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ABSTRACT. Faustmann's formula gives the land value, or the forest value of land with trees,
under deterministic assumptions regarding future stand growth and prices, over an infinite
horizon. Markov decision process (MDP) models generalize Faustmann's approach by recogniz-
ing that future stand states and prices are known only as probabilistic distributions. The objective
function is then the expected discounted value of returns, over an infinite horizon. It gives the
land or the forest value in a stochastic environment. In MDP models, the laws of motion between
stand-price states are Markov chains. Faustmann's formula is a special case where the
probability of movement from one state to another is equal to unity. MDP models apply whether
the stand state is bare land, or any state with trees, be it even- or uneven-aged. Decisions change
the transition probabilities between stand states through silvicultural interventions. Decisions
that maximize land or forest value depend only on the stand-price state, independently of how
it was reached. Furthermore, to each stand-price state corresponds one single best decision. The
solution of the MDP gives simultaneously the best decision for each state, and the forest value
(land plus trees), given the stand state and following the best policy. Numerical solutions use
either successive approximation, or linear programming. Examples with deterministic and
stochastic cases show in particular the convergence of the MDP model to Faustmann's formula
when the future is assumed known with certainty. In this deterministic environment, Faustmann's

rule is independent of the distribution of stands in the forest. FOR. SCI. 47(4):466-474.
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Faustmann's (1849) formula for land, valuation in

forestry and modern attemptsto incorporate biologi-
ca and economic risk into the same problem. Theintent isto
show firg that Faustmann's formula is a specia case of a
Markov decision process (MDP) moddl, inwhich thetransi-
tion probabilities are unity or zero. Second, MDP theory
implies independence of the decision policy from the prob-
ability distribution of states. Thus, asadeterministic limit of
an MDP modd, Faustmann's rule is valid regardless of the

I HE THEME OF THIS ARTICLE is the connection between

forest condition, athough the effects of its application de-
pend much on this condition.

Faustmann's modd is one of the foundations of forest
economics (Lofgren 1990, Samuelson 1976). It is usad in
numerous and varied applications, yet its vaidity is ill
questioned, even without consideration of risk. Some of its
general assumptions have been criticized (Mitra and Wan
1985, 1986). And, among forest economists, there is till
some debate as to whether Faustmann's formulais valid for
specid cases, such asaregulated forest (Oderwald and Duerr
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1990, Howard 1990, Chang 1990, Hulkrantz 1991). Several
- of these issues, gpart from the effect of ancillary constraints
which we do not consider here, are connected to the question
of the dependency of Faustmann's and related rules on the
initial conditions of the stand or forest under consideration.
Severd studies have proposed methods to solve the problem
of managing a forest or a stand of trees economically given
agpecificinitial condition. Examplesfor the even-aged forest
include Nautiya and Pearse (1967), and for uneven-aged
foredts Haight et al. (1985). The MDP framework helps
clarify that athough the magnitude and timing of the harvests
does depend directly on the initial condition, there exists an
optimal harvesting policy that tiesthe harvest uniquely tothe
current state, regardless of initial condition.
Furthermore, a serious limitation of Faustmann's tradi-
tional modd isits deterministic nature. The consideration of
" stochadtic factors is central to modern forest ecology and
management (Perry and Maghembe 1989), and it is aso of
obvious importance in economics. Indeed, much work has
been done to bring stochastic events to bear on harvesting
decisions. For the case of the even-aged forest, Miller and
Voltaire (1980, 1983), Clarke and Reed (1989), and
Lohmander (1988) have proposed optimal stopping rules for
mode s with risky forest growth, prices, or both. Brazee and
Mendelsohn (1988), Forboseh et a. (1995), and Thomson
(1992) gave specid attention to the asset sale model, and the
attendant cd culation of areservation price. Stochagtic Smu-
lation has been used by Taylor and Fortson (1991), and by
Kuboyama et a. (1997). For uneven-aged management,
Haight (1990) developed a specia numerica method when
prices are stochastic, while Gove and Fairweather (1992)
randomized the parameters of a deterministic programming
model. Severd other studies have dealt with risk and uncer-
tainty, especialy biologicd risk, in forest optimization mod-
els(Hofetal. 1996, Pickensetal. 1991).

Here, we concentrate on the Markov decision process
(MDP) modd as a generdization of the classic Faustmann
formula. The reason for choosing MDP is its standard form,
its ability to represent a wide range of stochastic processes,
from catastrophic events to correlated prices, and its rich
theory. In addition, several standard numerical solutions are
available. Forestry applications of MDP models seem to have
been first suggested by Hool (1966), but one of the first
practica applications was Lembersky and Johnson's (1975)
study of the optimum management of Douglas-firplantations
with risky growth and prices. Kao (1982) and Teeter and
Caulfidd (1991) then made similar applications. MDP mod-
s are readily adaptable to uneven-aged management, as
shown by Kaya and Buongiorno (1987), and they have been
aso applied to forest management decisions with a mix of
economic and ecologica criteria, including stand and land-
scgpe diversity (Lin and Buongiorno 1998).

The aticle is organized as follows. First, we review
briefly the smplest form of Faustmann's model, with an ,
exampleto serve as astandard against which to compare the
MDP formulation and results. Then, we lay out the corre-
sponding MDP equations. We present the numerical solution
of the MDP by successive approximation to illustrate (1) the
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Figure 1. Stand growth and harvest in simple, deterministic
Faustmann model.

generd differences between MDP and Faustmann solutions,
and (2) their convergence when state changes are known with
certainty. We then use a linear programming approach that
gives the expected discounted returns as a function of the
initial probability distribution of stand states. In the deter-
ministic case, thissolution isidenticd to goplying Faustmann's
formula to each stand independently, regardless of the com-
position of the entire forest.

The Deterministic Faustmann Formula

The classical Faustmann formula (Faustmann 1849) gives
theva ue of aunit of bareland used in forest production, over
aninfinitetime horizon. It is purely deterministic in terms of
both its biological and economic parameters. The rate of
growth of the stand of treesis assumed to be known exactly,
asaredl the prices and costs. It isaso astatic modd in that
the sequence and timing of decisions is aways the same.

Initssmplest form, the Faustmann mode can be symbol-
ized asin Figure 1. We begin a time O, with a piece of bare
land, and we establish aplantation and let it grow for Ryears,
the rotation. All the trees are harvested at rotation age.
Immediately after the harvest, a new plantation is estab-
lished, identical to that of time 0. Thetreesthen grow exactly
as in the firgt rotation, and they are harvested at the same
rotation age. This sequence is assumed to continue indefi-
nitely.

In this smple modd, let Vg be the volume of timber per
unit areaat age R, ¢ the reforestation cost per unit area/? the
priceof timber per unit of volume net of harvesting cost, and
g the discount rate per year. The function V and the param-
eters R, ¢, p, and g are assumed to be known exactly, and
congtant over time.

Then, the discounted val ue of the net income generated by
an infinite series of rotationsis equal to®:

Ve—¢
sv: 2 .
d+g) * -1 &

where the first term on the right of the equality is the sum of
theinfinite seriesof harvest income minusreforestation cost,
recurring every 7?years, and the second term isthe cost of the

! Faustmann's formula is sometimes written as (Clark 1990, p. 270):

SEV:(XZTC_Y'_

but in that form, it truly expresses the value of land that hasjust been
reforested, not the value of bare land. Still, as long as c is independent of
R, optimization of thisform for R does give the best economic rotation, in
the sense of maximizing the present value of the return to the land.
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Table 1. Faustmann's formula and economic rotation.

Soil expectation value

Discount factor pVk -C e
Rotation Yield Gross retum Net retumn 1 (gt -1
Ry Vi (m’ ha™) py* pVe-C (+g)*-I (Sha-)
.................... (Shat). oo,
20 29 377 -117 157 -677
40 274 3,562 3,068 059 1327
60* 530 6,890 6,396 ‘029 1,387
80 728 9,464 8970 0.16 951
100 868 11284 10,790 0.09 504
Bet rotation, R*.
NOTE: p=+$13nr°,c~$494ha-. g=2.5%yr".
initia plantation establishment, a time 0. Theresult, SEV, or =
0il expectation value, is the value of bare land used in this max ViXy) = EIZ HX,,d)B | X1 @)

kind of forestry. Thisis, in avery smplified form, the great
finding of Falistmann (1849), a fundamenta contribution to
forestry economics and dso a precursory insight into the
generd theory of investments (Samuelson 1976). Faustmann
(1849) dso gave an extension of formula (1) to calculate the
value of a stand with trees younger than the best rotation.

Equation (1) has numerous applications, to compare dif-
ferent land uses, or to compare different forest management
strategies. For that purpose, it usualy includes much more
detail such as density in plantations, commercia and
precommercid thinning, and so on. As an example of appli-
cation, Equation (1) can be used to find the best economic
rotation, R, i.e., the rotation that maximizes the land value,
SEV. If Vrisasmple continuous function, the best rotation,
R*, can be found with the calculus. But numerical solutions
are used usudly in more complex cases, dong the lines
illugtrated in Table 1, where each row shows the SEV for a
particular/?. With the data used in the tabl € the best rotation,
in the sense of maximizing soil expectation value, obtains
around the age of 60 yr.

Markov Decision Process Model

Equation (3) is obvioudy avery crude representation of
redlity, a dreadful world in which the future is like the past,
forever. It is wel known, instead, that biological systems,
including forests, are shaped in large part by rare catastrophic
events, and by milder but more frequent shocks. These are
either truly random events, or they must be assumed so
because of lack of knowledge. The same is even truer of
economic variables. Prices of forest products and cost of
production may vary widely over time, so that they also are
best modeled as stochastic processes. _

The stochastic formulation of Faustmann's formulais the
andog of the deterministic formulation (1). That isto say, it
seeksthe sequence of decisionsthat maximizesthe expected
discounted value of the income, over an infinite horizon,
givenaspecificinitia condition. So, the generd formulation
of the objective function is:

2 Theyidd datain Table 1 are for Douglas fir in the Pacific Northwest, site
| (McArdieetal. 1961, p. 24).
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where X; designates the system stete at t, which instead of
being deterministic is now a random variable; d; is the
decisonattime/=1,2,...; r istheimmediate return from the
decision given a particular state; andjS is the discount factor
fi —(1+gT'> wheregistheinterest rate, and Msthe number
of years between decisions.

There are many different formulations of this problem,
with particular solutions according to the specification of the
law of motion that ties X; to X, di_x, ad of the random
shocks. However, avery genera approach, most practical,
and with avast array of theoreticd and numerical results, is
the Markov decision process (MDP) modd (Hillier and
Lieberman, 1990, p. 768-802). Applied to Faustmann's
problem, assuming only stochastic growth for smplicity, the
model replaces the deterministic growth function Vg by a
stochastic growth process described by amatrix of transition
probabilities. Each matrix element is the probability that the
system moves from one state to another between / and t+1.
The state domain consists of N discrete states.

More generdly, state definitions may involve biological
aswell as economic variables. For example, Lembersky and
Johnson (1975) used number of treesand average diameter to
define the state of even-aged stands, and four levels of
autocorrelated prices for market states. Lin and Buongiorno
(1998) used basdl area, tree size, and species to characterize
the states of uneven-aged stands, and two levels of white-
noise prices.

The trangition probabilities between system dtates are
often computed by stochastic simulation, based on growth
and econometric models (Kaya and Buongiomo 1987). A
decision is an action (e.g., tree removal or planting) that
causes the system to move from a state to another, thus
changing the trangition probabilities between states.

Trangtion probabilities are stationary and depend only on
the current system state. As shown by Taylor (1984), the
Markov chain is a very generd model of price changes?

¥ "A Markovian price expectation structure refersto any stochastic modd in
which price is conditiona on previous prices, hence, the assumption
embraces random walk, rational expectations, autoregressive, and many
other conditional models' (Taylor 1984).



Table 2. Definition of stand states.

Table 3. Immediate return as a result of state and decision (rxj.

St Volume (m’ ha™)
o* 0
1 29
2 274
3 530
4 728
5 868
* Bareland.

Concerning biological growth, some studies have argued that
forest growth is not stationary and Markovian (Binkley
1980), but this depends largely on the finesse of the state
definitions. Higher than first order Markovian relations can
be incorporated to modd biological or price changes by
adding appropriately defined state variables (e.g., making the
last change part of the state definition). If stand and price
states areindependent, which is often the case though it isnot
required by the Markov model, it isasimple matter, asshown
infootnote 4, to obtain from the separate transition probabili-
ties of stands and prices the transition probabilities between
-combined stand-price states.

Toillugtrate the formulation of the MDP model, consider
the case of a plantation similar to the one used to illustrate
Faustmann's deterministic formula (Table 1). For smplicity,
and without loss of generdlity, stand growth is the only
stochastic element. Thevolume per hectare (Table 2) defines
the stand state. To facilitate comparison with the determinis-
tic Faustmann formula, the volume per areain tate 1 isthe
sameas FyoinTable 1, that in state 2 isthe same as F4g, and
50 on. Furthermore, we assume that the interval between
decisons, ttot+ 1, is 20 yr. In parale with Faustmann's
model, the decision is to do nothing, or to cut the stand and
reforest immediately.

_ The second element of the MDP model, the reward struc-
ture, is described in Table 3. If the decision isto do nothing,
the reward is zero, regardless of stand state. If instead the
decison isto harvest and reforest immediately, thereward is
an immediate return equd to the net vaue of the timber
harvested, minus the reforestation cost. Again, as in the
deterministic Faustmann formula, the price of timber is $13
m"®, and the reforestation cost is $494 ha'". Thered interest
rateis 2.5% per year. So, the discount factor \sfl - (1 + g)"%°
=0.61.

Concerning stand growth, instead of it being certain and
dictated by the deterministic function Vi once the stand is
established, the periodic growth of the stand is stochastic,
defined by probabilities of passage from one stateto another.
To continue the example, Table 4 shows that starting with
bare land (state 0) and doing nothing obtains bare land in 20

Table 4. Probability of transition between stand states; doing

nothing {p(/|/"°)]-

Decison k*
Statef 0 C
et (Shal)
0 0 -494
1 0 -117
2 0 3,068
3 0 6,396
4 0 8,970
5 0 10,790

* 0=donothing, c** cut and reforest

yr with probability 1. If instead the stand isin state 1 (29 m®
ha'"), thereis a 70% probability of finding it in state 2 (274
m® ha~') in 20 yr, a10% probability of findingitin state 1, or
3, and also a 10% probability of finding it back to state O, due
to amgjor catastrophe. In this example, the probability of a
catastrophic event is constant over time, about 0.5% in any
year, and independent of the stand state.

Table 5 shows instead the probability of transition be-
tween statesif the decision isto cut the stand and to reforest
immediately. Regardless of the initid stand state, the prob-
ability of ending in state 1 after 20 yr is 90%, while the
possihility of catastrophic events trandates in a 10% prob-
ability of reverting to state 0. A decision, then, consists in
choosing the transition probabilities in Table 4, or those in
Table 5, with the attendant immediate reward and future
consequences. A palicy isarule specifying how each period
decison is taken. A fundamentd result is that an optimal
policy exists and that there is aways a stationary policy that
is optimal (Blackwell 1962). In a gtationary policy, the
decision depends only on the system state and isindependent
oftime. :

Solution by Successive Approximation

The optima policy can be obtained in different ways,
including the policy improvement agorithm, linear pro-
gramming; and successive approximation (Hillier and
Lieberman 1990, p. 784-792). Successive approximation is
intuitively appealing, because it is based on the classical
principle of optimality of dynamic programming. It is adso
numericaly efficient because it does not require the solution
of smultaneous equations. Letting Vf be the maximum
expected long-run discounted returns for a stand now in state
f and that will grow for / periods, Vj satisfies the backward
recursive equations:

N
VI =maxn +BY pGLLRWT] i=loN

= )
7 =0

Table 5. Probability of transition between stand states, with cut
followed by reforestation {p(/J/,c)j.

Begin End date Begin Enddae?
state/ 0 1 2 3 4 3 statet 0 1 2 3 4 5
0 100 0 0.10 0.90
1 0.10 0.10 0.70 0.10 1 0.10 0.90
2 010 - 0.10 0.70 0.10 2 0.10 0.9
3 0.10 0.10 0.70 0.10 3 0.10 0.90
4 0.10 0.10 0.80 4 0.10 0.90
5 0.10 0.10 0.80 5 0.10 0.90
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Table 6. Successive approximation of maximum expected return and best decision, stochastic case.

Maximum expected return (Sha"”) Best decision*
Iteration t r Y, VX v, Vi Vs do d__dz d_ d» ds
0 0 0 0 0 0 0
1 0 0 3068 63% 8970 10,790 0 0 c c c c
2 0 1,701 3467 639% 8970 10,790 0 0 0 c c c
3 440 1975 4,002 7,330 9904 11,724 c 0 c c c c
4 618 2,304 4,180 7508 10082 11,902 c 0 c c c c
5 809 2,422 4,371 7699 10273 12,093 c 0 c c c c
6 886 2534 4448 7,776 10350 12,170 c 0 c c c c
7 952 2583 4514 7842 10416 12236 c 0 c c c c
8 983 2623 4545 7873 10447 12,267 c 0 c c c c
9 1,006 2,642 4,568 789% 10470 12,290 c 0 c c c c
10 1,019 2656 4,581 7909 10483 12,303 c 0 c c c c
19 1039 2676 4,601 7929 10503 12,323 c 0 c c c c
20 1,039 2,676 4601 7929 10503 12323 c 0 C C C c

* d~0meansdonothingin datei, d- *= c means cut and reforest.

wherep(j \ i k) isthe probability that the stand’will bein state
ja/+ 1, givenstate i at t, followed by decision k. ricisthe

immediate return from decision k for astand in state i, and fl

is the discount factor, defined above.

The equations mean that during the current period, with /

periods to go, we earn the immediate return re, plus the
discounted value of the future returns that we will earn from

thet- 1 subsequent periods by following the optimal policy.

Theinitia condition VP isarbitrary and usually set to zero for
each state;'. Ast increasesto infinity, Vf convergesto V,, the
expected discounted return from a stand that startsin sater,

and that is treated according to the best policy. The rate of

convergence is rapid, and can be improved further by the
error bound method (Bertsekas 1995, vol |, p. 308-309). In

particular, V,' convergestowards Vg, the maximum expected
discounted return from bare land. Vg is then the soil expecta

tion value with stochastic growth (and with stochastic prices
if the model had severd price states). Thus, Equation (3) can

be viewed as a generdization of Faustmann's formula for a
stochagtic environment. Faustmann's formula is a special

caseinwhich afew of thetransition probabilitiesare equal to
1 and dl othersto zero, reflecting the fact that in adetermin-
igtic case we move from one state to another with certainty.

For gand state with trees, the solution givesthe forest value,

inclusive of land and trees, in analogy with Faustmann's
extenson of his formula to immature stands (Faustmann

1849).

AsFaustmann'sformulagivesthe best rotation in addition
to the land value, the MDP mode also givesthe best policy,
i.e, the best decision for each state. The best policy is
sationary. This property helps clarify the issue of how to

4 |f the system tatei = {sjn) consists of the stand state s and the price state
m, and/=(s\m~) isanother state, then the probability of moving from state
i toj with decison* is: p(j\i,K) = pQ\s,K)p(m 1m), if stand and price are
independent. The price can be random noise, in which case p(m "\m)
depends on m' only (e.g., Kay a and Buongiomo 1987), or it can be
autoregressive, in which casep(m]m) depends on m' and m (Lembersky
and Johnson 1975). But in fact, the Markov model ismore general (Taylor
1984). The Markov modd can also account for correlation between price
and market state. Inall cases, the fundamental model (3) remainsthe same,
only thedefinition of the state space changes. In our exampleit isassumed,
for smplicity but without loss of generality, that the stand growth only is
stochastic.
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economicaly cut astand or forest in aparticular state. Itisa
fundamenta result of the MDP analysis that the optimum

policy is invariant over time and is tied only to the current

system gtate. Since, aswe have seen, Faustmann'sformulais
a specia case of the MDP modd, it follows that the best

rotati on in the deterministic caseis valid regardless of stand
stete. .

To pursuetheexample, Table6 showsseverd iterationsin
the solution of the recursive Equation (4), to find the best
management policy (decision for eech state), and the corre-
gponding maximum expected discounted returns, over an
infinite horizon, given a particuler initial state. The. VP
condition was set arbitrarily at zero, for al sand states. The
computations were done with a spreadsheet. Convergence
occurred quickly. After 20 iterations, the V/'s were stable.
The best policy was dready obtained after three iterations:
reforest in state 0, do nothing in state 1, harvest and reforest
immediately in states 2, 3,4, 5. This would correspond to a
rotation of 40 yr, 20 yr shorter than the one obtained with
Faustmann's formula. The maximum expected discounted
return starting from bare land and following the best policy
was about $1,039, aso lower than the best soil expectation
value obtained with the Faustmann formulain Teble 1, dueto
the presence of risk.? A feature of the successive approximar
tion solution is that it gives simultaneoudy the forest val ues,
land plustrees, for states 1 to 5 aswell.

Toillustrate how the Markov modd gives the Faustmann
solution as a specia case, the trangition probabilities were
changed asin Tables 7 and 8. The datain Table 7 mean that
if nothing isdone, astand in state O is il in tate O after 20
yr. A stand in state 1, movesto state 2 with certainty; if in sate
2, then it moves to state 3 with certainty; and soon. Table 8
saysthat astand in state O (bare land) that is reforested, or a
gand in any other state that is cut and reforested, moves
adwaysto tate 1 in20yr.

® This would not generally be true with additional constraints, such as a
requirement that production be constant over time.

® However, the MDP solution would always give a land value at least equal
to Faustmann'sformula, if thelatter were solved with returnsequd to the
expected immediate returnsimplied by the stochastic formulation (Norstrom
1975).



Table 7. Transition probability between stand states in determin-
istic case, doing nothing {p(/|»,0)|.

Table 8. Transition probability between stand "states in
deterministic case, with cut followed by reforestation {p(/|/,c)j.

Begin End state/ Begin End state j
datei 0 1 2 3 4 - 5 sater 0 1 2 3 4 5
0 1.00 0 1.00
i 1.00 1 1.00
2 100 2 1.00
3 100 3 1.00
4 1.00 4 1.00
5 1.00 5 1.00

Therefore, the transition probabilitiesin Tables 7 and 8
are equivalent to the deterministic growth function in
Table 1. Furthermore, the objective function is the same:
maximization of discounted returns over an infinite hori-
zon. With the same reward structure, the Faustmann for-
mula and the deterministic Markov model should give the
same results. Table 9 shows the solution of the Markov
deterministic model, by successive approximation. After
20 iterations, the maximum discounted value of returns
over an infinite horizon stabilizes. The best policy is to
reforest in state 0, do nothing in state 1 and 2, and cut and
reforest in states 3, 4, and 5. With our definition of stand
states, thisis equivalent to a 60 yr rotation, equa to what
was found with Faustmann's formula (Table 1). With this
policy, the maximum discounted value of returns from
state 0 is $1,387 hd™?, also equal to the soil expectation
value given by Faustmann's formula, as it should. In
addition to the soil expectation value, the Markov deter-
ministic approach also shows the forest value for each
possibleinitia state. The highest forest value comes natu-
raly for a stand with the largest initial growing stock
(State 5).

Solution by Linear Programming

Although thelinear programming sol ution of the Markov
decision problem is less straightforward than the succes-
sve approximation approach, which uses standard dy-
namic programming concepts, it is worth study. It is
numerically compact, has a more precise solution than
successive approximation, and more importantly, it gives
additional insight. There are at least two linear program-
ming approaches, d'Epenoux (1960) and Ross (1983 p.

40—42). Wepresent d'Epenoux'sbecause it isnumerically
more efficient, with only as many constraints as there are
states, while Ross's has Nx I T constraints, where N is the
number of states and K the number of decisions. Further-
more, the objective function in d'Epenoux's modd is the
expected discounted return per unit area for a given initial
distribution of stand states. Thus, it gives directly the
velue of a forest consisting of stands in many different
states, managed optimally.

D'Epenoux linear programming formulation of the Markov
decision process modd consists in finding:

N K
myaxFV = ZZ"&)’H:
“ =l k=]

X N K
Y-8y Y vartilib=n;  n e

k=] i=] k=1

(4)
yik>0

where the variabl ey can be interpreted as a"weighted (in
a discounted sense) expected time of being in state i and
making decision A" (Hillier and Lieberman 1990, p. 787).
P is the discount factor defined above, and n is the
probability of the initial state j. Thus, the objective func-
tion is the expected long-term discounted return, i.e., the
forest value, FV, given the probability distribution of the
initial stand state.

Table 9. Successive approximation of maximum expected return and best decision, deterministic case.

Maximum expected return (Shd') Best decision*
Iteration t v VX r* y> \/ Y. do d di d, d ds
0 "0 0 0 0 0 0
1 0 0 3,068 6,396 8970 10,790 0 c c c c c .
2 0 1872 3903 63% 8970 10,790 0 0 0 c c c
3 649 2382 4211 7539 10113 11,933 c 0 c c c c
4 960 2,570 4,601 7850 10424 12244 c 0 0 c c c
5 1074 2,808 4,790 7964 10538 12,358 c 0 0 c c c
6 1219 2923 4860 8109 10683 12503 c 0 0 c c c
7 1,290 2,966 4,949 8180 10,754 12574 c 0 0 c Cc c
8 1316 3020 4992 8206 10,780 12,600 c 0 0 c c c
9 1349 3047 5008 8239 10813 12,633 c 0 0 c c c
10 1,365 3,056 5,028 8255 10829 12649 c 0 0 c c c
19 1,387 3,082 5051 8277 10851 12671 c 0 0 c c c
20 1387 3083 5051 8277 10851 12671 c 0 0 C

* d" 0 meansdo nothing in state I, d; - ¢ means cut and reforest

Forest Science47(4) 2001 471



Table 10. Linear programming solution of forest value and best decision, stochastic case.

Vaiable Foo Yo Y2 Yio n40 Yaa y Yie y* ¥ Ve Y,
Solution: 106 0.32 0.62 0.23 017 017
Objective: -494 -117 3,068 6,396 8970 10790 =6,512
(max) .
($ ha")
Congtraints.
Sae0- 039 -0.06 -0.06 -0.06 -0.06 -0.06 094 -0.06 -0.06 -0.06 -0.06 -0.06 = 16 = «,
Sael 094 : -0.55 045 -0.55 -055 -0.55 -0.55 = 1/6=TT,
State 2 -043 094 100 =1/6 =Tt
Sae3 -0.06 -043 094 100 = 16=7C,
Saed -0.06 -0.43 094 -0.06 100 = 1/6 = X,
Sae5 -0.06 -0.49 051 100 =16="7,
Decison*: 4 dy dyy <20 dm rfg i e d, d, d« ds,
I 1 1 1 1 1

* dy= 1 meansdecision kisbest in satei.

Given a solution of the linear program, the best policy
is defined by the probability of making a decision in a
particular state:

d - —x&_
ik ~
Jik
k=]

The best policy isdeterministic, i.e., d*=0or 1. Further-
more, the best policy isindependent of theinitial probability
digtribution of gtand dtates, i.e., the TS athough the forest
vaue depends very much on this initia condition.

The formulation of the linear programming model for the
example usad o far is in Table 10, together with the best
solution. The coefficients of the objective function are the
rewards in Table 3. The coefficients of the constraints were
ca culated with the transition probabilities in Tables 4 and 5,
according to Equation (4). The right-hand side of the con-
graints is the probability of the initid state, set arbitrarily
equd to 16 for every State.

The second row in Table 10 showsthe best solution for the
Yk S. The corresponding obj ective function optimum, $6512
ha'', is the expected net present value of returns over an
infinite horizon, conditiona on the initial probabilities. The

(%)

best decisions, in thelast row of Table 10, are the probabili-
ties of each action, given a particular state, computed with
Equation (5). These decisions are independent of the initial
probability distribution of states. The decisions are
nonrandomized (0 or 1); thusin every statethe same decision
is dways caled for.

The best policy (decision by state) in Table 10 isthe same
asthat obtained by successive approximation (Table 6), asiit
should given the same data. The objective function of the
linear programming solution isrel ated to the maximum long-
run discounted return given by the successive approximetion
approach for each initid state, since:

6512 ($ha'l) = 1/6(1039 + 2676 + 4601 + 7929
+ 10503 + 12329),

which verifies that the linear programming objective func-
tion gives directly the forest value per unit areg, for a given
distribution of initial forest states.

The linear programming solution of the deterministic
Markov problem, i.e., with the transition probabilities in
Tables 7 and 8, isin Table 11. It gives the same decision
rule as the successive approximation approach (Table 9).
The objective function, $6,887 ha'" is the maximum dis-
counted value of returns per hectare for aforest that has 1/

Table 11. Linear programming solution of forest value and best decision, deterministic case.

Vaiable V&, y™ y™ y-* yr* Yso0 yA yA Ve yu ytc yk
Solution: 082 067 017 057 0.17 0.17
Objective: -494 -117 3068 63% 8970 10790 =6,887
(Sha)
Congraints:
SateO 0.39 100 . =16=n*
Satel 100 -0.61 0.39 -0.61 -061 -0.61 -0.61 = 16 =n,
Stete2 -0.61 100 100 =16 =*2
Steate3 -061 100 100 =16=TC
Seated -0.61 - 100 100 =16 =it
StateS -061 039 100 = 16 = x5
Decison*: dm dy dao d,o O A a d, dy, die d« du
1 1 1 1 1 1

* (l,=" means decision kisbest in state .
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6 of its area in each of the possible states, and which is
managed perpetualy according to the optimum rule. In
this deterministic situation, the optimum policy is the
sameas Faustmann's; do nothingin states 1 and 2, reforest
in state O, cut and reforest in states 3, 4, and 5.

Indeed, the same forest val ue can d so be obtained by apply-
ing Faustmann's best rotation to aforest with 1/6 of the areain
each of the possible states, as shown in Table 12. Following
Faugmann, bare land has the SEV given by Equetion (1).
Immature stands, i.e., tands of age 7'less than the best rotation
R*, arelet grow for R*—Tyears, before being replaced, so that
their forest vadue (land plustrees) is:

o (pVae + SEV) ©

FV=2————
(1+g)*"

While mature or overmature stands, of age T= R* are
harvested immediately, so that their forest value is:

FV= pVr+SEV @)

In our example, the best rotation according to Faustmann's
formulais 60 yr (Table 1). With the same data, Equations (6)
and (7) givetheresultsin Table 12. For example, a20yr old
stand isworth $3,083 het"*! according to Equation (6), exactly
the same as the forest value given by the deterministic
Markov modd for the initial state 1 (Table 9).

If the forest areais distributed equally so that each age-
class covers 1/6 of the land, then the average value per acre
of this forest is $6,887 ha'*, which is also the value of the
objective function of the linear programming solution of
the MDPwhen theinitia statesare evenly distributed with
probability 1/6 (Table 11). This correspondence holdstrue
regardless of the probability distribution of initia states,

thus confirming the validity of Faustmann's formulainde- -

pendently of the forest condition, and in particular for a
regulated forest structure, as previously argued by Chang
(1990). That Faustmann's model is a specia case of the
MDP model with deterministic laws of motion gives more
generality to thisresult. Faustmann's model isaparticular
type of MDP, thus Faustmann's policy must be indepen-
dent of forest condition, be it a regulated forest or any
other kind of stand distribution. However, this would not
be generdly true with additional constraints, such as
constant periodic production. '

Table 12. Forest value of regulated forest according to
Faustmann's formula.

Stand age Value ($ ha'}) Area
o* 1,387 16
20* 3,083 16
40+ 5,051 16
60* 8,277 16
80" 10,851 16
-100" 12,671 16

Average: 6,887
* Baeland.

' Immature stands.
' Mature stands.

Summary and Conclusion

Faustmann's formula gives the value of forest land,
under deterministic assumptions regarding future stand
growth and prices, over an infinite horizon. Markov deci-
sion process models generalize Faustmann's approach by
assuming that future stand states and prices are known
only as probabilistic distributions. The objective function
is then the expected long-run discounted value of returns.
This is the land value, or the forest value if there is an
initial stock, in astochastic environment. In MDP models,
the laws of motion between system states are Markov
chains. By proper definition of the state space, MDP
models can incorporate biological as well as economic
risk, in even-aged, uneven-aged or mixed systems.

The traditional deterministic Faustmann formula can
be interpreted as a specia case of the more genera MDP
model where the probability of movement from one state
to another is equal to zero or unity. Furthermore, MDP
models deal smultaneously with dl possibleinitia states,
be it bare land, or land and trees. Decisions consist in
moving a stand from one state to another through silvicul-
tural interventions. The theory of Markovian decision
processes shows that the best decision depends only on the
current stand-market state, independently of how it was
reached. Furthermore, the best decision isnonrandomized:
to each stand-price state corresponds one best decision
with a probability of one.

The solution of the MDP gives simultaneously the best
decision policy and the stand value (land plustrees), given
the initial state followed by the optimum decision policy.
Numerical solutions may use successive approximation,
or linear programming. The results for asimple even-aged
forest, with deterministic or stochastic growth have illus-
trated the convergence of the MDP results with those of
Faustmann's formulawhen the current state isbare land or
land with trees, and the future is known with certainty.
More importantly, MDP theory demonstrates the exist-
ence of stationary optimal decision policies. Faustmann's
rule is a specid case, and it is therefore valid (within the
real limitations of the deterministic assumption) regard-
less of the initia distribution of stands, regulated or not.

The advantage of MDP models is their generality and
realism. Randomness, akey factor in biology and econom-
ics, is absent from Faustmann's model. The MDP
discretization of the state space fits the foresters' practice
of classifying stands by "type." Very fine state spaces are
possible, and solvable by either successive approxima-
tion, which does not require the solution of simultaneous
equations, or by linear programming which can handle a
great number of constraints and variables. Constrained
MDP systems are aso possible, since many constraints
simply mean a restriction of the state space (Lin and
Buongiorno 1998). Although MDP's have been discussed
here in relation to Faustmann's formula, they offer a
genera means of reducing much larger and complex sto-
chastic systems to elegantly simple probability matrices
readily amenable to analysis and optimization (Holling et
al. 1996).
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