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Abstract 

Mixed model estimation methods were used to fit individual-tree basal area growth models to tree and stand-level measurements available from 
permanent plots established in naturally regenerated shortleaf pine (Pinus echinata Mill.) even-aged stands in western Arkansas and eastern 
Oklahoma in the USA. As a part of the development of a comprehensive distance-independent individual-tree shortleaf pine growth and yield 
model, several individual-tree annual basal area growth models were filled It) the clata with the objective ofsclccling Ihe model thaI has superior fll 
to the data as well as attributes suitable for praclical application in shortleaf pine stand simulator useful as an aid in forest management decision­
making. The distance-independent individual-tree model of Lynch et al. lLynch, T.B., Hilch, K.L. , Huebschmann, M.M., Murphy, P.A., 1999. An 
individual-tree growth and yield prediction system for even-aged natural shortleaf pine forests. South. J. App\. For. 23, 203-21 II for annual basal 
area growth was improved to incorporate random-effecls for plols in a potential-modifier framework with st;1nd-Ievcl and tree-level explanatory 
variables. The fitted mixed-effects models were found to fit the data and to predict annual basal area growth better than the previous model forms 
fitted using ordinary least-squares. There was also some evidence of heterogeneous errors, the effects of which could be corrected by using a 
variance function in the estimation process. The revised parameter estimates from the selected mixed model could be utilized in a growth ancl yield 
simulator that also takes appropriate dbh-height and mortality functions into account. 
(f) 2008 Elsevier B.Y. All rights reserved. 
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I. Introduction 

Shortleaf pine (Pinus echinata Mill.) is second only to 
loblolly pine (Pinus taeda L.) among the southern pines of the 
United States in standing volume. It grows in 22 states over 
more than 1,139,600 km2

, ranging from southeastern New York 
to eastern Texas (Willet, 1986). Previous short leaf pine forest 
growth studies include Murphy (1982, 1986), Murphy et al. 
(1992), Lynch et al. . (1991, 1999), and Lynch . and Murphy 
(1995). However, there is still relatively little published work 
on shortleaf pine growth modeling compared to other southern 
pines. An important aspect of shortleaf pine growth research is 
development of basal area growth models for predicting 
individual-tree growth rates. Lynch et a!. (1999) have 
developed a complete suite of growth equations to simulate 
shortleaf pine annual growth based on different management 
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scenarios. Their model parameter estimation was based on 
ordinary least-squares (OLS) methods. Since typical sample 
tree measurements are repeated in time and sample trees grow 
together within plots representing stands. an ilsSLlmption of 
independent observations for individual trees under OLS 
appears unrealistic. The problem of spatial and temporal 
correlation among forestry measurements was well recognized 
some time ago, for example by Ferguson and Leech ( 1978), and 
West et al. (1984). However, methods of OLS assuming a 
completely random sample have dominated the forest growth 
and yield modeling literature until recently. 

Previolls growth models for shortleaf pine have generally 
been fitteclusing ordinary or weighted least-squares or seemingly 
unrelated regression methods. Shortleaf pine individual-tree 
models fitted in the past Llsing OLS have not accounted for plot­
level grouping oftlee observations. Mixed-dTects moc\els can he 
Llsed to account for spatial and temporal correlation, providing 
improved parameter estimates. Lappi and Bailey (1988) 
presented mixed modeling as an alternative to the then 
conventional methods of estimation for site index. Gregoire 
et al. (1995) primc.rily discussed linear mixed models, but they 
also considered issl.!es relating to the i mportHnce of nonlinear 
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mixed models in forest research. Gregoire and Schabenberger 
(1996a) used a nonlinear mixed-effects approach for modeling 
individual-tree cumulative bole volume of sweetgum from east 
Texas. They later modeled cumulative bole volume by taking 
spatial correlation between sections of a bole into account 
(Gregoire ~1I1d Sehabenberger, I 996b). Trincado and Burkhat1 
(2006) used mixed-effects to model stem profiles and developed 
a framework for cali bration to localize the model using additional 
data from the locality of interest. Budhathoki et al. (2008) 
developed a mixed model for the shortleaf pine dbh-height 
relationship using a dataset in which plot specific random-effects 
were included. 

A mixed model typically consists of both fixed-effects 
parameters and random-effects parameters. When fitting these 
parameters, data analysts are usually more interested in the 
variance components associated with random coefficients than in 
predictions of the random parameters themselves. Fixed-effects 
coefficients are then assessed through selection of appropriate 
explanatory variables. Inclusion of random-effects basically 
helps to account for various sources of variation effectively, 
thereby increasing the accuracy of testing and estimation for the 
fixed-effects (Tao, 2002). Mixed models have been increasingly 
used in forest growth and yield modeling. However, the majority 
of the mixed model applications to date have used "stand-level" 
rather than individual-tree level growth models. 

2. Methods 

2.1. Data 

Data collection from over 200 plots permanently established 
in shortleaf pine natural stands located in western Arkansas and 
eastern Oklahoma provided individual-tree measurements 
including total height, crown height, diameter at breast height 
and survival. These plots were established as part of a 
collaborative study by the Department of Natural Resource 
Ecology and Management at Oklahoma State University, and 
the USDA Forest Service Southern Experiment Station, and 
Ozark and Ouachita National Forests during the period 1985-
1987. Parameters and data ranges for the study design are given 
in Table I (reported in English units by Lynch et a1., 1999). This 
design stipulated the establishment of circular fixed-radius 
plots 810m2 in size for each combination of site index, age and 
stand basal area classes. An existing shortleaf pine thinning 
study provided additional plots, which were treated to conform 
to study design criteria (Lynch et aI., 1999). Measurements of 
diameter at breast height were available for over 8000 trees at 
three measurement times. A representative sub-sample of 
trees on each plot provi~ed total height and crown height 
measurements at each measurement time. Plot ages were 
determined from ring counts of representative dominant and 
codominant sample trees on each plot (Avery and Burkhart, 
2002). Site index curves for naturally occurring sh0l11eaf pine 
developed by Graney and Burkhart (1973) were used to 
determine each plot site index for base age 50 years. The three 
repeated measurements were used to obtain annual basal area 
growth for the corresponding two growth periods. Table 2 

Table I 
Midpoints and ranges for design variables for natural, even-aged shortleaf pine 
study plots in western Arkansas and eastern Oklahoma (adapted from Lynch 
et a!.. 1999) 

Design variable Class midpoint Class range 

Rasal area (nl/ha) 7 ~10.5 

14 10.6-17.5 
21 17.6-24.5 
28 2:24.6 

Site index (m at age 50 years) 17 ~17 

18 17.1-19.9 
21 20.0-22.9 
23 2:22.9 

Age (years) 20 11-30 
40 31-50 
60 51-70 
80 71-90 

contains summary statistics for variables used in the develop­
ment of individual-tree shortleaf pine growth models. 

2.2. Statistical analysis 

The basic objective of this work is to utilize mixed modeling 
techniques with growth data from three measurement times to 
develop a basal area growth model with improved parameter 
estimates relative to a model fitted by OLS to data from two 
measurement times by Lynch et a1. (1999). This basal area 
growth model is based on a potential-modifier framework (e.g., 
Murphy and Shelton, 1996). 

A basal area growth prediction model having the same 
form as that given by Lynch et a1. (1999) is presented below in 
Modell. 

where Yij = average annual basal area growth (m2/year) oftreej in 
plot i, Bij = basal area (m2) oftreej in plot i,Ai = stand age (year) 
for plot i, Rij = ratio of quadratic mean stand diameter to the dbh 
of tree j in plot i, Bsi = stand basal area (m2/ha) for plot i, 
Blllax = 0.6566528736 m2 (the maximum expected basal area 
for a shortleaf pine tree in managed stands from Hitch (1994) 
corresponding to dbh = 91 cm), fJI. ... , fJ7 = model parameters, 
Bij = within-plot error, i.e. residual fortreej in plot i, 8ij t'V N(O, if) 

Lynch et a1. (1999) fitted Model 1 using OLS with first two 
measurements of the data summarized in Table 2. For 
comparison purposes, the Model 1 was refitted using general­
ized least-squares (GLS) with the additional third measurement 
data so that statistics such as Akaike information criterion 
(AlC) and Bayesian information criterion (BlC) or Schwarz's 
Bayesian criterion (SBC) could be obtained with S-Plus gnls 
function (Pinheiro and Bates, 2000). This makes it possible to 
compare a GLS model to a mixed-effects model using the same 
dataset. 
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Table 2 
Summary of stand-level and tree variables recorded/observed in the study 

Variable No. of observations Mean Standard deviation Minimuill Maximulll 

Basal area" (m2/ha) 208 21.33 6.68 6.27 29 .62 

Stand agea (year) 208 41.8 19.7 18.0 93.0 

Site index (rn at age 50 years) 208 17.5 2.9 12.2 26.6 

Total height (m) 8,971 18.7 6.4 3.1 36.3 

dbh (crn) 
First measurement 8,284 18.8 9.9 2.8 61.9 

Second measurement 8,092 20.8 9.9 3.0 64.5 

Third measurement 7,591 23.1 10.2 3.8 67.6 

Tree basal area (1112) 

First measurement 8,284 0.0341 0.03385 0.00061 0.26339 

Second measurement 8,092 0.04 0.03667 0.00114 0.27982 

Third measurement 7,591 0.047 0.04036 0.00183 0.32177 

Ratio of qmdb to dbh (R) 23,967 1.145 0.4549 U.438 7.362 

AABAGc (m2/tree/year) 

Overall 15,669 0.0013 0.00106 -0.00059 0.00925 

First period 8,083 0.0012 0.00097 -0.00033 0.00643 

Second period 7,586 0.0013 0.00114 -0.00059 0.00925 

a At establishment. 

b qrnd, quadratic mean diameter. 
C AABAG, average annual basal area growth. 

Model 1 was modified to include random-effects associated 
with plots. The resulting Model 2, a nonlinear mixed model for 
annual basal area growth with random-effect (177 ) associ ated 
with the fixed-effect (fh) can be written as: 

Yij 

/31BfJ - (/3JBij/B,~~~2) 

(2) 

where b7i is a random parameter specific to ith plot associated 
with mid-tree basal area fixed-effect coefficient /37 that 
appears in the modifier (denominator), and rest of the 
terms are described above in Model 1. It is assumed that 
b7i rv N(O, O"G), Gij rv N(O, 0"2), and COV(b7i , f;U) = O. We would 
usually be interested in an estimate of var(b7i), i.e. 5;, a 
variance component describing the spread of the random 
coefficients. Maximum likelihood methods were used to fit 
Models 1 and 2 with S-Plus nime library. ATC, BIC and 
residual mean squares can be used to compare Models I and2. 
The variance component for random-effects can also be used 
to test the statistical significance of a mixed model, Model 2, 
versus a model without random-effects, Model I. Modeling of 
random-effects is expected to improve estimation and testing 
of fixed-effect parameters that would help in selecting sui­
table explanatory variables in a growth model (Pinheiro and 
Bates, 2000). 

More complicated models were examined by fitting the 
shortleaf pine data with plot-specific random-effects for other 
associated fixed-effects coefficients (/31 and tJ6)' Furthermore, 
Model 2 was also modified to model heterogeneous errors in 
order to evaluate whether this modification would improve fit to 
the shortleaf pine basal area growth data. This modi fication 

resulted in the following Model 3: 

Model 2 + power variance fUllctioll (3) 

where error variance was modeled as var(ei;) = if!Vij!2S with· 
one covariate using variance function g(vii,(5) = IVijis (vij is 
covariate and (5 is power parameter). This model takes hetero­
geneous errors into account. so that a constant variance assump­
tion is not necessary. Tree basal area was selected as a covariate 
in variance function for modeling errors in the basal area 
growth model. 

Model 3 was fitted with the S-Plus nIme library llsing the 
varPower option (Pinheiro and Bates, 20(0). Another 
modification of Model 2, a two-level extension, can be written 
as Model 4 below: 

Yi'k = ( )) / I + exp(tJ3 + tJ4Bsik + f3SAik + tJ6Ri jk + f37 + b7ik Bi jk 

+ Gijk (4) 

where k = 1,2; the index Ie representing growth period. A 
variance function to model possible heterogeneous errors 
was added to Model 4 to obtain Model 5, in which tree basal 
area was used as a covariate in the variance function similarly to 
Model 3. 

Model 4 + power variance function (5) 

3. Results and discussion 

Summaries of fit statistics and estimates of variance 
components obtained from fitting the basal area growth models 
are presented in Table 3. 
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Tablc 3 indicates that Model 2 is better than Model I due to 
much smaller ATC and BTC values in Model 2. Furthermore, 
Model 2 has larger log-likelihood and smaller residual standard 
deviation (S.D.) than Modell. These statistics show that addition 
of plot random-effects improves the model fit. A 95% confidence 
interval for the b7 variance component S.D. is [6.505425, 
8.4322431, with a point estimate of 7.40644, indicating that the 
component is significantly different from zero. When variance of 
within-plot errors is modeled as a function of mid-tree basal area 
instead of assuming constant variance, Model 3 is found to be an 
improvemcnt over Model 2. The estimated variance component 
S.D. for Moclel 3 is larger (14.51838) than that of Model 2, 
although the residual S.D. is slightly (ncreased. 

An attempt was made to fit a two-level hierarchical mixed 
model (Model 4) with random parameters representing growth 
period ancl plots within growth period. However, a convergence 
problem was experienced when attempting to fit this two-level 
model. Omission of stand age (with parameter f3s) from the 
model permitted successful parameter estimation. In the 
ensuing discLlssion, we will continue to call this latter model 
"Model 4." Mode!·j appe:lrs to be .,;lightly hetter than Model 2 

Table 3 

Table 4 

Parameter estil1l:ltes and other associated statistics for Model 3 (total observa­
tions = 15,669, number of plots = 208, and residual d.f. = 15,455) 

Parameter Estimate Standard error t-Value P-value 

fll 0.035478 0.003601 9.85 <0.0001 

fl2 0.595.154 0.022727 26.19 <0.0001 

fll -2.885529 0.1285]8 -22.45 <0.0001 

/14 0.069907 0.001832 38.16 <0.0001 
I), 0.006188 0.001175 5.26 <0.0001 
flr, 1.684492 0.053100 31.72 <0.0001 

fl7 -9.399331 1.334786 -7.04 <0.0001 

despite an increase in the number of random parameters to be 
predicted. However, Model 3 is much better than Model 4 as 
indicated by fit statistics and other information given in Table 3. 
Model 5 is a substantial improvement over Model 4 due to 
inclusion of variance modeling function. Models 3 and 5 show 
that variance modeling to account for heterogeneous within­
plot errors improves the fit irrespective of the number of 
hierarchical levels selected for mixed modeling (whether 
single- or two-level). 

Summary statistics for lilted basal area growth models (total observations = 15,669, and number 0(' plots = 208) 

Model Ale I3IC Log-likelihood 

-186574.8 -186513.6 93295.4 
2 -191021.0 -190952.1 955]9.5 
3 -198635.6 -198559.0 99327.8 
4" -191757.0 -191688.] 95887.5 
5a -] 98975.0 -198898.4 99497.5 

ar(p)h 

1.70427 
2.67147 

ah 

7.40644 
14.51838 
6.19544 

10.72944 

Residual d.f. Residual S.D. (a) 

15,661 0.00062807 
15,455 0.00052973 
15,455 0.00327183 
15,248 0.00050672 
15,248 0.00303856 

aT(p)h. Estimated standard deviation (S.D.) ['or variance component for ptot lal1dol1l-e1lccts within glOwlh period. ah, estimated standard deviation for variance 
component lur plot ran(\()I1l-cITccts. 

a Stand age dropped from the model dill' to convergence problem. 
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Fig. 2. Standardized residuals VS. stand basal area for Model 3. 

The effects of spatially dependent errors were also explored 
since coordinate data for each tree were available. Three 
additional models using linear, exponential and Gaussian 
correlation functions were studied. However, they did not 
improve fit compared to ModelS. This suggests that the random 
plot effect essentially explains most of the autocorrelation 
among trees within plots. Trincado and Burkhart (2006) also 
found evidence to suggest that the assumption of con'elated 
errors could be relaxed when appropriate tree-level randoJl1-
effects were included in a stem profile model. Additional details 
concerning results from the spatial models can be found in 
Budhathoki (2006). 
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Because ModelS does not include stand ageas an independent 
variable, it may be less desirable for practical application than 
Model 3 despite some modest improvement in fit statistics. 
Therefore, we prefer Model 3, a model which Llses single level 
random-effects and variance 1ll0deli ng. 

3.1. Parameter eSfil17ates for Model 3 

Parameter estimates ·and standard errors for Model 3 are 
provided in Table 4. The estimated variance component S.D. for 
b7 (Bb7) is 14.51838, and that forthe residual (Be) is 0.00327183. 
A 95% confidence interval for b7 variance component S.D. is 
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[12.69197, J 6.60762], indicating that the variance component is 
significantly different from zero. The power estimate (8) in the 
variance function for Model 3 is 0.57274 with 95% confidence 
interval [0.56048,0.58499]. Since the interval does not include 
zero, we conclude til,H the llse of a v,lriance function is beneficial. 

3.2. Re.l'idll(// (/I/(//ysi.\ tor Modcl 3 

Sttindarclized residuals from the selected model are plotted 
against the predicted values in Fig. I. The plot shows random 
scatter of residuals inclicating 110 violation of moclel assump­
tions. Comparison of residual plots from other models (e.g., 
those not llsing variance functions to achieve homogeneity of 
variance) inclicates that Model 3 is superior (residual plots of 
other models not shown) and adequately explains variation in 
anllual basal area growth. Similarly, the residuals are plotted 
against each of design criteria (stand age, site index and stand 
basal area). These plots are presented in Figs. 2-4. Figs. 2-4 
generally indicate mean residLlals for all classes centered near 
zero, indicaLing lack 01' bias for ivlodel 3. 

Fig. 2 shows a fairly similar distribution of residuals over 
four initial stand basal area d:lsses, although there is a slight 
indication rlwI there is high variability in the highest class 
(28 m2/ha). Fig. J indicates fairly similar prediction of annual 
growth values over site index classes except in the highest class 
(23 m at base age 50 years). 

It can be inferred from Fig. 4 that there is no clear prediction 
bias over initial stanel age classes. The graph further reveals that 
variation in model residuals is higher in slightly younger stands. 
However, the variability in residuals is decreased in older stands. 

4. Conclusions 

No shortleaf pine growth models involving random-effects 
for plots have previously been published in a peer reviewed 

journal for the Oklahoma and Arkansas region, except a model 
for diameter-height relationship by Budhathoki et at. (2008). 
There has [\Iso been relatively little work in mixed modeling of 
basal area illcrement for other tree species in the region. This 
study provides evidence that individual-tree growth models 
\vith plot random-effects are superior to those fitted with OLS 
methods (l,Yllch et al.. 1999), due to statistical properties 
,1ssociated with the use of a variance component for plot 
random-effects. The mixed models are also more attractive for 
the reasons of interpretation and applicability of the parameter 
estim'ltes.Modcl 1 in which parameters were fitted by GLS 
ignores grouping of trees by plots, while the mixed models 
conform more closely to actual data structure in which 
individual-tree measurements are grouped by plots. 

The main objective of the fitted models is prediction of the 
response variables rather than interpretation of individual fixed­
effect coefficients. Fixed-effects parameter estimates are given 
for Moclel 3, and these could be used in prediction of annual 
basal ~lrea growth in a distance-independent individual-tree 
gro'vvth simulator (e.g., Huebschmann et aI., 1998). Residual 
analysis showed that Model 3 made reasonable predictions over 
the range of design criteria, without evidence of systematic 
bias. Overall. there was some evidence of residual variance 
increase with tree size classes, which was corrected with 
variance modeling of heterogeneous within-plot errors. Despite 
somewhat improved statistical properties, ModelS is not as 
appealing for practical applications since it does not include age 
as an i nclepcndent variable. 

Due to limited observations over time (repeated measure­
ments), serial cOITelations among measurements could not be 
:lclclressed tbrough modeling of within-subject covariance 
matrix over time. However, part of temporal correlation was 
taken into account by using first differences to compute growth 
between observations for two time points. As coordinates were 
recorded for each tree, the possibility of spatial correlation for 
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individual-tree errors was also investigated. However, spatial 
con-elation was not statistically significant in presence of plot 
random-effects. Trincado and Burkhart (2006) suggest that the 
cOlTelated error assumption could be relaxed for predictive 
purposes in the presence of tree-level random effects with a 
stem profile model estimated using multiple measurements on 
sample trees. Model 3 is preferred for improvc.d predictions 
of annual basal area growth for individual shorlleaf pine 
trees occurring in natural stands in the Oklahoma and Arkansas 
region. 
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