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ABSTRACT: In the southeastern USA, fusiform rust resistant loblolly and slash pines may be deploved as
1) ulked seed orchard mixes. 2) half-sibling (sib) family mixtures. 3) single half-sib families. 4) full-sib
family mixtures, single full-sib families from 5) “bulking up” or producing large numbers of controlled
cross seeds, or as 6) clones of individual genorvpes. These deplovment rypes are respectively less genetically
variable and less well buffered against environmental stress, but provide respectivelv greater genetic gains
from higher selection intensity. Currently, bulked seed orchard mixes are deploved by all state organizations
and many smaller companies, bur about half the 1.1 billion loblollv and slash pines deploved annually are
planted in half-sib family blocks. The most aggressive landowners plant virtually all of their land with a
small number of half-sib families. Full-sib families and/or clones are currently planted on a small fraction
of the rotal area regenerated. but research and development seeks 10 make the deployment of full-sib families
and clones economical o increase the genetic gains from applied tree improvement programs. Resistance
to fusiform rust currently being deploved is likelv due to resistance based on both major genes and genes
of small, cumulative effects. However, major genes for resistance to fusiform rust have been discovered
using molecular genetic techniques, and deplovment strategies are currently being developed. “Boom and
bust” cvcles of pathogens on other crops when major genes were deploved against them create concerns
that these same problems might arise when deploving major genes for resistance against fusiform rust. We
assessed the risk that fusiform rust might overcome one to few major genes for resistance if they are
deploved widely and strategies ro mitigate the risk thar this will occur. We concluded that the deployment
strategies currently in widest use (bulked seed orchard seedlings and half-sib family blocks) robustly resist
fusiform rust infection. Plantations are probably sufficiently genetically buffered to present lintle risk of
cataclvsmic failure, as current resistance is likelv to be based on both major and minor genes. Furthermore,
these same deplovment strategies are likely to provide robust protection against risk factors other than
Jusiform rust. We concluded that deploving pine cultivars with known genes for major resistance to fusiform
rust in regions where their associated virulence genes are absent or in low frequencies is a practical near
rterm strategy and that deploving a mosaic of different resistance genes mav mitigate the presumed greater
risk of deploving full-sib familv blocks or clones. South. J. Appl. For. 29(2):80-87.
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The discovery that there are several major genes for re-
sistance to fusiform rust, Cronartium quercuum (Berk.)
Miyabe ex Shirai f. sp. fusiform. and developing technology
for deploying more genetically uniform loblolly. Pinus
taeda L.. and slash. Pinus elliortii Englm.. pines has led to
a concern that these major genes for resistance might fail
under certain deployment strategies. Our objective herein
was to assess the risk of plantation failure under current and
possible future deployment strategies and to consider alter-
native strategies for deployment that might mitigate against
failure.

Deployment Strategies

Fusiform rust resistant loblolly and slash pines may be
deployed as 1) bulked seed orchard mixes of open-polli-
nated half-sibling (sib} families. 2) selected half-sib family
mixtures. 3) single half-sib families. 4) full-sib family mix-
tures. single full-sib families from 5) “bulking up™ or pro-
ducing large numbers of controlled cross seeds. or as 6)
clones of individual genotypes. These deployment types are
respectively less genetically variable and less well buffered
against environmental stress factors but selection intensity
and expected genetic gains increase, respectively. Cur-
rently, wind-pollinated seed orchards produce the bulk of
genetically improved seedlings of both loblolly and slash
pines. Beginning in the 1970s, many organizations seized
the opportunity to deploy only the few best half-sib families
from first-generation seed orchards when seed yields from
vounger orchards eased the demand for seeds from older
seed orchards (Gladstone 1981, Duzan and Williams 1988.
McKeand et al. 1997). Some of these organizations planted
bulked mixtures of the best half-sib families while others
planted single half-sib families to specific sites. With the
development of controlled mass pollination (CMP) (Bram-
lett 1997). it became practical to produce full-sib families
from seeds, and a few organizations are deploying these
singly and in mixtures.

“Bulking up™ is another strategy for deploying full-sib
families. This strategy deploys rooted cuttings derived from
young (circa 1- or 2-year-old seedlings) and has resulted in
the implementation of several pilot-scale programs to bulk
up full-sib families for operational deployment (Frampton et
al. 2000). There is no difference between CMP and bulking
up in terms of expected genetic gain: however. bulking up
will reduce genetic variability as clones are replicated
across the landscape. If rooting potential is strongly biased.
genetic variability will decrease and may approach the
limits that would be achieved with clonal deployment. De-
ploying single full-sib families capitalizes on substantial
portions of both the additive and nonadditive genetic vari-
ances and promises the greatest genetic gains from tradi-
tional tree improvement without deploying clones of single
genotypes.

Deploying mixtures of full-sib families or polymix
crosses among a few elite females and males seeks to
increase genetic gains by capitalizing largely on the good
general combining ability of a few parents while minimiz-
ing perceived risk by deploying them in mixtures or as

polymix crosses. The fundamental biological problems of
maturation and its effects on rootability and growth have
long been recognized as limitations to the deployment of
rooted cuttings of individual selected genotypes (Stelzer and
Goldfarb 1997). If maturation of hedges can be delayed
until clones of individual full-sib seedlings can be evaluated
in clonal trials. then genetic gains can be increased by
within-family selection and deploying single genotypes as
rooted cuttings. The ultimate goal of true clonal forestry
depends on being able to vegetatively propagate any single
desirable genotype. This may become reality for loblolly
pine and slash pine through cryopreservation of tissue cul-
tures and the deplovment of somatic seedlings. products of
tissue culture (somatic embrvogenesis). Somatic seedlings
are currently being deployed by a few organizations on a
trial basis. Improvements in the process of producing so-
matic embrvos for loblolly offer great promise for the future
of clonal forestry (MacKay et al. 2001).

Current Deployment Practices

An informal survey was conducted among the 31 state
and industry members of three tree improvement coopera-
tives in the southeastern USA: the Cooperative Forest Ge-
netics Research Program at the University of Flonda. the
North Carolina State University-Industry Cooperative Tree
Improvement Program. and the Western Gulf Forest Tree
Improvement Program at Texas A & M University. Com-
plete results of the survey are provided elsewhere (Mc-
Keand et al. 2003b). but a summary of the averages for
2000-2002 is provided in Table 1.

Over half of all genetically improved loblolly pine prop-
agules are currently deploved as open-pollinated family
block seedlings (39%) and fewer for slash pine (43%).
Currently. all of the state and a few of the private tree
improvement programs deploy seedlings only as bulked
seed orchard seedlings. Since private industry produces the
greatest proportion of propagules (85 and 83% of loblolly
and slash pines. respectively). the proportion of seedlings
deployed in family blocks on industry lands is greater than
presented in Table 1. About 80% of loblolly pine and about
51% of slash pine regeneration on company lands is cur-
rently with half-sib families. An additional 33% and 32%
for loblolly and slash pines. respectively. i1s market sales of
half-sib families. It is clear that mitigating risk related to
deployment strategy will apply primarily to the deployment
of half-sib families until the technology to deploy full-sib
family blocks and/or clones is further developed. Assessing
risk from deploying half-sib family blocks is especially
important to privately owned companies.

Table 1. Average annual deployment (2000-2002) for
loblolly and slash pines in the southeastern USA.®

Loblolly pine Slash pine

Annual seedling production {MM) 1137 150
Open-pollinated family blocks (%" 39.0 3

Full-sib family blocks (57)" 0.4 1.7
Selected clones (%) 0.0 0.0

“ After McKeand et al. 200G3b.
" Percentage of annual seedling production.



Risk Factors

There are many Kinds of risks to plantations. They may
be damaged or destroyed by environmental catastrophes,
insects. diseases. animals (including humans) and errors
such as planting an ill-adapted seed source. In the present
analysis, we considered risks that managers can hope to
mitigate by appropriate selection. breeding and/or deploy-
ment of genetically improved propagules. If risks are to be
addressed in the breeding population. they must be antici-
pated and therefore exclude erratic and unpredictable events
such as environmental catastrophes. animal damage. and
insect and disease pests that are not vet attacking forests.
Furthermore. the agent causing risk must be sufficiently
widespread to justify using genetic improvement to mitigate
risk. Currently. the only agent causing risk to loblolly and
slash pines that meets the criteria of predictability and
ubiquity is the fusiform rust fungi. Cronartium quercuum
(Berk.) Miyabe ex Shirai f. sp. fusiforme. Thus. resistance to
fusiform rust is currently a major selection criterion in all of
the loblolly and slash pine tree breeding programs in the
southern United States. Although there are apparently in-
herent differences in susceptibility to other kinds of risk
agents including the southern pine beetle. Dendroctinus
frontalis Zimm. (Strom et al. 2002) the pitch canker fungi.
Fusarium subglutinans f. sp. pini. (Rockwood et al. 1988).
and ice damage (Schmidtling and Hipkins 2001), none has
been included as a selection criterion in loblolly or slash
pine breeding programs to date. However. when formerly
unknown risks arise. or it is not justified to include them as
selection criteria in a breeding program (e.g.. pitch canker).
they may be mitigated by appropriate deplovment of prop-
agules if variation in susceptibility to the risk factor has
been included in a breeding population by chance (Rock-
wood et al. 1988). Thus. for purposes of this discussion. risk
is defined in terms of the potential for damage or loss to
fusiform rust or to other less important or as yet unknown
factors.

Fusiform Rust Hazard

Information on rust hazard has been available since the
early 1970s (Phelps 1973). These surveys continue today
and are available to the public (Anderson et al. 1997). While
fusiform rust incidence in plantations increased from the
1970s to the 1980s. there was a decline thereafter to the
1990s (Figure 1). Several factors contributed to this decline.
but it occurred during the period when most plantations of
loblolly and slash pines in the South arose from genetically
improved planting stock from open-pollinated seed orchards
{Pye et al. 1997). There is no doubt that efforts to reduce
fusiform rust incidence by genetic selection have been ef-
fective for both species (Hodge et al. 1990. Lambeth 2000).
Should we expect these populations to remain resistant to
fusiform rust in the presence of a genetically variable patho-
gen population?

Early trials suggested that inocula collected from resis-
tant trees of slash pine were four times more virulent than
wild-type inocula (Snow et al. 1976). but a similar trial
showed only small increases in the virulence of inocula
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Figure 1. Percentage of acres of planted slash and lobloll
pines at three infection levels for eleven southern states
Adapted from Anderson et al. 1997,

from resistant loblolly pine (Powers et al. 1978). However
an elegant analysis of the risk to improved populations o
trees concluded that “biological risk has often been overes
timated for many of today’s improved forests™ (Carson anc
Carson 1989). Their analysis was based on data from
sources other than loblolly and slash pine. but their conclu-
sion is supported by more recent data on half-sib families of
loblolly pines.

Deploying Half-Sib Families

Half-sib families are usually deploved with one of two
strategies in mind. Families with the greatest expected
growth rates are often assigned to the best sites to maximize
vields. but some organizations make site assignments based
on the belief that some families are better adapted to spe-
cific sites (usually based on soils) (Gladstone 1981, Bridg-
water and Stonecypher 1978). A more recent analysis rec-
ommended that the strategy of assigning the best loblolly
pine families to the best sites be adopted rather than site-
specific assignments since large genotvpe X environment
differences are not common for loblolly (Duzan and Wil-
liams 1988). These authors further suggested that planting
half-sib family blocks may be an economically viable way
to deal with risk as damaged or destroyed blocks could be
salvaged more easily than the same families in genetically
mixed stands. Deploying half-sib families of slash pine
resistant to pitch canker to high-risk sites has been used as
a strategy to mitigate damage to that disease in Florida
(Rockwood et al. 1988). Half-sib families of loblolly pine
carrving genes for resistance to fusiform rust are also being
deploved on high-risk sites. Some of these families have
major genes for resistance (Wilcox et al. 1996). Field-test-
ing is underway to determine if these resistance genes
confer resistance on a few or many sites. Half-sib families
that are more resistant to fusiform rust also have greater
interaction across sites (McKeand et al. 2003a). These fam-
ilies are still resistant relative to the population of loblolly
pine as a whole. However, their predicted susceptibility is
not reliable given the expected nature of the pathosystem.
i.e.. a gene-for-gene system where resistance/susceptibility
in the host is due to the interaction between resistance gene
alleles in the host and corresponding avirulence/virulence
gene alleles in the pathogen. This lack of reliability can be



mitigated by deploying mixtures of these most resistant
families (McKeand et al. 2003a). Deploying mixtures of
seedlings from seed orchard bulks through mixtures of a
few to several half-sib families appears to be a very con-
servative strategy for deployment with respect to both
known and unknown risks.

Deploying Full-Sib Families

Full-sib families are being deployed on an operational
scale for both loblolly pine and slash pine (Table 1). though
on a small scale at present. Large numbers of controlled-
pollinated seeds may be produced economically by using
controlled mass pollination (Bridgwater et al. 1998) or by
bulking up using rooted cuttings (Goldfarb et al. 1997).
There 1s some evidence that we should be more concerned
about deploying full-sib families than other. more diverse
populations. Based on an analyvsis of 171 slash pine progeny
tests with a wide range of fusiform rust infection percent-
ages that estimated that dominance x environment interac-
tion was 64% as large as the dominance variance. Dieters et
al. concluded that an interaction this large could have im-
portant implications in full-sib family deployment. Full-sib
families of slash pine have also been demonstrated to show
significant differential interactions with single-uredinio-
spore cultures of the rust fungi (Stelzer et al. 1999). Based
on our current understanding of the fusiform rust-southern
pine pathosystem (i.e., a gene-for-gene model), the domi-
nance x environment interaction observed in Dieters et al.
(1996) is most likely the direct result of the host families
being exposed to populations of fusiform rust that differ in
their frequency for particular virulence alleles.

Deploving Clones of Selected Genotypes

If problems of maturation of hedges (Goldfarb et al.
1997 or initiation rates of somatic embryos (MacKay et al.
2001) are solved, then single. tested genotvpes can be
deploved. Deploying clones of selected genotypes increases
yields. but also increases the risk of loss. particularly to
unknown risk agents. and this risk is likely to increase with
the size of the plantings. Theoretical studies offer some
guidance with regard to managing for such risks (Libby
1982. Huhn 1986, Foster 1993, Bishir and Roberds 1995).
Individuals within full-sib families interact with single-
urediniospore cultures of fusiform rust (Kuhlman et al.
1997). which implies that vegetatively propagated clones of
lobloily pine may also interact if propagation effects are not
great enough to negate the interactions (Foster and Ander-
son 1989).

Potential for Fusiform Rust to Evolve in the Presence
of Resistance Genes

Although there is very little direct information that fusi-
form rust would evolve to overcome resistance, that risk
may be real. especially for resistance due to major genes.
The population genetic structure of an organism reflects the
sum of the evolutionary events that shaped it: mutation,
genetic drift. gene and genotype migration, the reproduction
and mating system, and selection. Population genetics prin-
ciples can be used to infer the evolutionary potential of an

organism. which. in turn. can be used to guide resistar
breeding strategies (McDonald and Linde 2002).

Although we know nothing about mutation rates in f
form rust. mutation is likely to be important for pathog
that exist as large populations in individual plants wher
is more likely that virulent genotypes will arise. multiph
the susceptible host genotype and spread before they are |
to genetic drift. 1.e.. chance. Deploying the same resista
gene in many individuals of the pine host will gre:
increase the exposure of a single resistance genotype to
fusiform rust population and increase the opportunity for
pathogen to evolve a virulent mutation or to increase
frequency of a previously existing virulence allele. Sir
fusiform rust galls may live for several years. especially
loblolly pine (Walkinshaw and Barnett 1995). the likeliho
of a virulent mutation is further increased.

Population size 1S important since mutation rates :
generally low: thus. larger populations will also have me¢
mutant genotypes. If population sizes were small. or if the
were genetic bottlenecks that severely reduced populati
size periodically. loss of these mutants would be mc
likely. If bottlenecks occur. they are most likely to occ
when the pathogen moves from one alternate host to t
other. The effect of having an obligate, alternate host ¢
population genetic structure of the fusiform rust fungi is n
known. One simple genetic mode] that deployed one maj
gene for resistance predicted that. depending on whe
selection occurred in the life cycle of the rust organism ar
the direction of that selection. new equilibria would t
reached in from six to 16 fungal generations with a ne
gene for virulence (vanBuijtenen 1982). Under the mo
likely assumptions, 1) selection for virulence in the pathc
gen taking place only on the pines and not on the oaks. an
2) selection for virulence on the pines with selection fc
avirulence on the oaks. equilibria would be reached in fror
seven to 16 fungal generations. respectivelv. Howeve
since infection is sporadic. at least on slash pines (Froelic
and Snow 1986), the number of vears required to adapt nes
virulence on pines might be much longer than implied b
these estimates.

Gene and genotype migration also shape pathogen pop
ulations. There is a substantial amount of genetic variatiol
in the fusiform rust population. Evidence for variation ir
pathogenicity is clear from empirical trials with inocul:
collected from different regions (Snow and Kais 1970
Snow et al. 1975, Powers et al. 1977, Walkinshaw and Bey
1981. Powers 1985, Kuhiman 1989): from different galls
within regions (Snow et al. 1976. Powers et al. 1977.
Powers et al. 1978. Snow and Griggs 1980, Kuhlman 1992);
and from single sprores from the same gall (Powers 1980.
Kuhlman and Matthews 1993, Stelzer et al. 1999). High
levels of genetic variability have since been confirmed by
molecular genetic analyses (Hamelin et al. 1994). However,
what is more interesting than the level of genetic variability
in fusiform rust is the pattern in which this variation is
partitioned across its natural range. Recent evidence using
microsatellite DNA suggests that regional population struc-
ture exists (Kubisiak et al. unpublished data), with at least



three metapopulations of the fusiform rust fungi along the
South Atlantic and Gulf Coastal plains of the U.S. Most of
the genetic variation (87.8% ) occurred within local popula-
tions 10 to 20 acres in size. which suggests that there is
extensive gene flow between populations. Furthermore. the
magnitude of a smaller. but statistically significant propor-
tion of microsatellite variation found among populations
was associated with distance among populations. Therefore.
long distance migration is possible. but infrequent enough
that genetic differentiation can take place (Kubisiak 2004).
Although the results of this study were based on selectively
neutral genetic loci. and therefore tell us nothing about the
geographic distribution of pathogenicity. these Kinds of data
infer the relative importance of the evolutionary factors that
shaped the population.

The reproductive or mating system influences the evo-
lutionary potenual of fusiform rust as regular recombination
poses greater risk that new combinations of virulence genes
can unite to overcome several resistance genes that may
have been combined in the host. Fusiform rust is thought to
undergo sexual reproduction when haploid nuclei of the
pvcniospores (male) and receptive hyphae (female) give rise
to dikarvotic cells/hvphae in galls on pine trees (Littlefield
and Heath 1979). followed by diploidization and meiosis on
the oak host. However. this has not been fully verified.

Selection influences the evolutionary potential of fusi-
form rust when selection pressure on the pathogen popula-
tion through deplovment of resistance genes increases the
frequencies of virulent alleles that arise in the population
from mutation. There are many examples of pathogen pop-
ulations adapting to overcome widely deployed major re-
sistance genes other crops. However. the selection pressure
acting on major genes for resistance to fusiform rust should
not be as great as that for host:pathogen systems in other
crops. The southern pines have only recently come under
domestication, and resistant genotypes are being deployed
in a mosaic across the landscape with natural stands. In fact.
only 15% of timberland was in pine plantations as of 1992
while 18% was natural pine (greater than or equal to 50%
pine) and 14% was oak-pine (between 25% and 50% pine)
(Sheffield and Dickson 1998). Unless these proportions
change dramatically. the selection pressure on the popula-
tion of the fusiform rust fungi may remain so low that the
number of generations required to overcome resistance
would be increased relative to other agricultural crop:rust
pathosystems. Furthermore. the complex life cycle of the
fusiform rust fungi with asexual multiplication only on the
oak hosts and no pine-to-pine infection may reduce selec-
tion pressure that would favor increases in virulence.

Mitigating Risk from Fusiform Rust

Will it be necessary to take steps to mitigate the risk of
fusiform rust infection in the future? Current deployment
strategies for both loblolly and slash pines are conservative
with respect to risk from fusiform rust. The risk is that the
frequency of virulence alleles in populations of fusiform
rust may change as a direct result of the selection pressure
applied (even though we expect it to be low) by the resis-

tance genes being deploved in particular host families or
individual genotypes/clones. Resistance to fusiform rust in
improved loblolly and slash pines currently being deployed
is likely to be based on a spectrum of resistance genes since
resistant genotypes have been identified by a combination
of screening at the USDA-Forest Service Resistance Testing
Center (RSC) against a broad spectrum (bulked inoculum)
of rust genotypes and field testing (Knighten et al. 1988).
Quantitative. or "minor gene resistance.” hikely arises from
gene effects that are small and additive and tends to be
effective against all strains of a pathogen population (Mc-
Donald and Linde 2002). Quantitative resistance is sensitive
to environmental conditions and more difficult to detect.
The same evolutionary forces that act to produce virulence
against major genes for resistance are likely to evolve to

 overcome resistance in quantitative resistance genes. How-

ever, this breakdown of resistance occurs more slowly.

If full-sib and/or clonal deployment strategies become
more prevalent. the genetic basis for rust resistance may be
narrower in the sense that only particular combinations of
resistance genes are being deployed. and hence breakdown
may be hastened. In fact. one current strategy for deploying
loblolly pines resistant to fusiform rust is to deploy half-sib
families with known major genes for resistance (Wilcox et
al. 1996). If the fusiform rust-southern pine pathosystem is
indeed a true gene-for-gene system. and assuming adequate
selection pressure on the fusiform rust fungi. tree breeders
are likely to face problems similar to those of breeders of
other crops.

Growers of other crops rely on several strategies for
deployment of resistance genes (McDonald and Linde
2002). The first, perhaps traditional. strategy is to deploy
different. single resistance genes when the pathogen over-
comes the current resistance gene under deployment. A
second strategy is to deploy resistance genes over a limited
time or area with replacement before the pathogen popula-
tion can evolve. As a third strategy. resistance genes may
also be combined into a single cultivar. i.e.. “pyramided” to
provide resistance to a spectrum of virulence genes. Re-
gional deplovment of different resistance genes to regions
where the pathogen has no. or low frequencies of virulence
genes is a fourth strategy. A final strategy is to deploy
mixtures of cultivars to reduce the selection pressure on
individual resistance genes.

Are these strategies appropriate for the pine:fusiform rust
pathosystem? The first strategy seems the least desirable of
the deployment strategies since it may lead to “"boom and
bust™ cyeles as it has in other crops. although the time frame
for these cycles may be much longer for fusiform rust. The
second strategy may be practical even though the southern
pines are long lived and resistance genes seem to be at risk
to adaptation by the fusiform rust fungi. However. most
fusiform rust infection takes place during the first 5-10
vears after plantation establishment (Griggs and Schmidt
1977) and alternating resistance genes every 3-5 years may
effectively reduce the selection pressure applied to the fusi-
form rust fungi population since each resistance gene would



be exposed for only a few years. The third strategy. pyra-
miding resistance genes. is probably impractical in the near
term because of the number of breeding cycles required to
combine resistance genes. If gene transformation of existing
pine cultivars becomes practical. then the method of pyra-
miding resistance genes would be more useful. The fourth
strategy is probably the best method available for deploying
resistance genes in the short term. Using some method to
determine where particular resistance genes should be de-
ploved. i.e.. in regions where the virulence gene for that
particular resistance gene is absent or in very low frequen-
cies. may be a practical method of deploving major resis-
tance genes quickly. The current use of this strategy by the
NCSU/Industry Fusiform Rust Program involves deploying
half-sib families with known major genes for resistance in
regions where previous field trials indicate that virulence
genes for that particular resistant gene are not prevalent
{Amerson 2002). It may be possible to achieve the same
result as the fifth strategy by deploying blocks of pine
cultivars with different major genes for resistance. In any
case. monitoring changes in the fusiform rust pathogen is
likely to be important in understanding how deployment
strategies impact the fusiform rust population.

Rust Monitoring Programs

There are two major rust race-monitoring programs for
cereal crops. The first is a natonal program that monitors
cereal rusts in the cereal-producing states in the United
States (National Rust Race Monitoring Program. USDA-
Agricultural Research Service (ARS) Cereal Disease Lab-
oratory. hup//www.cdl.umn.edwindex.htm. Aug. 21. 2002).
The second is an international program coordinated by
the International Maize and Wheat Improvement Center.
http://www.cimmyt.org/whatiscimmyt/AR00  2001/africa/
global/global.ht. Aug. 21. 2002. CIMMYT). Both programs
provide an “early warning™ system for cereal growers so
they can deploy cereal varieties with appropriate resistance
gene(s). Both programs use seeds of varieties with known
resistance to different rust virulence genes to monitor
changes in frequency of virulence genes or to discover new
virulence genes that the rust organisms may evolve to
overcome resistance genes. These programs also serve to
discover minor gene resistance that is a more durable form
of resistance. The USDA-ARS program samples rust dis-
eases in the field and screens them against a panel of
varieties with known resistance genes. The CIMMYT pro-
gram deploys punel(s) of varieties with known resistance
genes to nurseries around the globe where they are chal-
lenged by natural inoculum. Either or both approaches
might be used to monitor for changes in frequency of rust
virulence genes in loblolly and/or slash pines if such a
program becomes necessary.

Future Research

The implementation of a monitoring program for fusi-
form rust such as those described above for cereals depends
on identifying genes for resistance in the host and the
corresponding virulence alleles in the pathogen. Currently.
eight major genes for resistance have been identified in

loblolly pines using molecular markers (Amerson 2002).
Screening trials by the USDA-Forest Service. Southern
Institute of Forest Genetics. at the Resistance Screening
Center using multiple single-urediniospore isolates and 43
half-sib families suggest that there may be at least 13 major
genes for resistance in slash pines (Dr. C.D. Nelson. USDA-
Forest Service. personal communication). The prospects tor
finding more resistance genes in both loblolly and slush
pines appears to be high. and identifyving more major resis-
tance genes should receive high priority.

The presence of resistance genes in the host and viru-
lence genes in the pathogen must be inferred from the
presence of molecular genetic markers whose associations
with these genes have been demonstrated in research trials.
The need for such monitoring programs will not be known
until empirical trials demonstrate such a need or the lack of
it. or until the fundamental genetic system of the fusiform
rust:pine pathosystem is understood. It may be possible to
develop molecular markers to identify and track virulence
genes in the fusiform rust fungi population. If molecular
markers can be developed that are a part of the virulence
gene itself (so that there would be no recombination be-
tween the marker and the virulence gene) or if flanking
markers could be found that were very close to the virulence
gene (there would be very little recombination). then the
markers would be useful for developing an effective man-
agement strategy. If such markers can be developed.
changes in the frequency of virulence alleles in local rust
populations can be determined directly. and the appropriate
resistant host genotypes could be deployed. In theory. future
selection pressure put on the pathogen population due to the
deployment of particular resistant genotypes/genes would
no longer be an issue of concern, as the changes could be
directly monitored and the appropriate resistant materials
deployed.

Finally, the population genetic structure of the fusiform
rust pathogen and the factors that have shaped it should
receive further study since that knowledge will allow us to
infer the evolutionary potential of the rust fungi to over-
come resistance in the pine hosts. In particular, the effect of
the alternate oak host for fusiform rust on selection for
virulence on pines should be determined.

Summary

The current prevalent deployment strategies (half-sib
families in mixtures or single-family blocks) for loblolly
and slash pines are conservative with regard to risk from
both known and unknown risk factors.

If the strategy of deploying monogenic resistance con-
tinues to gain favor. and fusiform rust overcomes those
resistance genes. tree breeders mayv be forced to adopt
monitoring and deployment strategies similar to those used
by cereal breeders to mitigate the effects of fusiform rust.
The pepulation genetics structure of the fusiform rust fungi
suggests that it has a moderately high potential to evolve
and overcome resistance. However. mitigation of selection
pressures by a complex life cycle and buffering capacity of
the natural pine population may reduce this potential and
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hence lower the risk of resistance breakdown associated
with fusiform rust disease. Continued research into the
fundamental genetic basis of the pine:fusiform rust patho-
system will provide information that will improve risk as-
sessment and management strategies for manazing fusiform
rust.
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