VEGETATION, soil, and site data were collected throughout the forested portion of the Pacific silver fir and mountain hemlock zones of the Gifford Pinchot National Forest as part of the Forest Service program to develop an ecologically based plant association classification system for the Pacific Northwest Region. The major objective of sampling was to include a wide variety of long-term stable communities and aggregate those of similar ecological characteristics into associations which would respond in similar fashion to various management manipulations. Analysis of data collected from over 300 study plots indicated the presence of 14 associations representative of the pronounced temperature and moisture gradients characteristic of the Cascade Range. Among the management considerations which could be related to environmental conditions in each association were soil compactability, nutrient availability, susceptibility to fire damage, drought, growing season frost, snow pack, competition, gopher problems, optimum reproduction methods, tree species suitability for reforestation and timber productivity.

INTRODUCTION

The Cascade Range is an area where varied climatic, geologic and edaphic conditions have resulted in the development of a complex flora (Franklin and Dymess 1973). The forests of the mountains of southwestern Washington occupy a portion of this region where practices of past exploitation and present regulation have played a major role in shaping vegetation patterns. In recent decades, the traditional forest management practices of clearcutting and broadcast burning, which were developed for lower elevation, more productive sites dominated by western hemlock (TSHE;....

‘Contribution from the USDA Forest Service, Vancouver, WA 98660.
Tsuga heterophylla (Raf.) Sarg., Douglas-fir (PSME; Pseudotsuga menziesii (Mirb.) Franco), and western redcedar (THPL; Thuja plicata Donn) have been transferred onto upper elevation, less productive sites dominated by Pacific silver fir (ABAM; Abies amabilis (Dougl.) Forbes) and mountain hemlock (TSME; Tsuga mertensiana (Bong.) Carr.). The result has been many incidents of less than satisfactory regeneration success (Halverson and Emmingham 1982), particularly in stands growing at elevations above 4,000 feet (1,200 m). Largely in response to these regeneration difficulties, a program of ecological classification was initiated for the Gifford Pinchot National Forest to partition the land base into relatively homogeneous units by plant association. This program was undertaken as part of the larger USDA Forest Service Program of Ecological Studies for the National Forests of the Pacific Northwest Region.

The study of plant communities provides useful information about the environment in which they occur (Mueller-Dombois and Ellenberg 1974). Communities are a product of long-term interaction between factors in the physical environment and the organisms present (Zobel et al. 1976). Environmental factors such as temperature, moisture, light and nutrients act as selective influences on plant populations, favoring species best adapted to a particular type of site. An understanding of the basic environmental factors that influence a site allows better prediction of the results of natural processes and management actions. Sites occupied by similar plant associations may be expected to respond similarly to silvicultural treatment.

While discontinuities may be found (Whittaker 1962), generally the composition of vegetation varies continuously over the landscape (Ramensky 1924; Gleason 1926; McIntosh 1967). As a management convenience, vegetation can be aggregated into discrete associations based on dominant overstory, understory and indicator species which characterize environmental conditions on similar sites. This concept is similar to that of habitat type (Daubenmire 1968; Franklin 1966; Pfister et al. 1977) except that the land area upon which the association occurs is not included. It is important to bear in mind that associations represent conceptual abstractions and that ecotones of transitional vegetation may be frequently encountered when assessing composition in the field.

METHODS

The vegetation, soil and site data used in formulating this classification were collected across the forested portion of the Pacific silver fir and the mountain hemlock zones (Franklin and Dymess 1973; Franklin 1966), which comprise a major portion of the commercial montane forestland present within the Gifford Pinchot National Forest. The primary objective of sampling was to include a wide variety of long-term stable plant communities growing throughout the middle and upper elevations of the forest. Circular 0.05 acre (0.02 hectare) plots were established in selected undisturbed stands occurring on a variety of aspects, elevations and slopes.
Many plots were located along transects oriented to measure the range of environmental factors along perceived gradients. Sampled stands met the following criteria: (1) at least 75 years old, (2) relatively undisturbed and (3) relatively uniform in vegetation composition and cover within the plot area. The classification is based upon data collected from 318 reconnaissance plots, 101 of which were intensively sampled to obtain estimates of productivity.

Data collection consisted of (1) ocular estimates of tree, shrub and herb cover by species, (2) height, diameter (dbh) and radial growth measurements of dominant and codominant trees, (3) basal area determination of stand and of each species by diameter class, (4) forest floor and soil profile description and (5) assessment of site location, elevation, aspect, slope, landform and microtopography. Increment cores were evaluated in the laboratory and all other information was coded on data cards in the field.

Standard computation techniques and procedures developed for ecological studies in the Pacific Northwest Region (Voiland and Connelly 1978) were used to evaluate floristic data. Procedures included association tables, similarity index, cluster analysis and discriminate analysis (Gauch 1982). From these data preliminary plant associations were identified and a dichotomous key was constructed which would facilitate identification of the associations in the field.

Productivity data were evaluated using procedures from the Statistical Package for the Social Sciences (Nie et al. 1975) and Biomedical Data Programs (Dixon 1981). Locally developed indices of relative production among associations were also computed. These included volume index, \(SDI \) volume increment and current volume increment. Volume index (VI) was calculated as a product of site index \((SI) \) and growth basal area \((GBA, \text{ Hall 1983}) \):
\[
VI = SI \times GBA \times 0.005
\]
and is an expression of potential volume growth for normally stocked, even aged stands at age 100. SDI volume increment was computed by a series of equations which relate the actual production \((Pa) \) of a sampled stand to the production \((Pn) \) of a normally stocked stand:
\[
Pa = Pn \left(\frac{SDIa}{SDIn} \right)
\]
and developed to discriminate between commercial and non-commercial stands (Knapp 1981). Current volume increment is the mean annual volume increment over the past ten years and an estimate of net production, not including mortality, in natural, mixed species stands (Hemstrom 1983). It is one-tenth of the difference between current tree volumes and volumes of the same trees ten years earlier. Volume of overstory trees was estimated by equations of the form,
\[
V = aD^kH^k
\]
where \(V \) is volume, \(D \) is diameter at breast height, \(H \) is tree height and \(a \) and \(k \) are empirically derived constants specific to each species. Understory volume was estimated from the relationship,
\[
CGu = BAu (CGo/BAo)
\]
where \(CGu \) and \(CGo \) are the last ten years radial increment and \(BAu \) and \(BAo \) are the mean basal area of understory and overstory, respectively. The stand volume was determined by summation of the component estimates.
Height-age curves were empirically derived from data collected in the field. These curves were developed using a nonlinear polynomial curve fitting technique (Dixon 1981) for the natural growth function, \(f(x) = a(1-e^{-bx}) \), where \(x \) is the tree age, \(f(x) \) is tree height, \(a \) is the maximum value for tree height, \(b \) is the rate at which tree height approaches the maximum and \(e \) is the natural log constant (Parton and Innis 1972).

RESULTS, AND DISCUSSION

A major product of this program was the development of a management guide for use by local forest managers (Brockway et al. 1983a). This guide was designed to help classify stands or sites into associations so that previous research and management experience pertinent to a particular plant community could be implemented. Its contents include (1) a summary of associations and their characteristic environments, (2) a discussion of association management considerations, (3) a key to the associations which can be used for field identification and (4) detailed descriptions of physiography, soils, vegetation, regeneration and productivity of each association which should be used to verify identification and develop management options. For convenient field use, the major aspects of this guide have also been condensed into a pocket sized format (Brockway et al. 1983b).

Classification

Long-term stable vegetation has been classified on two basic levels: series and association. The “long-term stable state” is the stand condition which is normally achieved following 300 years without unnatural disturbance. The Pacific silver fir series exists wherever the long-term stable vegetation will have at least 10 percent cover of Pacific silver fir. Continuing on to more severe environments, the mountain hemlock series exists wherever the long-term stable vegetation will have at least 10 percent cover of mountain hemlock. Stand development is usually sufficient to allow series identification between 50 and 100 years after stand formation. On recently disturbed sites, series may be inferred from adjacent stands. The series were divided into 14 associations based on dominant species in the understory which are indicative of the ambient environmental conditions (Table 1). These species may be shrubs or herbs which exhibit prominent indicator value. An example association, named for an important tree/shrub/herb assemblage, would be Pacific silver fir/big huckleberry/beargrass (ABAM/VAME/XETE).

Environmental Relationships

A generalized east-west transect through the Columbia Gorge (Figure 1) shows the spatial arrangement of the major vegetation series present in this area. Environmental gradients in moisture east (dry) to west (moist) and temperature from low elevation (warm) to high elevation (cold) are readily apparent from the occurrence of various series. Within the broader context of environmental gradients which influence the presence of each series is a subset of more subtle gradients which largely determine the
occurrence of various plant associations. Again, moisture and temperature are prominent influences at this level, but other atmospheric or edaphic factors may be locally important. Variation not only in total precipitation, but also variation in the proportion incident as snow versus rain and variation in soil and air temperatures resulting from elevation, aspect and soil drainage characteristics produces different environmental conditions and a corresponding diversity of plant associations. The plant associations occurring in the montane forests of southwestern Washington are illustrated in Figure 2. Their relationships to one another and to the remaining series are represented along moisture and temperature gradients.

TABLE 1. MONTANE PLANT ASSOCIATIONS

<table>
<thead>
<tr>
<th>Association</th>
<th>Scientific Name</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pacific silver fir/salal association</td>
<td>Abies amabilis/Gaultheria shallon</td>
<td>ABAM/GASH</td>
</tr>
<tr>
<td>Pacific silver fir/dwarf Oregon grape association</td>
<td>Abies amabilis/Berberis nervosa</td>
<td>ABAM/BENE</td>
</tr>
<tr>
<td>Pacific silver fir/vanilla leaf-queen cup beadlily association</td>
<td>Abies amabilis/Achlys triphylla-Clintonia uniflora</td>
<td>ABAM/ACTR-CLUN</td>
</tr>
<tr>
<td>Pacific silver fir/Alaska huckleberry association</td>
<td>Abies amabilis/Vaccinium alaskense</td>
<td>ABAM/VAAL</td>
</tr>
<tr>
<td>Pacific silver fir/Alaska huckleberry-salal association</td>
<td>Abies amabilis/Vaccinium alaskense-Gaultheria shallon</td>
<td>ABAMNAAL-GASH</td>
</tr>
<tr>
<td>Pacific silver fir/coolwort foamflower association</td>
<td>Abies amabilis/Tiarella unifoliata</td>
<td>ABAM/NIUN</td>
</tr>
<tr>
<td>Pacific silver fir/devil's club association</td>
<td>Abies amabilis/Qp opanax horridum</td>
<td>ABAM/OPHO</td>
</tr>
<tr>
<td>Pacific silver fir/Cascades azalea association</td>
<td>Abies amabilis/Rhododendron albilflorum</td>
<td>ABAM/RHAL</td>
</tr>
<tr>
<td>Pacific silver fir/fool's huckleberry association</td>
<td>Abies amabilis/Menziesia ferrugi nea</td>
<td>ABAM/MEFE</td>
</tr>
<tr>
<td>Pacific silver fir/big huckleberry/queen cup beadlily association</td>
<td>Abies amabilis/Vaccinium membranaceum/Clintonia uniflora</td>
<td>ABAM/VAME/CLUN</td>
</tr>
<tr>
<td>Pacific silver fir/big huckleberry/beargrass association</td>
<td>Abies amabilis/Vaccinium membranaceum Xerophyllum tenax</td>
<td>ABAM/VAME/XETE</td>
</tr>
<tr>
<td>Mountain hemlock/big huckleberry association</td>
<td>Tsuga mertensiana/Vaccinium membranaceum</td>
<td>TSME/VAME</td>
</tr>
<tr>
<td>Mountain hemlock/fool's huckleberry association</td>
<td>Tsuga mertensiana/Menziesia ferrugi nea</td>
<td>TSME/MEFE</td>
</tr>
<tr>
<td>Mountain hemlock/Cascades azalea association</td>
<td>Tsuga mertensiana/Rhododendron albilflorum</td>
<td>TSME/RHAL</td>
</tr>
</tbody>
</table>
FIGURE 1. VEGETATION PROFILE THROUGH THE COLUMBIA GORGE AND CASCADE RANGE (Troll 1955)

Indicator species have been a useful tool in determining the relative environmental relationships among the various plant associations. Knowledge of the habitat preferences of one plant species or a co-occurring group of species in a particular plant association, can aid in characterizing the environmental conditions of a site occupied by the association. Understory plants have been identified as belonging to the warm site shrub group (Rosa gymnocarpa Nutt., Symphoricarpus mollis Nutt., Vaccinium parvifolium Smith, Acer cincinatum Pursh, Berberis nervosa Pursh, Gaultheria shallon Pursh and Chimaphila umbellata (L.) Bart.), the cool site shrub group (Vaccinium alaskaense Howell, Menziesia ferruginea Smith and Vaccinium membranaceum Doug.), the cool to cold, moist site shrub group (Oplopanax horridum Miq. and Rhododendron albiflorum Torr. & Hook.), the warm site herb group (Disporum hookeri (Torr.) Nicholson, Galium oreganum Britt., Hieracium albiflorum...
FIGURE 2. RELATIVE ENVIRONMENTAL RELATIONSHIPS AMONG MONTANE SERIES AND ASSOCIATIONS

The descriptive characteristics of the environments occupied by the various montane plant associations are summarized in Table 2. The mountain hemlock/Cascades azalea (TSME/RHAL), mountain hemlock/fool’s huckleberry (TSM E/M EFE), mountain hemlock/big huckleberry (TSM E/VAME) and Pacific silver fir/big huckleberry/beargrass (ABAM/VAME/XETE) associations are typically encountered at high elevations on sites with northerly aspects. This results in cold temperatures, heavy snowpacks and occasionally high water tables. Sites occupied by ABAM/VAME/XETE have southerly aspects and are slightly warmer and drier than those of the TSME associations. The Pacific silver fir/Cascades azalea (ABAM/RHAL), Pacific silver fir/devil’s club (ABAM/OPHO), Pacific silver fir/big huckleberry/queencup beadelily (ABAM/VAME/CLUN) and Pacific silver fir/ool’s huckleberry (ABAM/M EFE) associations are characterized by cool environments on sites with northerly aspects, positioned on benches or upper slopes. Sites occupied by ABAM/VAME E/C LU N have southerly
aspects and are somewhat drier than those where ABAM/RHAL, ABAM/OPOH and ABAM/MEFE occur. The Pacific silver fir/coolwort foamflower (ABAM/TIUN), Pacific silver fir/Alaska huckleberry (ABAM/VAAL) and Pacific silver fir/vanillaleaf-queencup beadlily (ABAM/ACTR-CLUN) associations occupy mesic sites which are influenced by moderate environmental conditions. The Pacific silver fir/Alaska huckleberry-salal (ABAM/VAAL-GASH), Pacific silver fir/dwarf Oregon grape (ABAM/BENE) and Pacific silver fir/salal (ABAM/GASH) associations are found near lower elevations on warm sites bordering the western hemlock series.

Management Characteristics

Management characteristics unique to each association are summarized in Table 3. Hazards are subjective estimates of relative severity. Frost is the single most important factor affecting plantation establishment on montane forest sites. High elevations, northerly aspects, slopes less than 15 percent and topographic depressions tend to increase the frequency and severity of growing season frost. Residual thermal cover, offered by standing trees, enhances site protection. The presence of certain plant indicators and associations can provide valuable clues to the potential frost hazard (Halverson and Emmingham 1982). Beargrass is an extremely frost tolerant species and severe frost problems can be anticipated where it

TABLE 2. ENVIRONMENTAL CHARACTERISTICS OF PLANT ASSOCIATIONS

<table>
<thead>
<tr>
<th>Vegetation</th>
<th>Elevation Mean and Range</th>
<th>Aspect Mean</th>
<th>Landform and Slope Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold</td>
<td>6444 (4000-5200)</td>
<td>W, W, NE</td>
<td>18 (14-20)</td>
</tr>
<tr>
<td>Warm</td>
<td>6375 (5000-4000)</td>
<td>W, W, SE</td>
<td>19 (12-25)</td>
</tr>
</tbody>
</table>

Soil Characteristics

<table>
<thead>
<tr>
<th>Total Depth Mean S.D.</th>
<th>Rooting Depth Mean S.D.</th>
<th>Litter Depth Mean S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 (11-11)</td>
<td>8 (15-8)</td>
<td>7 (3-7)</td>
</tr>
</tbody>
</table>
dominates ridgetops, benches and gentle slopes. The ABAM/VAME/XE, TSME/VAME, TSME/MEFE and TSME/RHAL associations occur on high frost hazard sites and the ABAM/RHAL, ABAM/MEFE, ABAM/VAME/CLUN, ABAM/TIUN and ABAM/OPHO associations occur on those of moderately high hazard.

Clearcutting may be widely applied as a reproduction method in less frost prone montane associations; however, its indiscriminate application in associations characteristic of higher elevations may enhance or create frost pockets. Also, sites which are clearcut and not promptly planted, may be lost to competition from beargrass, sedge or Ceanothus and a resulting increase in pocket gopher activity. With the exception of windthrow prone ridgetops which must be clearcut, use of the shelterwood method in many cases can provide adequate protection from frost in high elevation associations (Hoyer 1980; Hughes et al. 1979; Jaszkowski et al. 1975; Williamson 1973). Selection of frost tolerant tree species for planting and utilizing advanced regeneration at higher elevations will also increase the likelihood of successful reforestation (Halverson and Emmingham 1982). Western white pine (PIMO; Pinus monticola Dougl.), Engelmann spruce (PIEN; Picea engelmannii Parry), western larch (LAOC; Lariix occidentalis Nutt.) and lodgepole pine (PICO; Pinus contorta Dougl.) survive planting at high elevations much better than Douglas fir or noble fir (ABPR; Abies procera (Dougl.) Lind.). Pacific silver fir, mountain hemlock and Alaska yellow-cedar (CHNO; Chamaecyparis nootkatensis (L.) B.S.P.) may be useful as advanced regeneration which can attain good rates of growth after a three to five year readjustment period following canopy removal.

TABLE 3. MANAGEMENT CHARACTERISTICS OF PLANT ASSOCIATIONS

<table>
<thead>
<tr>
<th>Group Association</th>
<th>Relative Hazards</th>
<th>Suitable Species</th>
<th>Self Competition Hazard</th>
<th>Opportunity for Intensive Management</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frost Hazard</td>
<td>Snowfall Hazard</td>
<td>Drought Hazard</td>
<td>Less than 1st Stage</td>
</tr>
<tr>
<td>Cold</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSME/RHAL</td>
<td>High</td>
<td>High</td>
<td>Low</td>
<td>PICO PIEN LAOC PIMO PICO ADAP</td>
</tr>
<tr>
<td>TSME/MEFE</td>
<td>High</td>
<td>High</td>
<td>Moderately Low</td>
<td>PICO PIEN ADAP LAOC PICO ADAP</td>
</tr>
<tr>
<td>TSME/VAME</td>
<td>High</td>
<td>High</td>
<td>Moderately High</td>
<td>PICO PIEN LAOC PIMO ADAP</td>
</tr>
<tr>
<td>ABAM/VAME/XE</td>
<td>High</td>
<td>Moderately High</td>
<td>Moderately High</td>
<td>PICO PIEN ADAP LAOC PIEN</td>
</tr>
<tr>
<td>ABAM/MEFE</td>
<td>Moderately High</td>
<td>Moderately High</td>
<td>Moderately Low</td>
<td>PICO ABPR ADAP LAOC</td>
</tr>
<tr>
<td>ABAM/VAME/CLUN</td>
<td>Moderately High</td>
<td>Moderate</td>
<td>Moderate</td>
<td>PICO ABPR ADAP</td>
</tr>
<tr>
<td>ABAM/RHAL</td>
<td>Moderately High</td>
<td>High</td>
<td>Low</td>
<td>PICO PIEN ADAP</td>
</tr>
<tr>
<td>ABAM/OPHO</td>
<td>Moderately High</td>
<td>Moderately High</td>
<td>Low</td>
<td>ABPR PIEN ADAP</td>
</tr>
<tr>
<td>Warm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABAM/TIUN</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Moderate</td>
<td>PICO PIEN ABPR ADAP</td>
</tr>
<tr>
<td>ABAM/MEFE</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Moderate</td>
<td>ABPR PIEN ADAP</td>
</tr>
<tr>
<td>ABAM/ACTII-CLUN</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Moderate</td>
<td>ABPR PIEN ADAP</td>
</tr>
<tr>
<td>ABAM/VAME-GASH</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Moderate</td>
<td>ABPR PIEN ADAP</td>
</tr>
<tr>
<td>ABAM/MEFE</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Moderate</td>
<td>ABPR PIEN ADAP</td>
</tr>
<tr>
<td>ABAM/OPHAGE</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Moderate</td>
<td>ABPR PIEN ADAP</td>
</tr>
</tbody>
</table>

*Useful as advanced regeneration.
In upper elevation associations (TSM E/RHAL, TSM E/M EFE, TSM E/VAME and ABAM/VAME/CLUN and ABAM/VAME/XETE) a greater proportion of total site nitrogen is concentrated in the forest floor and above ground vegetation (Topik 1982). This predisposes high elevation sites to substantial nitrogen loss, should organic matter destruction be extensive as during a fire of severe intensity (Swank and Waide 1980). Site nitrogen losses as high as 80 percent resulting from harvest followed by slash burning (DeBell and Ralston 1970) may cause nitrogen deficiencies which depress productivity on already modestly productive sites (Swank and Waide 1980). While broadcast burning of slash may be a desirable site preparation and wildfire hazard reduction measure at lower elevations, intense burning of high elevation sites, where the antecedent fire hazard is low, merely results in destruction of valuable advanced regeneration and organic matter.

Compaction is the foremost soil related management problem. Plant associations (TSME/RHAL, ABAM/RHAL, ABAM/OPHO and ABAM/TIJU) which occur on sites where soils are moist during a substantial portion of the year are more subject to compaction. Proper timing of stand entry and use of cable logging methods can diminish adverse effects of harvest.

Productivity

Productivity varies considerably among the montane plant associations as is seen in Figure 3 where production indices are arrayed along temperature and moisture gradients. Values for volume index generally exceed those for SD1 volume increment, both measures representing potential production near culmination of mean annual increment. Current volume increment values, by contrast, are lower than those for SD1 volume increment and volume index because they represent production in virgin stands which are past culmination age.

The associations may be grouped into three productivity classes. High production was observed in the ABAM/TIJU, ABAM/OPHO and ABAM/ACTR/CLUN associations where sites are characterized by adequate moisture, deep soils and a rich herb cover. Low production was measured in the TSME/RHAL, TSM E/M EFE, TSM E/VAME and ABAM/RHAL associations where cold soil and air temperatures, heavy snowpacks and shorter growing seasons limit growth and in the ABAM/BENE association where shallow, rocky soils on southerly aspects may contribute to growing season drought stress. Moderate production levels were observed in the ABAM/MEFE, ABAM/VAME/XETE, ABAM/VAME/CLUN, ABAM/VAAL, ABAM/VAAL-GASH and ABAM/GASH associations which represent a broad range of intermediate environments.

The height growth patterns of the major tree species varied substantially among the association productivity groups (Figure 4). These empirically derived height-age curves do not fit many of the height-age curves currently in use. The shape of the height-age curve also changed within a species across different plant associations. It was concluded that the shape of a height growth curve for a species will change as environmental factors become more severe. Although many data were collected in stands over 250 years old, most future stands will be managed at rotations of 150 years.
or less. It is worth noting that the long-term relative growth performance of these species does not in many cases correspond to their short-term growth potential.

CONCLUSIONS

An ecologically based classification was developed for the montane forest land in southwestern Washington. The 14 plant associations identified represent a broad range of environments, each with its own unique management considerations. Tree species growth characteristics and productivity were found to vary substantially among sites characterized by each association. Subsequent field application by district timber management staff has confirmed the classification as a useful tool in delineating environmental constraints and identifying treatment options appropriate to achieving management objectives. The classification will also be an aid in stratifying future inventory sampling and future mapping activity required for land management planning decisions.
FIGURE 4. COMPARISON OF HEIGHT GROWTH AMONG IMPORTANT TIMBER SPECIES
ACKNOWLEDGEMENTS

This study was supported by funding from the Gifford Pinchot National Forest and the Pacific Northwest Region of the USDA Forest Service. The authors wish to express their gratitude to this agency, to William Emmingham who initiated this study, and to the following individuals whose efforts were invaluable to project completion and manuscript publication: Miles Hemstrom, Frederick Hall, Eugene Smith, Nancy Halverson, Sheila Logan and Deborah Cohen.

LITERATURE CITED

FOREST LAND CLASSIFICATION: EXPERIENCES, PROBLEMS, PERSPECTIVES

Proceedings of a symposium held at the University of Wisconsin at Madison on March 18-20, 1984

Edited by James G. Bockheim

Department of Soil Science
University of Wisconsin
Madison, WI 53706

1984

SPONSORS

NCR-102 The North Central Forest Soils Committee

D. H. Alban - USDA Forest Service
G. M. Aubertin - Southern Illinois Univ.
J. G. Bockheim - Univ. of Wisconsin
J. H. Brown - OARDC, Ohio State Univ.
G. Cox - Univ. of Missouri
A. R. Gilmore - Univ. of Illinois
D. F. Grigal - Univ. of Minnesota
J. G. Hart, Jr. - Michigan State Univ.
G. S. Henderson - Univ. of Missouri
P. E. Pope - Purdue Univ.
T. G. Evans - Coop. State Research Service
K. Pregitzer - Michigan State Univ.
R. Schultz - Iowa-State Univ.
L. M. Walsh - Univ. of Wisconsin
(administrative advisor)

USDA Forest Service
USDA Soil Conservation Service
Society of American Foresters
Proceedings of the Symposium
Forest Land Classification: Experience, Problems, Perspectives

March 18–20, 1984
Wisconsin Center
702 Langdon St.
Madison, WI 53706