principal components analysis with varimax rotation.

Data set
Metric T12_25 T12_125M T12_25M T12_125N T5_25 C5_25Q C5_25W

NTYP 6 5 5 6 6 6 nhl
PMAX 1 1 1 1 1 1 1
SIDI 1 1 1 1 1 1 1
SIEV 1 1 1 1 1 1 1
SHDI 1 1 1 1 1 1 1
SHEV 1 1 1 1 1 1 1
SUMD 1 1 1 1 1 4 1
SIDA 1 1 1 1 1 1 1
SICO 1 1 1 1 1 1 1
SHDA 1 1 1 1 1 1 1
SHCO 1 1 1 1 1 1 1
FDDA 1 6 1 6 1 1,4 1
NPAT 1 1 1 1 1 2 2
LPAT 1 1 1 1 1 4 1,6
PSIZ 1 1 1 1 1,5 2 2
P005 1,2 1 nhl 1 1,3 2 2
PA-1 2 3 2 3 3 2 2,3
DSTA 2 3,4 4 3 3 2 2,3
PA-2 4 2 2 2 1,4 3 5
NASQ 4 2 2 2 2 3 4
RGYR 2 2 2 2 5 2 2
PTRD 3 3 2,4 4 2 2 3
ABRR 4 2 2 2 2 3,4 4
ABSR 2,3 3 2 3,4 2,3 2 3
ACCR 2,3 2 2 2,4 2 3 2
ALAR 3 2,3 2 4 2 2 3
OCFC 5 4 3 5 4 2,5 2
OEFC 2,5 4 3 5 4 2 2

Notes: 1. See text for explanation of data sets
2. Bold numbers indicate a loading of 0.7 or higher
3. Small numbers indicate a loading between 0.5 and 0.7
4. nhl – no high loadings
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Table 5. Coefficients of Congruence for six factors among seven data sets.

Data set T12_25 T12_125M T12_25M T12_125N T5_25 C5_25Q C5_25W

Factor 1
T12_25 1.000
T12_125M -.911 1.000
T12_25M -.958 .872 1.000
T12_25M -.905 .999 .867 1.000
T5_25 -.991 .913 .958 .908 1.000
C5_25Q -.885 .915 .862 .912 .913 1.000
C5_25W -.897 .926 .868 .924 .922 .993 1.000

Factor 2
T12_25 1.000
T12_125M -.429 1.000
T12_25M -.376 .818 1.000
T12_125N -.334 .991 .800 1.000
T5_25 .071 .646 .799 .653 1.000
C5_25Q .804 -.293 -.082 -.236 .393 1.000
C5_25W .795 -.377 -.200 -.318 .226 .937 1.000

Factor 3
T12_25 1.000
T12_125M .655 1.000
T12_25M -.015 -.242 1.000
T12_125N .003 .632 -.334 1.000
T5_25 .127 .608 -.340 .865 1.000
C5_25Q .607 .361 -.136 -.083 -.110 1.000
C5_25W .615 .939 -.170 .621 .641 .358 1.000

Factor 4
T12_25 1.000
T12_125M -.455 1.000
T12_25M .325 -.477 1.000
T12_125N .220 -.298 .627 1.000
T5_25 -.724 .817 -.243 -.206 1.000
C5_25Q -.086 -.016 -.148 -.229 -.248 1.000
C5_25W .681 -.311 .105 .269 -.412 -.632 1.000

Factor 5
T12_25 1.000
T12_125M -.069 1.000
T12_25M .213 .686 1.000
T12_125N .920 -.023 .189 1.000
T5_25 -.319 .274 -.024 -.191 1.000
C5_25Q .423 -.033 .018 .427 -.280 1.000
C5_25W .292 .517 .354 .181 .302 .110 1.000

Factor 6
T12_25 1.000
T12_125M -.068 1.000
T12_25M .353 .172 1.000
T12_125N -.463 .847 .110 1.000
T5_25 .764 -.093 -.214 -.453 1.000
C5_25Q .808 -.106 .009 -.478 .694 1.000
C5_25W .089 -.050 -.545 -.218 .344 .480 1.000

Note: Bold numbers indicate congruence of 0.6 or higher



sometimes possible to discern two different parts
of that dimension, the ability to draw that distinc-
tion depends on the data set. Some indicators dis-
play obvious similarities. For example, with one
exception, PA-1 and DSTA move from the second
factor in both original data sets to the third factor
in the recoded or resampled data sets. The indi-
cators PTRD, ABSR, and ALAR appear together
for most of the data sets, but then their correla-
tions with the factors were also somewhat low.
PA-2, NASQ, and ABRR usually load on the same
factors, strongly on factor 2 in all of the resam-
pled data sets. These indicators may be robust to
the different methods used to create test maps, but
were less consistent when comparing test maps to
the originals.

A third group is made up of the fractal estima-
tors of perimeter complexity (OCFC, OEFC).
They group together consistently, and were usual-
ly independent of other indicators (i.e., they alone
had high loadings on a given  factor). When this
group does contain unique information, it appears
as the third, fourth, or fifth factor in importance.

The final group has just one member, the num-
ber of types or attribute classes (NTYP). This indi-
cator consistently loaded highly, and by itself, on
the fifth or sixth factor. Therefore, it is the least
important for explaining the variance among indi-
cators, but based on communality, it could be more
important on the two low-resolution data sets and
the TRW 5-class and CBW sub-watersheds data
sets. “Communality” shows the proportion of vari-
ance that a variable has in common with other
variables, and lower communality for these data
sets indicates that NTYP is not as redundant a
measure at low resolution or with only a few types
of land cover.

Table 5 shows the diagonal elements of the
congruence matrices for each factor in each data
set. Factor 1 shows high congruence across all the
map sets, indicating that variables are loading sim-
ilarly on all of the first factors. Again note that
the absolute value (not the sign) of the congruence
statistic is important for these comparisons. The
congruence matrix for factor 2 splits the original
TRW data set and the two CBW data sets from
another group made up of the resampled and
recoded TRW data sets. This means that factor 2
contains different indicators for those two situa-

tions. There is little discernible pattern for the oth-
er four factors, which means that the specific fac-
tors that contain different indicators change across
different test maps. In other words, even though
the same indicators may be involved, the order of
their importance changes for different maps. In
summary, the congruence analysis confirms that
the first factor is stable across all data sets, and
strongly suggests that some similarities exist for
the second factor for some of the sets. But most
of the indicators are not stable with respect to their
order of importance for various map comparisons.

The results of clustering the analysis units based
on factor scores are illustrated for the map sets
T12_25 and C5_25W (Fig. 3–4). Even though the
cluster analysis did not consider spatial arrange-
ment of the units, the clusters correspond roughly
to physiographic regions. This suggests that over-
all pattern is associated with physiographic region.
This interpretation is difficult, however, owing to
the large grain size of the cluster maps relative to
that of physiographic region maps (these are not
shown here).

Selection of the indicators for discriminant
analysis was somewhat arbitrary. To select a sub-
set of indicators for the discriminant analysis,
some indicators were rejected if they did not con-
sistently have high loadings on most data sets. The
indicators FDDA, P005, LPAT, PA-2, ABRR,
ABSR, ACCR, and NPAT were rejected in this
way. The number of attribute types (NTYP) was
also rejected; although it almost always loaded
strongly on the same factor, that factor explained
only a small portion of the  variance. In maps with
many land cover types, NTYP could be much
more significant. Measures of texture, compaction
or shape, and fractal complexity emerged from the
factor analyses with some consistency, so a sub-
set of indicators was chosen to represent those
axes. The texture measures PMAX and SHCO
were selected because they were the two texture
measures least correlated with each other. Based
on the congruence analysis, the composite axes of
shape and compaction was represented by DSTA
and NASQ, which loaded most consistently and
strongly on factors representing those dimensions.
The fractal complexity axis was represented by
OEFC.

These representative metrics correctly predicted
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pattern indicators suggest that from a statistical
point of view, most indicators actually measure
one of just a few independent dimensions of pat-
tern. Many indicators are redundant, and that is
true across a range of spatial and attribute scales.
Thus, the biological relevance of indicators may
be more important than their statistical properties
when it comes to choosing methods to analyze
patterns. Another implication is that there appears
to be little need to calculate many pattern metrics,
unless there is some biological justification for
doing so.
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