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ABSTRACT. Faustmann's formula gives the land value, or the forest value of land with trees,
under deterministic assumptions regarding future stand growth and prices, over an infinite
horizon. Markov decision process (MDP) models generalize Faustmann's approach by recogniz-
ing that future stand states and prices are known only as probabilistic distributions. The objective
function is then the expected discounted value of returns, over an infinite horizon. It gives the
land or the forest value in a stochastic environment. In MDP models, the laws of motion between
stand-price states are Markov chains. Faustmann's formula is a special case where the
probability of movement from one state to another is equal to unity. MDP models apply whether
the stand state is bare land, or any state with trees, be it even- or uneven-aged. Decisions change
the transition probabilities between stand states through silvicultural interventions. Decisions
that maximize land or forest value depend only on the stand-price state, independently of how
it was reached. Furthermore, to each stand-price state corresponds one single best decision. The
solution of the MDP gives simultaneously the best decision for each state, and the forest value
(land plus trees), given the stand state and following the best policy. Numerical solutions use
either successive approximation, or linear programming. Examples with deterministic and
stochastic cases show in particular the convergence of the MDP model to Faustmann's formula
when the future is assumed known with certainty. In this deterministic environment, Faustmann's
rule is independent of the distribution of stands in the forest. FOR. SCI. 47(4):466-474.
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THE THEME OF THIS ARTICLE is the connection between
Faustmann's (1849) formula for land, valuation in
forestry and modern attempts to incorporate biologi-

cal and economic risk into the same problem. The intent is to
show first that Faustmann's formula is a special case of a
Markov decision process (MDP) model, in which the transi-
tion probabilities are unity or zero. Second, MDP theory
implies independence of the decision policy from the prob-
ability distribution of states. Thus, as a deterministic limit of
an MDP model, Faustmann's rule is valid regardless of the

forest condition, although the effects of its application de-
pend much on this condition.

Faustmann's model is one of the foundations of forest
economics (Lofgren 1990, Samuelson 1976). It is used in
numerous and varied applications, yet its validity is still
questioned, even without consideration of risk. Some of its
general assumptions have been criticized (Mitra and Wan
1985, 1986). And, among forest economists, there is still
some debate as to whether Faustmann's formula is valid for
special cases, such as a regulated forest (Oderwald and Duerr
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1990, Howard 1990, Chang 1990, Hulkrantz 1991). Several
of these issues, apart from the effect of ancillary constraints
which we do not consider here, are connected to the question
of the dependency of Faustmann's and related rules on the
initial conditions of the stand or forest under consideration.
Several studies have proposed methods to solve the problem
of managing a forest or a stand of trees economically given
a specific initial condition. Examples for the even-aged forest
include Nautiyal and Pearse (1967), and for uneven-aged
forests Haight et al. (1985). The MDP framework helps
clarify that although the magnitude and timing of the harvests
does depend directly on the initial condition, there exists an
optimal harvesting policy that ties the harvest uniquely to the
current state, regardless of initial condition.

Furthermore, a serious limitation of Faustmann's tradi-
tional model is its deterministic nature. The consideration of
stochastic factors is central to modern forest ecology and
management (Perry and Maghembe 1989), and it is also of
obvious importance in economics. Indeed, much work has
been done to bring stochastic events to bear on harvesting
decisions. For the case of the even-aged forest, Miller and
Voltaire (1980, 1983), Clarke and Reed (1989), and
Lohmander (1988) have proposed optimal stopping rules for
models with risky forest growth, prices, or both. Brazee and
Mendelsohn (1988), Forboseh et al. (1995), and Thomson
(1992) gave special attention to the asset sale model, and the
attendant calculation of a reservation price. Stochastic simu-
lation has been used by Taylor and Fortson (1991), and by
Kuboyama et al. (1997). For uneven-aged management,
Haight (1990) developed a special numerical method when
prices are stochastic, while Gove and Fairweather (1992)
randomized the parameters of a deterministic programming
model. Several other studies have dealt with risk and uncer-
tainty, especially biological risk, in forest optimization mod-
els (Hofetal. 1996, Pickensetal. 1991).

Here, we concentrate on the Markov decision process
(MDP) model as a generalization of the classic Faustmann
formula. The reason for choosing MDP is its standard form,
its ability to represent a wide range of stochastic processes,
from catastrophic events to correlated prices, and its rich
theory. In addition, several standard numerical solutions are
available. Forestry applications of MDP models seem to have
been first suggested by Hool (1966), but one of the first
practical applications was Lembersky and Johnson's (1975)
study of the optimum management of Douglas-firplantations
with risky growth and prices. Kao (1982) and Teeter and
Caulfield (1991) then made similar applications. MDP mod-
els are readily adaptable to uneven-aged management, as
shown by Kaya and Buongiorno (1987), and they have been
also applied to forest management decisions with a mix of
economic and ecological criteria, including stand and land-
scape diversity (Lin and Buongiorno 1998).

The article is organized as follows. First, we review
briefly the simplest form of Faustmann's model, with an ,
example to serve as a standard against which to compare the
MDP formulation and results. Then, we lay out the corre-
sponding MDP equations. We present the numerical solution
of the MDP by successive approximation to illustrate (1) the
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Figure 1. Stand growth and harvest in simple, deterministic
Faustmann model.

general differences between MDP and Faustmann solutions,
and (2) their convergence when state changes are known with
certainty. We then use a linear programming approach that
gives the expected discounted returns as a function of the
initial probability distribution of stand states. In the deter-
ministic case, this solution is identical to applying Faustmann's
formula to each stand independently, regardless of the com-
position of the entire forest.

The Deterministic Faustmann Formula

The classical Faustmann formula (Faustmann 1849) gives
the value of a unit of bare land used in forest production, over
an infinite time horizon. It is purely deterministic in terms of
both its biological and economic parameters. The rate of
growth of the stand of trees is assumed to be known exactly,
as are all the prices and costs. It is also a static model in that
the sequence and timing of decisions is always the same.

In its simplest form, the Faustmann model can be symbol-
ized as in Figure 1. We begin at time 0, with a piece of bare
land, and we establish a plantation and let it grow for R years,
the rotation. All the trees are harvested at rotation age.
Immediately after the harvest, a new plantation is estab-
lished, identical to that of time 0. The trees then grow exactly
as in the first rotation, and they are harvested at the same
rotation age. This sequence is assumed to continue indefi-
nitely.

In this simple model, let VR be the volume of timber per
unit area at age R, c the reforestation cost per unit area,/? the
price of timber per unit of volume net of harvesting cost, and
g the discount rate per year. The function V and the param-
eters R, c, p, and g are assumed to be known exactly, and
constant over time.

Then, the discounted value of the net income generated by
an infinite series of rotations is equal to1:

SEV = -
d+g) -1 (1)

where the first term on the right of the equality is the sum of
the infinite series of harvest income minus reforestation cost,
recurring every 7? years, and the second term is the cost of the

1 Faustmann's formula is sometimes written as (Clark 1990, p. 270):

SEV=
(xZfC-y

but in that form, it truly expresses the value of land that has just been
reforested, not the value of bare land. Still, as long as c is independent of
R, optimization of this form for R does give the best economic rotation, in
the sense of maximizing the present value of the return to the land.
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Table 1. Faustmann's formula and economic rotation.

R(yt)

20
40
60*
80

100

Yield

29
274
530
728
868

' Best rotation, R*.
NOTE: p =•$13nr3,c~$494ha-1.

py*

(Sha-1;
377

3,562
6,890
9,464

11,284

g=2.5%yr'.

pVR-c
)

-117
3,068
6,396
8,970

10,790

Discount factor
1

(l+g)*-l

1.57
0.59
0.29
0.16
0.09

Soil expectation value
pVK -c

(\+g)R -1
(S ha-)

-677
1,327
1,387

951
504

initial plantation establishment, at time 0. The result, SEV, or
soil expectation value, is the value of bare land used in this
kind of forestry. This is, in a very simplified form, the great
finding of Faustmann (1849), a fundamental contribution to
forestry economics and also a precursory insight into the
general theory of investments (Samuelson 1976). Faustmann
(1849) also gave an extension of formula (1) to calculate the
value of a stand with trees younger than the best rotation.

Equation (1) has numerous applications, to compare dif-
ferent land uses, or to compare different forest management
strategies. For that purpose, it usually includes much more
detail such as density in plantations, commercial and
precommercial thinning, and so on. As an example of appli-
cation, Equation (1) can be used to find the best economic
rotation, R, i.e., the rotation that maximizes the land value,
SEV. If VR is a simple continuous function, the best rotation,
R*, can be found with the calculus. But numerical solutions
are used usually in more complex cases, along the lines
illustrated in Table 1, where each row shows the SEV for a
particular/?. With the data used in the table2 the best rotation,
in the sense of maximizing soil expectation value, obtains
around the age of 60 yr.

Markov Decision Process Model

Equation (3) is obviously a very crude representation of
reality, a dreadful world in which the future is like the past,
forever. It is well known, instead, that biological systems,
including forests, are shaped in large part by rare catastrophic
events, and by milder but more frequent shocks. These are
either truly random events, or they must be assumed so
because of lack of knowledge. The same is even truer of
economic variables. Prices of forest products and cost of
production may vary widely over time, so that they also are
best modeled as stochastic processes.

The stochastic formulation of Faustmann's formula is the
analog of the deterministic formulation (1). That is to say, it
seeks the sequence of decisions that maximizes the expected
discounted value of the income, over an infinite horizon,
given a specific initial condition. So, the general formulation
of the objective function is:

(=0
(2)

where Xt designates the system state at t, which instead of
being deterministic is now a random variable; dt is the
decision at time / = 1,2,...; r is the immediate return from the
decision given a particular state; andjS is the discount factor
fi ~ (1 + gTT> where g is the interest rate, and 7Ms the number
of years between decisions.

There are many different formulations of this problem,
with particular solutions according to the specification of the
law of motion that ties Xt to Xt_v, dt_x, and of the random
shocks. However, a very general approach, most practical,
and with a vast array of theoretical and numerical results, is
the Markov decision process (MDP) model (Hillier and
Lieberman, 1990, p. 768-802). Applied to Faustmann's
problem, assuming only stochastic growth for simplicity, the
model replaces the deterministic growth function VR by a
stochastic growth process described by a matrix of transition
probabilities. Each matrix element is the probability that the
system moves from one state to another between / and t+l.
The state domain consists of N discrete states.

More generally, state definitions may involve biological
as well as economic variables. For example, Lembersky and
Johnson (1975) used number of trees and average diameter to
define the state of even-aged stands, and four levels of
autocorrelated prices for market states. Lin and Buongiorno
(1998) used basal area, tree size, and species to characterize
the states of uneven-aged stands, and two levels of white-
noise prices.

The transition probabilities between system states are
often computed by stochastic simulation, based on growth
and econometric models (Kaya and Buongiomo 1987). A
decision is an action (e.g., tree removal or planting) that
causes the system to move from a state to another, thus
changing the transition probabilities between states.

Transition probabilities are stationary and depend only on
the current system state. As shown by Taylor (1984), the
Markov chain is a very general model of price changes.3

2 The yield data in Table 1 are for Douglas fir in the Pacific Northwest, site
I (McArdle et al. 1961, p. 24).

"A Markovian price expectation structure refers to any stochastic model in
which price is conditional on previous prices; hence, the assumption
embraces random walk, rational expectations, autoregressive, and many
other conditional models" (Taylor 1984).
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Table 2. Definition of stand states.

State i Volume (m3 ha"1)
0

29
274
530
728
868

Bare land.

Concerning biological growth, some studies have argued that
forest growth is not stationary and Markovian (Binkley
1980), but this depends largely on the finesse of the state
definitions. Higher than first order Markovian relations can
be incorporated to model biological or price changes by
adding appropriately defined state variables (e.g., making the
last change part of the state definition). If stand and price
states are independent, which is often the case though it is not
required by the Markov model, it is a simple matter, as shown
in footnote 4, to obtain from the separate transition probabili-
ties of stands and prices the transition probabilities between
combined stand-price states.

To illustrate the formulation of the MDP model, consider
the case of a plantation similar to the one used to illustrate
Faustmann's deterministic formula (Table 1). For simplicity,
and without loss of generality, stand growth is the only
stochastic element. The volume per hectare (Table 2) defines
the stand state. To facilitate comparison with the determinis-
tic Faustmann formula, the volume per area in state 1 is the
same as F20 in Table 1, that in state 2 is the same as F40, and
so on. Furthermore, we assume that the interval between
decisions, t to t + 1, is 20 yr. In parallel with Faustmann's
model, the decision is to do nothing, or to cut the stand and
reforest immediately.

The second element of the MDP model, the reward struc-
ture, is described in Table 3. If the decision is to do nothing,
the reward is zero, regardless of stand state. If instead the
decision is to harvest and reforest immediately, the reward is
an immediate return equal to the net value of the timber
harvested, minus the reforestation cost. Again, as in the
deterministic Faustmann formula, the price of timber is $13
m"3, and the reforestation cost is $494 ha"1. The real interest
rate is 2.5% per year. So, the discount factor \sfl - (1 + g)"20

= 0.61.
Concerning stand growth, instead of it being certain and

dictated by the deterministic function VR once the stand is
established, the periodic growth of the stand is stochastic,
defined by probabilities of passage from one state to another.
To continue the example, Table 4 shows that starting with
bare land (state 0) and doing nothing obtains bare land in 20

Table 4. Probability of transition between stand states, doing
nothing {p(/|/'°)|-

Begin
state/

End state j

0
1
2
3
4
5

1.00
0.10
0.10
0.10
0.10
0.10

0.10 0.70
0.10

0.10
0.70
0.10

0.10
0.70
0.10
0.10

0.10
0.80
0.80

Table 3. Immediate return as a result of state and decision (r/kj.

Decision k*
State i

0
1
2
3
4
5

0

0
0
0
0
0
0

(Sha-1)-
c

-494
-117
3,068
6,396
8,970

10,790

0 = do nothing, c ** cut and reforest

yr with probability 1. If instead the stand is in state 1 (29 m3

ha"1), there is a 70% probability of finding it in state 2 (274
m3 ha~!) in 20 yr, a 10% probability of finding it in state 1, or
3, and also a 10% probability of finding it back to state 0, due
to a major catastrophe. In this example, the probability of a
catastrophic event is constant over time, about 0.5% in any
year, and independent of the stand state.

Table 5 shows instead the probability of transition be-
tween states if the decision is to cut the stand and to reforest
immediately. Regardless of the initial stand state, the prob-
ability of ending in state 1 after 20 yr is 90%, while the
possibility of catastrophic events translates in a 10% prob-
ability of reverting to state 0. A decision, then, consists in
choosing the transition probabilities in Table 4, or those in
Table 5, with the attendant immediate reward and future
consequences. A policy is a rule specifying how each period
decision is taken. A fundamental result is that an optimal
policy exists and that there is always a stationary policy that
is optimal (Blackwell 1962). In a stationary policy, the
decision depends only on the system state and is independent
oftime.

Solution by Successive Approximation
The optimal policy can be obtained in different ways,

including the policy improvement algorithm, linear pro-
gramming; and successive approximation (Hillier and
Lieberman 1990, p. 784-792). Successive approximation is
intuitively appealing, because it is based on the classical
principle of optimality of dynamic programming. It is also
numerically efficient because it does not require the solution
of simultaneous equations. Letting Vf be the maximum
expected long-run discounted returns for a stand now in state
/ and that will grow for / periods, Vj satisfies the backward
recursive equations:

V! =

/=» (3)

Table 5. Probability of transition between stand states, with cut
followed by reforestation {p(/J/,c)j.

Begin
statet

End state 7
0

0
1
2
3
4
5

0.10
0.10
0.10
0.10
0.10
0.10

0.90
0.90
0.90
0.90
0.90
0.90
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Table 6. Successive approximation of maximum expected return and best decision, stochastic case.

Iteration t
0
1
2
3
4
5
6
7
8
9

10

19
20

r.
0
0
0

440
618
809
886
952
983

1,006
1,019

1,039
1,039

Maximum expected return (Sha"1)
y,

0
0

1,701
1,975
2,304
2,422
2,534
2,583
2,623
2,642
2,656

2,676
2,676

Vx
0

3,068
3,467
4,002
4,180
4,371
4,448
4,514
4,545
4,568
4,581

4,601
4,601

0
6,396
6,396
7,330
7,508
7,699
7,776
7,842
7,873
7,896
7,909

7,929
7,929

v*
0

8,970
8,970
9,904

10,082
10,273
10,350
10,416
10,447
10,470
10,483

10,503
10,503

0
10,790
10,790
11,724
11,902
12,093
12,170
12,236
12,267
12,290
12,303

12,323
12,323

do

0
0
c
c
c
c
c
c
c
c

c
c

d,

0
0
0
0
0
0
0
0
0
0

0
0

Best decision*
dz

c
0
c
c
c
c
c
c
c
c

c
c

d,

c
c
c
c
c
c
c
c
c
c

c
c

d»

c
c
c
c
c
c
c
c
c
c

c
c

ds

c
c
c
c
c
c
c
c
c
c

c
c

dt ~ 0 means do nothing in slate i, d-t *= c means cut and reforest.

wherep(j \ i,k) is the probability that the stand4will be in state
j at / + 1, given state i at t, followed by decision k. rjk is the
immediate return from decision k for a stand in state i, and fl
is the discount factor, defined above.

The equations mean that during the current period, with /
periods to go, we earn the immediate return r(A, plus the
discounted value of the future returns that we will earn from
the t- 1 subsequent periods by following the optimal policy.
The initial condition VP is arbitrary and usually set to zero for
each state;'. As t increases to infinity, Vf converges to V(, the
expected discounted return from a stand that starts in state i,
and that is treated according to the best policy. The rate of
convergence is rapid, and can be improved further by the
error bound method (Bertsekas 1995, vol I, p. 308-309). In
particular, Vo' converges towards Vg, the maximum expected
discounted return from bare land. VQ is then the soil expecta-
tion value with stochastic growth (and with stochastic prices
if the model had several price states). Thus, Equation (3) can
be viewed as a generalization of Faustmann's formula for a
stochastic environment. Faustmann's formula is a special
case in which a few of the transition probabilities are equal to
1 and all others to zero, reflecting the fact that in a determin-
istic case we move from one state to another with certainty.
For stand state with trees, the solution gives the forest value,
inclusive of land and trees, in analogy with Faustmann's
extension of his formula to immature stands (Faustmann
1849).

As Faustmann's formula gives the best rotation in addition
to the land value, the MDP model also gives the best policy,
i.e., the best decision for each state. The best policy is
stationary. This property helps clarify the issue of how to

If the system state i = {sjn) consists of the stand state s and the price state
m, and/=(s \m ~) is another state, then the probability of moving from state
i to j with decision * is: p(j\i,k) = pQ\s,k)p(m 1m), if stand and price are
independent. The price can be random noise, in which case p(m "\m)
depends on m' only (e.g., Kay a and Buongiomo 1987), or it can be
autoregressive, in which casep(m ]m) depends on m' and m (Lembersky
and Johnson 1975). But in fact, the Markov model is more general (Taylor
1984). The Markov model can also account for correlation between price
and market state. In all cases, the fundamental model (3) remains the same,
only the definition of the state space changes. In our example it is assumed,
for simplicity but without loss of generality, that the stand growth only is
stochastic.

economically cut a stand or forest in a particular state. It is a
fundamental result of the MDP analysis that the optimum
policy is invariant over time and is tied only to the current
system state. Since, as we have seen, Faustmann's formula is
a special case of the MDP model, it follows that the best
rotation in the deterministic case is valid regardless of stand
state.5

To pursue the example, Table 6 shows several iterations in
the solution of the recursive Equation (4), to find the best
management policy (decision for each state), and the corre-
sponding maximum expected discounted returns, over an
infinite horizon, given a particular initial state. The VP
condition was set arbitrarily at zero, for all stand states. The
computations were done with a spreadsheet. Convergence
occurred quickly. After 20 iterations, the V/'s were stable.
The best policy was already obtained after three iterations:
reforest in state 0, do nothing in state 1, harvest and reforest
immediately in states 2, 3,4, 5. This would correspond to a
rotation of 40 yr, 20 yr shorter than the one obtained with
Faustmann's formula. The maximum expected discounted
return starting from bare land and following the best policy
was about $1,039, also lower than the best soil expectation
value obtained with the Faustmann formula in Table 1, due to
the presence of risk.6 A feature of the successive approxima-
tion solution is that it gives simultaneously the forest values,
land plus trees, for states 1 to 5 as well.

To illustrate how the Markov model gives the Faustmann
solution as a special case, the transition probabilities were
changed as in Tables 7 and 8. The data in Table 7 mean that
if nothing is done, a stand in state 0 is still in state 0 after 20
yr. A stand in state 1, moves to state 2 with certainty; if in state
2, then it moves to state 3 with certainty; and so on. Table 8
says that a stand in state 0 (bare land) that is reforested, or a
stand in any other state that is cut and reforested, moves
always to state 1 in 20 yr.

3 This would not generally be true with additional constraints, such as a
requirement that production be constant over time.

6 However, the MDP solution would always give a land value at least equal
to Faustmann's formula, if the latter were solved with returns equal to the
expected immediate returns implied by the stochastic formulation (Norstrom
1975).
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Table 7. Transition probability between stand states in determin-
istic case, doing nothing {p(/|»,0)|.

Begin
state i

End state/

1.00
1.00

1.00
1.00

Therefore, the transition probabilities in Tables 7 and 8
are equivalent to the deterministic growth function in
Table 1. Furthermore, the objective function is the same:
maximization of discounted returns over an infinite hori-
zon. With the same reward structure, the Faustmann for-
mula and the deterministic Markov model should give the
same results. Table 9 shows the solution of the Markov
deterministic model, by successive approximation. After
20 iterations, the maximum discounted value of returns
over an infinite horizon stabilizes. The best policy is to
reforest in state 0, do nothing in state 1 and 2, and cut and
reforest in states 3, 4, and 5. With our definition of stand
states, this is equivalent to a 60 yr rotation, equal to what
was found with Faustmann's formula (Table 1). With this
policy, the maximum discounted value of returns from
state 0 is $1,387 ha""1, also equal to the soil expectation
value given by Faustmann's formula, as it should. In
addition to the soil expectation value, the Markov deter-
ministic approach also shows the forest value for each
possible initial state. The highest forest value comes natu-
rally for a stand with the largest initial growing stock
(State 5).

Solution by Linear Programming
Although the linear programming solution of the Markov

decision problem is less straightforward than the succes-
sive approximation approach, which uses standard dy-
namic programming concepts, it is worth study. It is
numerically compact, has a more precise solution than
successive approximation, and more importantly, it gives
additional insight. There are at least two linear program-
ming approaches, d'Epenoux (1960) and Ross (1983 p.

Table 8. Transition probability between stand states in
deterministic case, with cut followed by reforestation {p(/|/,c)j.

Begin
state i

End state j
1

1.00
1.00

0
1
2
3
4
5

1.00
1.00
1.00
1.00
1.00
1.00

40—42). We present d'Epenoux's because it is numerically
more efficient, with only as many constraints as there are
states, while Ross's has Nx IT constraints, where N is the
number of states and K the number of decisions. Further-
more, the objective function in d'Epenoux's model is the
expected discounted return per unit area for a given initial
distribution of stand states. Thus, it gives directly the
value of a forest consisting of stands in many different
states, managed optimally.

D'Epenoux linear programming formulation of the Markov
decision process model consists in finding:

N K

N K

J=». • • • > N

(4)

yik>0

where the variableyjk can be interpreted as a "weighted (in
a discounted sense) expected time of being in state i and
making decision A" (Hillier and Lieberman 1990, p. 787).
P is the discount factor defined above, and n- is the
probability of the initial state j. Thus, the objective func-
tion is the expected long-term discounted return, i.e., the
forest value, FV, given the probability distribution of the
initial stand state.

Table 9. Successive approximation of maximum expected return and best decision, deterministic case.

Iteration t
0
1
2
3
4
5
6
7
8
9

10

19
20

V
' 0

0
0
0

649
960

1,074
1,219
1,290
1,316
1,349
1,365

1,387
1,387

Maximum expected return (Sha"1)
Vx

0
0

1,872
2,382
2,570
2,808
2,923
2,966
3,020
3,047
3,056

3,082
3,083

r*
0

3,068
3,903
4,211
4,601
4,790
4,860
4,949
4,992
5,008
5,028

5,051
5,051

y>
0

6,396
6,396
7,539
7,850
7,964
8,109
8,180
8,206
8,239
8,255

8,277
8,277

v,
0

8,970
8,970

10,113
10,424
10,538
10,683
10,754
10,780
10,813
10,829

10,851
10,851

y.
0

10,790
10,790
11,933
12,244
12,358
12,503
12,574
12,600
12,633
12,649

12,671
12,671

do

0
0
c
c
c
c
c
c
c
c

c
c

d,

c
0
0
0
0
0
0
0
0
0

0
0

Best decision*
di

c
0
c
0
0
0
0
0
0
0

0
0

d,

c
c
c
c
c
c
c
c
c
c

c
c

d,

c
c
c
c
c
c
c
c
c
c

c
c

d5

c
c
c
c
c
c
c
c
c
c

c
c

dt" 0 means do nothing in state i, dt - c means cut and reforest
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Table 10. Linear programming solution of forest value and best decision, stochastic case.

Variable:
Solution:
Objective:

(max)

Constraints:
State 0
State I
State 2
State 3
State 4
State 5

Decision*:

1.06

0.39 -0.06
0.94

-0.43
-0.06

4>o dn

l

y2g

-0.06

0.94
-0.43
-0.06

yi0

-0.06

0.94
-0.43
-0.06

<*30

^ 4 0

-0.06

0.94
-0.49

dm

y5a y^

0.32
-494

-0.06 0.94
-0.55

-0.06
0.51

rfso rfte
1

ylc

-117

-0.06
0.45

dtc

y*
0.62

3,068

-0.06
-0.55

1.00

1

y*
0.23

6,396

-0.06
-0.55

1.00

1

0.17
8,970

-0.06
-0.55

1.00

d«
1

>V
0.17

10,790

-O.06
-0.55

1.00

1

= 6,512

($ ha"')

= 1/6 = «;,
— 1/6 — 7T,

= 1/6 = Ttt

= 1/6 = 7C,

= 1/6 = Jt,

= 1/6 = ?c,

1 means decision k is best in state i.

Given a solution of the linear program, the best policy
is defined by the probability of making a decision in a
particular state:

d - y'
"ik ~ K

Jik (5)

The best policy is deterministic, i.e., d^— 0 or 1. Further-
more, the best policy is independent of the initial probability
distribution of stand states, i.e., the TT-'S, although the forest
value depends very much on this initial condition.

The formulation of the linear programming model for the
example used so far is in Table 10, together with the best
solution. The coefficients of the objective function are the
rewards in Table 3. The coefficients of the constraints were
calculated with the transition probabilities in Tables 4 and 5,
according to Equation (4). The right-hand side of the con-
straints is the probability of the initial state, set arbitrarily
equal to 1/6 for every state.

The second row in Table 10 shows the best solution for the
yjk' s. The corresponding obj ective function optimum, $6512
ha"1, is the expected net present value of returns over an
infinite horizon, conditional on the initial probabilities. The

best decisions, in the last row of Table 10, are the probabili-
ties of each action, given a particular state, computed with
Equation (5). These decisions are independent of the initial
probability distribution of states. The decisions are
nonrandomized (0 or 1); thus in every state the same decision
is always called for.

The best policy (decision by state) in Table 10 is the same
as that obtained by successive approximation (Table 6), as it
should given the same data. The objective function of the
linear programming solution is related to the maximum long-
run discounted return given by the successive approximation
approach for each initial state, since:

6512 ($ ha '1) = 1/6(1039 + 2676 + 4601 + 7929

+ 10503 + 12323),

which verifies that the linear programming objective func-
tion gives directly the forest value per unit area, for a given
distribution of initial forest states.

The linear programming solution of the deterministic
Markov problem, i.e., with the transition probabilities in
Tables 7 and 8, is in Table 11. It gives the same decision
rule as the successive approximation approach (Table 9).
The objective function, $6,887 ha"1 is the maximum dis-
counted value of returns per hectare for a forest that has 1/

Table 11. Linear programming solution of forest value and best decision, deterministic case.

Variable:
Solution:
Objective:

(max)

Constraints:
State 0
State 1
State 2
State 3
State 4
StateS

Decision*:

y«, y™ y™ y-* y**
0.82 0.67

0.39
1.00

-0.61 1.00
-0.61 1.00

-0.61 1.00
-0.61

dm dw d20 d,0 dm

1 1

y50 y^ y^

0.17
-494 -117

1.00
-0.61 0.39

0.39

ŝo d^ d,r
1

3,068

-0.61
1.00

yu
0.57

6,396

-0.61

1.00

dlc

1

ytc

0.17
8,970

-0.61

1.00

d«
1

y*
0.17

10,790

-0.61

1.00

du
1

= 6,887

(S ha-')

= 1/6 = n*
= 1/6 = nx

= 1/6 = *2

= 1/6 = TC,

= 1/6 = it.

= 1/6 = x5

(/,.= ! means decision k is best in state i.
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6 of its area in each of the possible states, and which is
managed perpetually according to the optimum rule. In
this deterministic situation, the optimum policy is the
same as Faustmann's: do nothing in states 1 and 2, reforest
in state 0, cut and reforest in states 3, 4, and 5.

Indeed, the same forest value can also be obtained by apply-
ing Faustmann's best rotation to a forest with 1/6 of the area in
each of the possible states, as shown in Table 12. Following
Faustmann, bare land has the SEV given by Equation (1).
Immature stands, i.e., stands of age 7"less than the best rotation
R*, are let grow for R*—Tyears, before being replaced, so that
their forest value (land plus trees) is:

(6)

While mature or overmature stands, of age T > R* are
harvested immediately, so that their forest value is:

= pVT+SEV (7)

In our example, the best rotation according to Faustmann's
formula is 60 yr (Table 1). With the same data, Equations (6)
and (7) give the results in Table 12. For example, a 20 yr old
stand is worth $3,083 ha""1 according to Equation (6), exactly
the same as the forest value given by the deterministic
Markov model for the initial state 1 (Table 9).

If the forest area is distributed equally so that each age-
class covers 1/6 of the land, then the average value per acre
of this forest is $6,887 ha"1, which is also the value of the
objective function of the linear programming solution of
the MDP when the initial states are evenly distributed with
probability 1/6 (Table 11). This correspondence holds true
regardless of the probability distribution of initial states,
thus confirming the validity of Faustmann's formula inde-
pendently of the forest condition, and in particular for a
regulated forest structure, as previously argued by Chang
(1990). That Faustmann's model is a special case of the
MDP model with deterministic laws of motion gives more
generality to this result. Faustmann's model is a particular
type of MDP, thus Faustmann's policy must be indepen-
dent of forest condition, be it a regulated forest or any
other kind of stand distribution. However, this would not
be generally true with additional constraints, such as
constant periodic production.

Table 12. Forest value of regulated forest according to
Faustmann's formula.

Stand age
0*

20*
40*
60*
80"

100n

Average:

Value ($ ha"1)
1,387
3,083
5,051
8,277

10,851
12,671

6,887

Area
1/6
1/6
1/6
1/6
1/6
1/6

Bare land.
Immature stands.
Mature stands.

Summary and Conclusion

Faustmann's formula gives the value of forest land,
under deterministic assumptions regarding future stand
growth and prices, over an infinite horizon. Markov deci-
sion process models generalize Faustmann's approach by
assuming that future stand states and prices are known
only as probabilistic distributions. The objective function
is then the expected long-run discounted value of returns.
This is the land value, or the forest value if there is an
initial stock, in a stochastic environment. In MDP models,
the laws of motion between system states are Markov
chains. By proper definition of the state space, MDP
models can incorporate biological as well as economic
risk, in even-aged, uneven-aged or mixed systems.

The traditional deterministic Faustmann formula can
be interpreted as a special case of the more general MDP
model where the probability of movement from one state
to another is equal to zero or unity. Furthermore, MDP
models deal simultaneously with all possible initial states,
be it bare land, or land and trees. Decisions consist in
moving a stand from one state to another through silvicul-
tural interventions. The theory of Markovian decision
processes shows that the best decision depends only on the
current stand-market state, independently of how it was
reached. Furthermore, the best decision is nonrandomized:
to each stand-price state corresponds one best decision
with a probability of one.

The solution of the MDP gives simultaneously the best
decision policy and the stand value (land plus trees), given
the initial state followed by the optimum decision policy.
Numerical solutions may use successive approximation,
or linear programming. The results for a simple even-aged
forest, with deterministic or stochastic growth have illus-
trated the convergence of the MDP results with those of
Faustmann's formula when the current state is bare land or
land with trees, and the future is known with certainty.
More importantly, MDP theory demonstrates the exist-
ence of stationary optimal decision policies. Faustmann's
rule is a special case, and it is therefore valid (within the
real limitations of the deterministic assumption) regard-
less of the initial distribution of stands, regulated or not.

The advantage of MDP models is their generality and
realism. Randomness, a key factor in biology and econom-
ics, is absent from Faustmann's model. The MDP
discretization of the state space fits the foresters' practice
of classifying stands by "type." Very fine state spaces are
possible, and solvable by either successive approxima-
tion, which does not require the solution of simultaneous
equations, or by linear programming which can handle a
great number of constraints and variables. Constrained
MDP systems are also possible, since many constraints
simply mean a restriction of the state space (Lin and
Buongiorno 1998). Although MDP's have been discussed
here in relation to Faustmann's formula, they offer a
general means of reducing much larger and complex sto-
chastic systems to elegantly simple probability matrices
readily amenable to analysis and optimization (Holling et
al. 1996).
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