
Environ Ecol Stat (2009) 16:291–319
DOI 10.1007/s10651-007-0083-3

Fighting fire with fire: estimating the efficacy of wildfire
mitigation programs using propensity scores

David T. Butry

Received: 1 March 2006 / Revised: 1 August 2006 / Published online: 1 March 2008
© Springer Science+Business Media, LLC 2008

Abstract This paper examines the effect wildfire mitigation has on broad-scale
wildfire behavior. Each year, hundreds of million of dollars are spent on fire sup-
pression and fuels management applications, yet little is known, quantitatively, of the
returns to these programs in terms of their impact on wildfire extent and intensity. This
is especially true when considering that wildfire management influences and reacts
to several, often times confounding factors, including socioeconomic characteristics,
values at risk, heterogeneous landscapes, and climate. Due to the endogenous nature
of suppression effort and fuels management intensity and placement with wildfire
behavior, traditional regression models may prove inadequate. Instead, I examine the
applicability of propensity score matching (PSM) techniques in modeling wildfire.
This research makes several significant contributions including: (1) applying tech-
niques developed in labor economics and in epidemiology to evaluate the effects of
natural resource policies on landscapes, rather than on individuals; (2) providing a bet-
ter understanding of the relationship between wildfire mitigation strategies and their
influence on broad-scale wildfire patterns; (3) quantifying the returns to suppression
and fuels management on wildfire behavior.
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1 Introduction

Nationwide, hundreds of millions of dollars are spent fighting wildfires and still
millions of acres of forestland burn each year. Additionally, hundreds of millions
more are spent on fuels management programs (programs that mitigate wildfire risk
by physically reducing the amount of available flammable vegetation within the forest).
What is not clear is whether society is optimally funding these wildfire management
(suppression or fuels management) programs. One reason for this uncertainty is that
little information exists on the damages and benefits associated with wildland fire,
although Butry (2001) estimates the economic damage of the 1998 Florida wildfires.
Another reason is little research exists quantifying the effects of wildfire mitigation
programs on fire behavior and damage.

The discipline of economics is well suited to examine issues concerning tradeoffs,
optimality, and allocations of resources. Tradeoffs are inherent in wildland manage-
ment. Tradeoffs exist between how much wildfire is allowed, how much is controlled,
and how to determine the best mix of suppression and fuels management to achieve
these goals. The idea of an “optimal wildfire size” was introduced by Sparhawk in
1925. He explains that the optimal size is one that yields the minimum ‘cost plus loss’
(cost of suppression plus loss due to wildfire damage). This is an important finding
as it may justify, in some instances, “let burn” or limited-action strategies—when the
wildfire damages pale in comparison to the cost of treatment. Rideout and Omi (1990)
formalize innovations instituted into the least-cost model by Gorte and Gorte (1979)
and Davis (1965), who contend that optimal wildfire size is that which corresponds
with the minimum cost plus net value change (NVC—damages net of benefits), as a
profit maximization type problem. The goal here is to maximize the value of wildfire
avoidance given the costs of wildfire management.

However, even before one can determine the optimal allocation of fire suppression
and fuels management resources, it is critical to understand the physical relation-
ship between management strategies and wildfire behavior. For example, society must
understand the effectiveness of fire management before it can decide how much is
needed. Unfortunately, there is a real lack of research modeling wildfire behavior at
broad, policy relevant spatial scales. While experimental research has focused on the
relationship between fuel loads and fire risk, these are based on small-forested plots.
Although fine scale analysis is informative, perhaps it is not appropriate for policy-
making. Further, it often ignores spatial and spatio-temporal relationships between
wildfire and physical intervention strategies. It also cannot account for many of the
complexities of landscapes and larger scale weather and climate phenomena.

There is a vulnerability of fine scale and experimental laboratory analysis to ignor-
ing the influence society and culture, institutions, and environmental phenomena have
on ignition patterns and fire propagation. The wildland–urban interface (WUI) is the
area where communities abut forested areas. In 2000, the WUI comprised 9.4% of the
land in the coterminous U.S. and contained 38.5% of all housing units (Stewart et al.
2005). These numbers are up substantially from 1990 levels, as the decade experi-
enced a 19.2% and 22.3% growth in WUI lands and homes within the WUI (Stewart
et al. 2005). Figure 1 presents a stylized depiction of wildfire in the wildland–urban
interface and highlights its interconnectedness with communities and the environment.
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Fig. 1 The fire triangle in the wildland–urban interface

In the center of Fig. 1 is the fire triangle, which is made up of three sides—heat, fuel,
and oxygen. Remove anyone of these sides and fire cannot exist. Figure 1 illustrates that
wildfire is influenced by several factors, including climate and weather, socioeconomic
characteristics (population, housing density, roads, etc.), and wildland management
(fire suppression and fuels management). Each one of these factors is related to one
or more of the sides of the fire triangle (heat, fuel, oxygen).

Focusing on the wildfire management relationship, it is apparent that fire suppres-
sion targets all three sides of the fire triangle. Fire fighters use water to cool the fire
and reduce its heat content; fire fighters use fire retardants to smother the flames
and deprive fire of oxygen; fire fighters also build fire lines (fire barriers devoid of
flammable materials) to separate fire from available fuels. Fuels management, such
as prescribed fire fuels treatments, targets only one side of the triangle—fuels—by
eliminating dangerous fuel loads before the start of the fire season. Not surprisingly,
factors that affect wildfire also affect suppression and fuel management. In addition,
wildfire conditions influence suppression and fuels management decisions through a
series of feedback mechanisms. While fire fighting mitigates fire size and intensity, the
initial fire conditions, including proximity to values at risk (e.g., populations, housing
development, infrastructure) influence the size and swiftness of response, especially
during times of multiple fires (requiring prioritization of wildfires). Fuels treatments
are performed far in the advance of the fire season, but their locations are not dis-
tributed randomly across the landscape, nor are their size and intensity randomly
selected. Instead, fuels treatments are strategically located to areas of higher wildfire
risk, vulnerable to damage from fire.

In economics, it is rare to use experimentally controlled data due to expense and
inability to replicate real-world conditions. Instead, the majority of applied economic
studies rely on observational data—one observes individuals behaving a certain way.
Evaluating the effect of programs using observational data is challenging because
often there are underlying factors that influence whether or not an individual enters
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a program. In the case of wildfire, wildfires are not randomly selected to receive
wildfire management. The decision depends on a number of factors, some of which
also influence wildfire behavior. For instance, because prescribed fire is not randomly
applied across the landscape, it is not unusual to observe areas with higher levels
of prescribed fire to have also higher levels of wildfire. Yet, this does not necessar-
ily imply that prescribed fire is ineffective or counterproductive, but it highlights the
complex relationship between prescribed fire and wildfire. The true performance of
wildfire management can be determined if one compares the same group of wildfires
having been managed with their untreated selves. Of course, this latter group, called
the counterfactual, is not observable.

Because factors influencing wildfire behavior also influence wildland management
decisions, these factors must be accounted for in statistical models. Failing to acknowl-
edge this complex relationship renders estimates from standard statistical models
biased as it invalidates some of the required modeling assumptions. Much of the pre-
vious empirical wildfire research has focused on modeling either the probability of a
wildfire occurrence (ignition) or wildfire size or intensity. The former research primar-
ily examines the factors involved in the probability of fire ignition (fire risk modeling),
while the latter examines the factors contributing to a fire’s final size or degree of inten-
sity. In general, previous research finds wildfire behavior (however defined—whether
meaning frequency, occurrence, size, or intensity) to be related to four sets of factors:
wildfire specific characteristics, climate and weather conditions, wildfire manage-
ment and mitigation (including prescribed fire and suppression effort), and landscape
attributes (including dominant landuse and landcover characteristics and socioeco-
nomic characteristics). While the dynamic relationship between wildfire and man-
agement has been explored using simulation models (e.g., Reed 1987; Yoder 2004;
Amacher et al. 2005), it is rare to find empirical examples that explicitly account for
this potential endogeneity.

In Sect. 2, I present program evaluation concepts and econometric techniques,
focusing on propensity score matching and blocking. Section 3 presents the data and
study site information used in the empirical modeling explained in Sect. 4. Finally,
Sects. 5 and 6 present the model findings and research conclusions.

2 The evaluation of programs

In general terms, programs (or their treatments) are designed to produce benefits for
the participants, perhaps in the form of higher wages (job training program), higher
educational achievement (education program), health enhancement (medicinal drug
study), or in the case of wildfire, damage averted from wildfire (wildfire management
program). In the program evaluation terminology, a program induces a treatment that
affects outcome. For instance, wages, educational attainment, health attribute, and
damage averted are all outcomes affected by the program treatment.

In much of the program evaluation literature the effect of a program or treatment
is conceptualized as (for example, see Heckman and Hotz 1989; Dehejia and Wahba
1999; Smith and Todd 2005):
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yi = ỹi + �ti (1)

where yi is the observed outcome for observation i , ỹi is the outcome if i is not
selected into treatment (one can also think of ỹi as potential outcome before treat-
ment), ti is an indicator variable coded 1 for treatment and 0 for no treatment, and �

is the treatment effect. Equation (1) formalizes the simple notion that if an observa-
tion undergoes treatment, the outcome value is changed by the treatment effect (�),
whereas if an observation does not undergo treatment, then the outcome value is equal
to the potential outcome (ỹ).

Equation (1) is not a structural equation because the outcome is not represented as
a function based on economic theory. Essentially the term ỹ embodies all the vari-
ables that affect outcome, except for treatment. From a structural model viewpoint,
one might envision that outcome is a function of treatment, a set of variables Z that
directly affect only outcome, and a set of variables X that directly affect both out-
come and treatment (this distinction will prove important later), and e a random error
component. The sets X and Z are uncorrelated with each other, hence Cov(X, t) �= 0
and Cov(X, Z) = 0. The variables represented by X are called confounders because
they are correlated with the treatment; i.e., the effects of X and the treatment are not
independent of each other, but are confounded with each other. In a structural model
of program outcome, these components comprise ỹi (ỹi = πz Zi + πx Xi + ei ) from
(1). Writing (1) as a structural equation yields:

yi = πz Zi + πx Xi + �ti + ei . (2)

The reason for distinguishing between (1) and (2) is because some program evaluation
econometric techniques assume a structure similar to (1), for instance propensity score
matching, while others, such as ordinary least squares, assume a structure similar to
(2). I present Eqs. (1) and (2) to demonstrate that they can represent the same concept.

It is the inability of either observing (or measuring) the confounders or specify-
ing the relationship between confounders and outcome that complicates estimation of
the true relationship between outcome and treatment. Re-writing (2) to illustrate the
situation where X is a set of unobservable confounders yields:

yi = πz Zi + �ti + εi (3)

where,

εi = πx Xi + ei (4)

and E[εi |ti ] �= 0 and E[εi ] = 0.
If there are no unobservables or if treatment is uncorrelated with the unobservables,

then ordinary least squares estimation of (3) will yield an unbiased treatment effect
estimate (�). If the confounders X are unobserved and correlated with treatment,
least squares estimation of (3) will yield a biased treatment effect estimate because
E[εi |ti ] �= 0 (Greene 2000).
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2.1 Propensity score matching models

Propensity score matching allows for consistent estimation of the treatment effect
between comparison groups that are not experimentally controlled (see Rosenbaum
and Rubin 1983; Rosenbaum and Rubin 1985a; Rosenbaum and Rubin 1985b;
Dehejia and Wahba 1999; Dehejia and Wahba 2002). Propensity score matching elim-
inates selection bias by comparing matched participant and non-participant outcomes
that have been paired based on their estimated probability of treatment. The differ-
ence between propensity score matching and matching on covariates (confounders)
is that matching is performed on a single variable (the propensity score), hence the
curse of dimensionality (Bellman 1961) is eliminated. The overwhelming bulk of
the propensity score matching (PSM) literature involves a binary treatment and is
applied in labor economics and epidemiological studies (see Rosenbaum and Rubin
1983; Heckman and Hotz 1989; Dehejia andWahba 1999; Smith and Todd 2005 for
a more detailed introduction). Butry (2006) summarizes and compares other program
evaluation econometric approaches that may be used to measure the effect wildfire
management has on fire behavior, but which involve different assumptions than pro-
pensity score matching. Propensity score matching requires a few conditions to be
met to produce unbiased treatment effect estimates—strong ignorability (or “selec-
tion on observables” per Heckman and Robb (1985) or no unobserved confounders)
and that the outcome after a treatment is applied is the same as the potential outcome
to treatment (the “Stable–Unit–Treatment–Value” assumption).
Strong ignorability (Rosenbaum and Rubin 1983). If the outcome-treatment relation-
ship is confounded by X , then treatment status is strongly ignorable if the potential
outcome (before treatment) is independent of treatment assignment given X :

ỹ, ỹ + �⊥ t |X (5)

where “⊥” denotes independence. This means that all confounders X must be known
and measurable. Strong ignorability means that conditional on the confounders, out-
come before treatment is independent of (future) treatment status. In context of a linear
model (such as Eq. (3)), strong ignorability implies ε⊥ t |X .

Propensity score matching requires the Stable–Unit–Treatment–Value–Assump-
tion (SUTVA; Rubin 1990), meaning the outcome of one observation when it receives
a treatment is the same as its potential outcome to that treatment before it actually
receives the treatment. Thus, the unit does not change between the time of assign-
ing and receiving the treatment and the treatment of other units does not change the
response of a unit to treatment. This assumption could be violated if the treatment of a
neighboring unit affects its response; e.g., in treatment of infectious diseases vaccinat-
ing other children can affect the probability of contracting a disease for all children in
the community, even those who did not receive the vaccine. Another important require-
ment that must be satisfied to implement the method is 0 < pr(t = 1|X) < 1. Every
unit in the study must have non-zero probability of receiving either treatment; i.e.,
every unit must be a candidate for either treatment. The probability of treatment must
be strictly greater than zero and strictly less than unity (this condition proves important
when matching on the propensity score—it ensures the possibility of matches between
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the treated and untreated observations). Matching on the confounders will eliminate
the selection bias by pairing (matching) treated and non-treated observations based on
the set of covariates that influence selection—pairs are created between observations
with like covariate values. If X is observable and if ỹ⊥ t |X holds, then:

� = EX
[
E[y|t = 1, X ] − E[ỹ|t = 0, X ]] (6)

where EX is the expectation operator taken with regard to the distribution of X . Because
the interest here is on the treatment effect on the treated, only a weaker form of strong
ignorability is needed,ỹ⊥ t |X rather than ỹ, ỹ + �⊥ t |X (Dehejia and Wahba 2002).
Note that as the number of covariates increases, it becomes more difficult to match on
all the confounders (the curse of dimensionality).
Balancing score (Rosenbaum and Rubin 1983). A balancing score b(X) is defined
as one which when conditioned on, results in independence between the treatment
assignment and the confounders X , i.e.,

X⊥ t |b(X). (7)

The balancing score eliminates the curse of dimensionality because it is a scalar func-
tion of the multivariate X . The balancing score is not simply any function of X ; rather,
the balancing function b is specified so that, conditioned on the score, treatment status is
independent of the confounders X . The notion of balance comes from matching treated
and untreated observations based on the balancing score. If a score is a balancing score
then the distribution of X in the matched treated observations should be similar to the
distribution in the matched untreated observations. They are then said to be balanced.

The propensity score pr(t = 1|X) = p(X) is a balancing score, i.e.,

X⊥ t |p(X). (8)

The propensity score is the probability of an observation being treated. In randomized
experiments the propensity score is known because the experimental design speci-
fies the probability of assignment to each treatment group for each experimental unit.
However, in observational studies it must be estimated. The estimated propensity
score is only useful so long as it is a balancing score, meaning that conditional on the
estimated propensity score, the distribution of confounders between treatment status
groups is the same. Probability models, such as the probit specification, often are used
to estimate the propensity score.
Strong ignorability given propensity score (Rosenbaum and Rubin 1983). If treatment
status is strongly ignorable given the confounders, then the treatment status is strongly
ignorable given the propensity score; that is,

If ỹ, ỹ + �⊥ t |X and if 0 < pr(t = 1|X) < 1 for all X,

then ỹ, ỹ + �⊥ t |p(X) and 0 < pr(t = 1|p(X)) < 1 for all p(X).

Propensity score matching assumes that an observation’s assignment to the program
can be expressed as a function of observed variables X , where 0 < pr(t = 1|X) < 1
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(the overlap assumption, per Imbens 2004). Note that the overlap assumption does
not include the endpoints (0, 1). In a randomized experiment, the researcher chooses
the probability of treatment then randomly selects observations, based on this prob-
ability of selection, into treatment. If the researcher were to choose 0 or 1 then they
would have to either admit no observations into treatment or they would have to admit
all observations into treatment, respectively. Choosing either 0 or 1 would not pro-
duce a comparison group. With the propensity score method, the researcher does not
choose the probability of treatment. Rather, the researcher matches paired observa-
tions (treated with control) with the same empirically estimated probability. In theory,
a researcher should not find a match between a treated and control pair with a treatment
probability of 0 or 1, hence matching is confined to where overlap is possible.
Propensity score matching as an unbiased treatment effect estimator (Rosenbaum and
Rubin 1983). Given strong ignorability, the propensity score matched mean treatment
effect is unbiased:

�̃ = EX
[
E[y|t = 1, X ] − E[ỹ|t = 0, X ]]

= E p(X)

[
E[y|t = 1, p(X)] − E[ỹ|t = 0, p(X)]]

= E p(X)

[
E[y|p(X)] − E[ỹ|p(X)]]

= � (9)

where E p(X) is the expectation operator taken with regard to the distribution of p(X).
Thus, given strong ignorability (observable confounders) and the propensity score as a
balancing score, the expected treatment effect is equal to the mean difference between
the matched participants’ and non-participants’ outcomes, where observations are
matched by their estimated probability of treatment. The importance of score match-
ing versus covariate matching should again be duly noted. Score matching allows for
pairing based on a scalar (probability to participate), while covariate matching pairs
observations based on vectors of X ; thus the greater the number of confounders, the
more difficult it becomes to match observations (Dehejia and Wahba 2002).

Because the treatment effect is estimated using a matching procedure, the relation-
ship between outcome and the treatment and confounders need not be known. In fact,
PSM has been found to be robust when the outcome is a nonlinear function (LaLonde
1986; Winship and Mare 1992; Joffe and Rosenbaum 1999; Rubin and Thomas 2000;
Imai and van Dyk 2004).

2.2 Propensity score models with continuous treatment

The majority of the PSM literature focuses on a binary treatment decision or multi-
valued, ordinal treatment (for instance, see Behrman et al. 2004), but very recent work
explores the use of propensity scores with treatment as a continuous variable (Imbens
2000; Lu et al. 2001; Hirano and Imbens 2004; Imai and van Dyk 2004). In the binary
treatment case, treated observations are matched with non-treated observations based
on their like propensity score (probability of treatment). When treatment is a con-
tinuous variable, rather than binary, all of the observations may have received some
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treatment and differ only with respect to their level of treatment. Unlike the binary
case, there is no longer a control (untreated) group to compare with the treated group.
However, some authors have taken the approach of discretizing the continuous treat-
ment variable into several ordinal treatment groups (see Behrman et al. 2004). Of
course the boundaries for the groups may be arbitrary and meaningless. Also with a
continuous treatment variable, it may be more interesting (and meaningful) to examine
the marginal effect of treatment.

When treatment is a continuous variable, matching gives way to modeling the out-
come as a function of treatment while conditioning on the propensity score (Imai and
van Dyk 2004). The requirements that the propensity score achieve strong ignorability
when treatment is a continuous variable necessitates only a slight modification to that
shown for matching.
Strong ignorability given propensity score when treatment is a continuous variable
(Rosenbaum and Rubin 1983; Imai and van Dyk 2004). If treatment status is strongly
ignorable given the confounders, then the treatment status is strongly ignorable given
the propensity score; that is,

If ỹ, ỹ + �⊥ t |X and if 0 < E[t |X ] for all X,

then ỹ, ỹ + �⊥ t |E[t |X ] and 0 < E[t |E[t |X ]] for all E[t |X ].

In practical terms, the distribution of outcome is modeled using a parametric
form while conditioning on the propensity score. The propensity score is defined as
E[t |X ]. The propensity score is also estimated parametrically, but no functional form is
assumed for the relationship between the propensity score and the outcome. The two-
step method proposed by Imai and van Dyk (2004) applied to (3) requires X to be
observable (strong ignorability), so treatment can be estimated as a function of X ,
such as

E[t |X ] = δ0 + δx X (10)

where the δ’s are estimated using OLS. The linear form of (10) is not necessitated
by the technique, only that the propensity score fitted from (10) is a balancing score.
Blocking on the propensity score means that the observations are divided into P blocks
(groups or sub-samples) and OLS estimation of y on Z and t is performed within each
block (propensity score blocking ensures that the regressions are conditioned on the
propensity score). The second stage estimates Eq. (3) while blocking on the estimated
propensity score (the fitted values from (10)):

ypj = πp Z pj + �ptpj + εpj (11)

where j references observations contained in the propensity score block p, where
p = 1, . . ., P . The average treatment effect is a weighted average (weighted by the
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number of observations within each block), calculated as:

�̂ = 1

N

P∑

p=1

�̂pn p (12)

where n p is the number of observations in block p.
When treatment is a continuous variable, the balancing condition X⊥ t |p(X) is

difficult to test in the manner used when treatment is a binary variable. This is
because treatment may take on any number of values instead of only two. Imai and van
Dyk (2004) explain that the balancing condition may be tested by regressing a func-
tion of each of the continuous confounders on the treatment variable and the propensity
score. Similar to the binary treatment case, the balancing test is a test of the
propensity score model specification. A function of each confounder is used to test
the propensity score specification, because by construction, regressing the untrans-
formed covariate (the form used in the propensity score model) on treatment and the
propensity score will yield an insignificant parameter estimate on treatment (if using
simple linear regression). If the estimated parameter for treatment effect is signifi-
cant, then treatment and the covariate are related and the specified propensity score
is not a balancing score (the propensity score model is misspecified). However, any
insignificance does not rule out the possibility that higher order transformations of the
covariate are related to treatment (or a Type II error occurred in the test).

3 Data and study site

I examine the effectiveness of wildfire management on wildfires occurring in the
St. Johns River Water Management District (SJRWMD) in northeast Florida, from
1996 to 2001. The SJRWMD area comprises portions of the 18 northeast counties
in Florida. The SJRWMD is an ideal study area given its abundance of wildfire
(in size and occurrence), use of prescribed fire, values at risk, and quality of
available data. Florida, unlike many areas of the western United States, is heavily pop-
ulated (it is fourth in state population and ninth in population density; United States
Census Bureau 2004) and averages 218,638 wildfire acres a year and 763,205 acres of
silvicultural-based prescribed fire a year (476,590 is for hazard reduction). Between
wildfire and silvicultural prescribed fire, approximately 3% of Florida burns annu-
ally (not including agricultural burns). The SJRWMD averages over 48,596 acres a
year in wildfire and 133,833 acres of prescribed burning (73,099 for hazard reduction)
resulting in about 2.3% of the SJRWMD burning annually.

3.1 Wildfire records

Data on individual wildfire occurrences were obtained from the Florida Division of
Forestry (FDOF). FDOF’s wildfire data contains detailed information on fires found
on private and state-owned lands including, but not limited to, the date and time of
ignition, location (township, range, and cadastral section), size (acres), associated
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weather conditions (e.g., wind speed, wind direction, and humidity), rate of spread,
flame length, and cause (arson, campfires, cigarettes, children, debris burning, equip-
ment, lightning, miscellaneous, railroad, and unknown) from 1981 to 2001. Both the
wildfire data and the prescribed burning data are geo-located to a Public Land Survey
section (township, range, cadastral section), which is approximately a one-square mile
rectangle.

From 1981 to 2001 there were 31,603 wildfires in the SJRWMD, with almost half
of them (48%) coming from non-incendiary human-caused sources (accidental igni-
tions), followed by arson (29%), and lightning (23%). The SJRWMD (and Florida
in general) fire season appears to begin late-winter to early-spring and last until the
middle of the summer, with burned area peaking around May and June.

3.2 Wildfire management

The FDOF provided a second dataset that details all prescribed fire activities within the
state (in order to conduct a prescribed burn in Florida, a permit must be obtained from
the FDOF). Permit data include information on the location (located by the town-
ship, range, and cadastral section), reason (hazard reduction, prior to seeding, site
preparation, disease control, wildlife, ecological, or other), and total size (in acres).
The dataset includes permits issued between 1989 and 2001, although full state-wide
reporting did not occur until 1993.

In addition, wildfire start time, wildfire report time (time between ignition and report
to fire department), and fire crew arrival time, is provided in the FDOF database, allow-
ing for the creation of a measure of initial attack (fire crew response time—the time
between report and arrival).

3.3 Climate and weather

The El Niño Southern Oscillation (ENSO) measure used in this analysis is the Niño-3
sea surface temperature (SST) anomaly, which was obtained from the National Oceanic
and Atmospheric Administration (National Oceanic and Atmospheric Administration
2002). The Niño-3 SST anomaly is measured as the positive (El Niño) or negative
(La Niña) deviation, in degrees centigrade, of the Pacific sea surface temperature (at a
specific location). The Keetch–Byram Drought Index (KBDI) was calculated for two
weather stations in the SJRWMD region using daily data collected by the National
Climate Data Center and provided by EarthInfo (2002).

3.4 Landscape characteristics

Section-level road and census data (population, income, and education) were created
from U.S. Census Bureau TIGER/Line GIS data. The National Land Cover Data,
based on the Multi-Resolution Land Characteristics Consortium’s land cover map
(30-m resolution grid) was used to determine landcover composition within and
surrounding each section. Five landcover classes were assembled—grass (grassland/
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herbaceous), upland forest (deciduous, evergreen, and mixed forest), urban (low
intensity residential, high intensity residential, and commercial/industrial/transpor-
tation), water (open water), and wetland (woody wetland).

4 Empirical model

I examine the effectiveness of wildfire management on wildfires over the period 1996–
2001. In this study, wildfire management is composed of two components—fire sup-
pression and fuels management. The fire suppression (fire fighting) variable is defined
as the amount of time (in hours) it takes fire crews to respond to a fire call (the time
from when the fire is reported until the fire crew arrives at the fire site). It is commonly
acknowledged that a swift first-response is an important step in controlling wildfire
(Parks 1964; Gorte and Gorte 1979; Hirsch et al. 2004). The fuels management vari-
able is defined as the number of acres of prescribed fire (for hazard reduction), over the
last three years, permitted to the section, and those contiguous surrounding sections,
in which the fire occurred. Full coverage of the prescribed fire data begins in 1993,
therefore the analysis begins with wildfire occurring in 1996 to include for the three
year lag. Because suppression and fuels management may affect both wildfire size
(extent) and intensity, I use an intensity-weighted acres measure of wildfire behavior
(as described in Mercer et al. 2007), measured in kW-acre/meters, for the wildfire var-
iable. Wildfire intensity-weighted acres are used as a measure of fire behavior rather
than acres or intensity alone because large acre fires may not be damaging if they are
of low intensity. Similarly, very intense fires may not be damaging if they are very
small. The intensity-weighted acre is policy-relevant because it is a better metric of
fire damage and is defined as:

wi = a∗
i 259.833∗l2.174

i

where wi is wildfire intensity-weighted acres (kW-acre/meter), ai is acres burned, li
is fire flame length (meters). Wildfire intensity is approximated as a function of flame
length (= 259.833∗l2.174

i ; see Kennard (2004)), which is reported by FDOF.
Estimating the effectiveness of wildfire management using wildfire as the unit of

observation (as oppose to a location) is appropriate in the case of suppression because
suppression affects wildfire behavior, rather than the ignition process. Suppression
does not prevent wildfire ignition, so sections without wildfire would also be without
suppression (at least as suppression is defined here). If fuels management has a sig-
nificant impact on ignition success then the current modeling framework introduces
its own selection bias. However, the benefits of fuels management are often couched
in terms of reduction in fire intensity and size rather than in terms of ignition (Wade
et al. 2000; Brose and Wade 2002; Outcalt and Wade 2004). There is evidence that
arson ignitions are correlated with fuels management activities (Prestemon and Butry
2005), but this phenomenon may have less to do with the physical relation between
fuel levels and ignition and more to with the realization by the arsonist that the wildfire
has a lower probability of achieving a devastating size or intensity in actively man-
aged areas. In addition, actively managed forests may pose a greater threat of capture
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or detection to the arsonist. Therefore, the focus of this study is the effectiveness of
wildfire management in wildfire prone areas.

4.1 Modeling wildfire using propensity scores

The PSM wildfire model is estimated using OLS while blocking on the propensity
scores as:

ln(wb) = β0b + XMbβMb + XCbβCb + XFbβFb + XI bβI b + XObβOb + ξ (13)

where w is wildfire-intensity acres (kW-acre/meter), XM (management variables)
includes the natural log of the suppression (log of fire crew response time in hours)
and prescribed fire (log of hazard reducing prescribed fire acres) variables, described
above, along with an indicator variable denoting let burn fires (fires that are allowed
to burn themselves out), XC (climate and weather variables) includes KBDI (0–800
drought index), whether the fire occurred in an El Niño or La Niña phase, and its mag-
nitude (Pacific sea-surface temperature deviation from normal in centigrade), percent
humidity, fire spread index (0–100 index; a function of wind, fuel moisture, fuel con-
dition, and precipitation), actual fire spread in miles per hour (recorded as an ordinal
variable), the natural log of wind speed (log of miles per hour), and wind direction,
XF (fuel variables) includes indicator variables for fuel type (pine, swamp, blowy leaf,
grass, muck, palmetto–gallberry, and other), build-up index (0–250 index; a measure of
available fuels, temperature, and precipitation), latitude (decimal degrees re-projected
into the Albers equal-area map projection coordinates), longitude (decimal degrees
re-projected into the Albers Equal-area map projection coordinates), elevation (feet),
slope (degrees), landscape composition (percent of landscape in upland forest, agri-
culture, rangeland, residential, wetland, and water), forest density (density of acres
of forest in the section), previous 12-year fire history (number of ignitions), previ-
ous 12-year fire history in neighboring sections (number of ignitions), the natural log
of previous 12-year fire intensity-weighted acres (a measure of previous fire behav-
ior that may be related to available fuels), the natural log of previous 12-year fire
intensity-weighted acres in neighboring sections, natural log of road density (density
of kilometers of road in the section), XI (ignition variables) includes ignition cause
(lightning, arson, campfire, cigarette, debris burning, equipment, railroad, children,
miscellaneous, and unknown), natural log of population (log of count of population),
natural log of family income (log of income in thousands of dollars; income is found
to be correlated with wildfire in Florida; Butry et al. (2002)), and natural log of fire
report time (log of time from fire ignition to call to fire department in hours), XO (other
variables) includes indicator variables denoting county, fire year (begins September of
the preceding calendar year and ends in October of the current calendar year), month,
fire district, and ownership type (public or private), β’s are parameters, b denotes the
propensity score block, and ξ is an error term. Table 1 provides descriptive statistics
for all variables in the models.

Because there are two arrays of propensity scores (one for response time, another
for prescribed fire), placement into block groups is directed by the relative rank of the
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two scores (low–low, low–mid, low–high, mid–low, mid–mid, mid–high, high–low,
high–mid, high–high). Nine block groups are used. By conditioning on the propensity
scores, the estimated relationship between response time and prescribed fire on wildfire
intensity-acres represents the actual causal effect of management on fire behavior.

4.2 Propensity score estimators

The fitted values from propensity score estimator models, for both prescribed fire
and response time, are the propensity scores. The response time and prescribed fire
propensity scores are estimated separately, but are both used in a single model of
wildfire behavior. The propensity score estimator models include all the variables in
the wildfire equation that are either known at the time of treatment or unaffected by
treatment (e.g., climate variables). This is done to ensure that all the covariates that
directly affect wildfire behavior and the treatments (response time and prescribed fire)
are included in the score estimator models.

The propensity score for fire crew response time is estimated as:

ln(r) = βr
0 + Xr

Mβr
M + Xr

Cβr
C + XFβr

F + XI β
r
I + XOβr

O + u (14)

where r is fire crew response time (hours), the X’s as above, except Xr
M (management

variables) includes only the natural log of prescribed fire and an indicator variable
for let burn fires (response time is excluded), Xr

C (climate and weather variables)
includes only KBDI, whether the fire occurred in an El Niño or La Niña phase, and
its magnitude, percent humidity, fire spread index, the natural log of wind speed, and
wind direction (fire spread is excluded, as it may be affected by suppression), β’s are
parameters, and u is an error term. Fire crew response time is modeled using OLS.

The propensity score estimator for prescribed fire is estimated as:

ln(p) = β
p
0 + Xp

Cβ
p
C + Xp

Fβ
p
F + Xp

I β
p
I + XOβ

p
O + v (15)

where p is prescribed fire acres, the X’s as above, except Xp
C (climate and weather

variables) includes whether the fire occurred in an El Niño or La Niña phase, and its
magnitude (excludes KBDI, percent humidity, fire spread index, actual fire spread in
miles per hour, the natural log of wind speed, and wind direction), Xp

F (fuel variables)
includes only fuel type, latitude, longitude, elevation, slope, landscape composition,
forest density, previous 12-year fire history, previous 12-year fire history in neigh-
boring sections, the natural log of previous 12-year fire intensity-weighted acres, the
natural log of previous 12-year fire intensity-weighted acres in neighboring sections,
natural log of road density (excludes vegetation build-up), Xp

I (ignition variables) only
includes population, income, and ownership (excludes ignition cause and natural log
of fire report time), β’s are parameters, and v is an error term.
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4.3 Covariate balancing test

To test the covariate balance in the response time propensity score estimator model
(prescribed fire propensity score estimator model), I square each continuous variable
and regress it on the natural log of response time (natural log of prescribed fire) and
the estimated response time propensity score (estimated prescribed fire propensity
score). If the coefficient on the natural log of response time (natural log of prescribed
fire) is statistically indistinguishable from zero, then the covariate is deemed balanced,
if not, then the squared term is added to the propensity score estimator model. The
squared-term of the natural log of previous wildfire intensity-weighted acres, natural
log of previous wildfire intensity-weighted acres in neighboring areas, and natural log
of fire report time are included in the response time propensity score estimator model
due to lack of initial balance.

Figure 2 shows the balancing ability of the propensity scores. If the propensity score
balances the covariates and if the covariates include all the variables that confound
the treatment-outcome relationship, then the propensity score blocking estimator will
be unbiased. The balancing test is described in Sect. 2.2. If the propensity score is a
balancing score at a 5% significance level, then the t-statistic associated with treatment
(response time and prescribed fire) when regressing a nonlinear transformation of the
covariate on treatment and the propensity score should be less than 1.96. Figure 2

0
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−20 −10 0 10 20

t−statistics
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Fig. 2 Histograms of the t-statistics associated with the management variable (ln(response time), ln(pre-
scribed fire)) from regressing the squared value of each of the continuous variables in the ln(response time)
propensity score estimator model (a) on ln(response time), (b) on ln(response time) and the ln(response
time) propensity score, and from regressing each of the continuous variables in the ln(prescribed fire) pro-
pensity score estimator model (c) on ln(prescribed fire), (d) on ln(prescribed fire) and the ln(prescribed fire)
propensity score. Dashed line denotes 95% conference interval (t-statistic equal to zero)
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presents the t-statistics associated with regressing a nonlinear transformation of the
covariates on (a) the natural log of response time, (b) the natural log of response time
and the propensity score of the natural log of response time, (c) the natural log of
prescribed fire, (d) the natural log of prescribed fire and the propensity score of the
natural log of prescribed fire. The relevant comparisons to make are between 2a and
2b and between 2c and 2d. Figure 2a shows that some of the covariates are related to
response time, whereas figure 2b shows that the covariates are not statistically related
(at the 5% significance level) to response time when conditioning on the response
time propensity score. This implies that conditional on the propensity score, response
time is not related to the covariates—this is the condition that the propensity score
must achieve to be a balancing score—so that conditioning on the response time pro-
pensity score ensures that differences in wildfire behavior are due to differences in
response time and not to any underlying factors. Likewise, Figures 2c and d show that
the prescribed fire propensity score is also a balancing score.

5 Results

Tables 2–4 summarize the output of the models. Tables 2 and 3 present the 1st stage
propensity score estimator models. Table 4 summarizes the impact of response time
and prescribed fire on wildfire intensity-acres, rather than presenting all nine subgroup
regressions (available upon request). The 1st stage propensity score model models are
significant (based on the F-tests), but explain a limited amount of the variation of the
respective management variable (12–18%). Because the wildfire model is estimated
using the natural log of wildfire intensity-acres, response time, and prescribed fire
variables, the reported management coefficients are elasticities. For interpretation of
the dummy variables in semilogarithmic models, see Halvorsen and Palmquist (1980)
and Kennedy (1981).

The results of the propensity score model are complex, as they allow for nonlinearity
between wildfire management and wildfire intensity-acres. I find that a 1% decrease in
response time yields a 0.3175% decrease (0.0420 standard error) in wildfire intensity-
acres (based on the average response time elasticity averaged over all subgroups). The
average prescribed fire elasticity (again averaged over all subgroups) implies a 1%
increase in prescribed fire acres yields a 0.0138% decrease (0.0085 standard error) in
wildfire intensity-acres. Upon examination of the subgroup results, there appear some
interesting findings. First, the propensity scores in this analysis can be thought of as
the expected levels of treatment. The response time propensity scores in the lower third
subgroup correspond to those fires with quicker expected fire crew response rates, and
those in the upper third correspond with fires with slower expected fire crew response
rates. The lower third subgroup prescribed fire propensity scores correspond with fires
with less expected prior prescribed burn acres, while those fires in the upper third sub-
group correspond with more expected area burned by prescribed fire. Prescribed fire
is significant (5% level) in the group with median levels of expected prescribed fire
and with lower expected response times. The prescribed fire elasticity is −0.0436.
It is weakly significant (11% level) in the group with higher expected levels of pre-
scribed fire and with lower expected response times. Quick fire crew response times
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are generally significant across all subgroups, except those groups with significant
prescribed fire effects. Focusing only on the subgroups with significant results, the
weighted average elasticity is 0.3754, with subgroup variation ranging from 0.2787
to 0.5097.

Across the nine subgroups, the strength of the treatment effect of one of the man-
agement variables appears to be inversely related to size of the propensity score of the
other. This implies that the effect of response time on fire intensity-acres is greater
for fires where less expected prescribed fire occurs. Further, prescribed fire appears to
be effective only for those fires with quicker expected fire crew response times. The
prescribed fire treatment effect is significant (or weakly significant) only in the groups
where the treatment effect for response time is not, and vice-versa. Because wildfires
appear to be affected by either suppression or prescribed fire, but not both, this suggests
that prescribed fire and suppression act as substitutes rather than complements.

6 Discussion

The question examined here is whether or not wildfire management pays off. Statis-
tical difficulties in modeling wildfire behavior at policy relevant scales make quick
answers challenging. After accounting for potential endogeneity and nonlinearities of
prescribed fire and fire crew response time with wildfire behavior, I find evidence that
quicker response times limit wildfire size and intensity, and that prescribed fire may
provide beneficial effects against wildfire extent and intensity up to three years of its
application, especially in combination with quick response time.

The propensity score blocking model yields evidence that wildfire management
(fire crew response time and prescribed fire) is effective at limiting wildfire size and
intensity. The model findings also suggest nonlinearity between wildfire behavior and
wildfire management. This result implies that the returns to management may not
be homogeneous across the landscape and that these models could be used by pol-
icymakers to target (locate) areas with the highest returns to wildfire management
investment.

Prestemon et al. (2002) and Mercer et al. (2007) both evaluate the effectiveness
of prescribed fire on wildfire behavior. I am not aware of any other research that has
quantified the effectiveness of fire crew response time, initial attack, or suppression in
general on wildfire behavior. Overall, Prestemon et al. (2002) finds very little statistical
evidence that hazard mitigating prescribed fire reduces wildfire size. In fact, they find
some significant positive correlations between prescribed fire and fire size. They state a
possible explanation is an omitted variable problem (unobserved confounder). Mercer
et al. (2007) find significant correlations between hazard mitigating prescribed fire and
wildfire intensity-weight acres. The average prescribed fire treatment effect elasticity
(the average prescribed fire effect over three years) is 0.27. Because the prescribed
fire variable used in Mercer et al. (2007) is defined as the natural log of the ratio of
prescribed fire to forested area (in acres), a 1% increase in the ratio of prescribed fire
to forested area is associated with a 0.27% reduction in wildfire intensity-weighted
acres. Based on the prescribed fire and forest acre data present in their table 1 (Volusia
County, Florida, 1994–2001), a 1% increase in prescribed fire acres is associated with
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a 0.0110% reduction in wildfire intensity-weighted acres. The significant block group
treatment effects in the propensity score model are significantly different than the
Mercer et al. (2007) finding. This research coupled with Prestemon et al. (2002) and
Mercer et al. (2007) suggest that prescribed fire does appear to limit wildfire intensity,
but may be less effective at limiting fire size. It also suggests that OLS models may
under-estimate the true impact of prescribed fire, as compared with propensity score
models.

The estimated financial returns to wildfire management appear great, but have
large margins of error. From 1993 to 2001, approximately 669,290 acres were
prescribed burned in the SJRWMD for hazard mitigation purposes. Cleaves et al.
(2000) estimate the cost of prescribed fire to be $26.30 an acre in the southeast U.S.,
thus roughly $17,602,327 was spent on prescribed fire in the SJRWMD. Based on
the propensity score blocking prescribed fire elasticity of −0.0138, the SJRWMD
experienced 30,651,129.12 kW-acre/meters less wildfire (1.38% less). Mercer et al.
(2007) estimate the market value of damage from wildfire to be $0.88 per
kW-acre/meter, based on the findings of Butry (2001). Using this value as an approxi-
mation of the unit cost of wildfire, prescribed fire in the SJRWMD saved $26,972,993.63
in wildfire damages. Thus, for every $1 spent on prescribed fire treatments, $1.53 in
wildfire damage was avoided. But given the elasticity variations across propensity
score groups, the savings from prescribed fire applications are likely to vary geo-
graphically.

It is not possible to calculate a similar estimate for suppression response (it is
not known how large a fire would have become without any response). However,
it is possible to estimate what the financial return would have been, from 1996 to
2001, if suppression response would have been 10% quicker. Using the propensity
score blocking estimated response time elasticity of 0.3175 and the fire damage esti-
mate of $0.88 kW-acre/meter, a 10% decrease in response time (a total reduction of
543.7 hours) would have resulted in $62,057,420 reduction in fire damages. Unfortu-
nately, a dollar equivalent to the 543.7 hour reduction is not available. Future research
might focus on evaluating the costs associated with suppression response.

In addition, future research should focus on exploring other methods (perhaps less
parametric) to condition wildfire behavior on propensity score, and explore the role
spatial scale plays in the modeling of the effectiveness wildfire management. The spa-
tial scale used here is much finer than Prestemon et al.(2001, 2002), which finds fairly
weak evidence of the effectiveness of prescribed fire. However, the challenge is to find
the appropriate modeling scale that provides insight into the wildfire problem, while
being policy relevant.
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