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Introduction 

Ecological and biological processes can change from one state to another once a 
threshold has been crossed in space or time. Threshold responses to incremental 
changes in underlying variables can characterize diverse processes from dimate 
change to the desertification of arid lands from overgrazing. 

Simultaneously estimating the location of thresholds and associated ecological 
parameten can be difficult: ecological data are often 'noisy', which can make the 
identification of the locations of ecological thresholds challenging. 

We illustrate this problem using two ecological examples and apply a class of 
statistical models well-suited to addressing this problem. We first consider the case 
of estimating allometric relationships between tree diameter and height when 
the trees have distinctly different growth modes across life-history stages. We next 
estimate the effects of canopy gaps and dense understory vegetation on tree 
recruitment in transeds that transverse both canopy and gap conditions. 

The Bayesian change-point models that we present estimate both threshold loca- 
tions and the slope or level of ecological quantities of interest, while incorporating 
uncertainty in the change-point location into these estimates. This class of models 
is suitable for problems with multiple thresholds and can account for spatial or 
temporal autocorrelation. 

Key words: allometry, Bayesian, canopy gaps, change-point, dimate change, Pinus 
palustris, recruitment, threshold 
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Anthropogenic climate change is likely to transform many 
ecological communities over the next century. The mean global 
temperature has risen by c. O.G0C over the past century, and 
the rate of warming since 1976 has been greater than any 
other period during the last 1000 yr (Mann etal, 1998; 
Easterling et d, 2000; IPCC, 2001). Anthropogenic climate 
change is likely to continue at the same or an accelerated rate 
for the foreseeable future (Hansen et at!, 2005; Meehl et d, 
2005), with global temperatures predicted to rise by another 
1.4-5.g0C by the year 2100 (IPCC, 2001; Wigley, 2005). 

Climate is an important determinant of species' ranges: rising 
temperatures associated with anthropogenic greenhouse gas 
emissions are predicted to lead to species migration poleward 
or upward in elevation (Krajidr, 2004). Forest composition 
will shii  as populations of some species decline and new 
species become established as regional climates respond to 
global warming. Climate-linked range shifts have already been 
observed in a variety of taxa (walther rt al ,  2002; Parmesan 
& Yohe, 2003). 

Ecological systems may transition rapidly to altered states 
as climatic conditions cross critical thresholds, rather than 
slowly responding to changes in d i a t e .  Threshold responses 
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are characteristic of diverse processes from dimate change to 
the desertification of lands from overgrazing (van de Koppel 
et d, 1997; Higgins et al., 2002; Walker & Meyers, 2004). 
Threshold behaviors can result from nonlinear responses to 
incremental changes in underlying processes in which a 
gradual change in a process causes a disproportionate response 
once a critical threshold is reached (Maslin, 2004), such as 
might be caused by a positive feedback loop between an 
underlying driver and the system response (Hoffman etal, 
2002; Crespi, 2004). Transitions between ecological states 
may also occur along spatial gradients in resource availability 
or disturbance frequency Similarly, patterns of growth or 
allocation within individuals can shift once a critical age or 
size has been reached (LaDeau & Clark, 2001). In these cases, 
the systems display a threshold response in which the system 
switches states once a boundary region has been crossed in the 
underlying driver (e.g. resource level or age ofindividual). In 
this paper, we distinguish two threshold responses: an abrupt 
change in a rate of a process (Fig. la) or a jump in the level of 
a process (Fig. 1 b). 

Estimating the location of thresholds in space or time and 
corresponding ecosystem responses (e.g. change in rate or level 
of an ecological process; e.g. Figure 1) can be a challenging 
problem that is likely to become increasingly important as 
ecosystems respond to anthropogenic climate change. The 
noisy nature of ecological data tends to obscure the identifi- 
cation of thresholds, introducing potentially large uncertainty 

Ecosystem 
state 

Climate forcing 
Fig. 1 Conceptual model of abrupt climate change. An abrupt 
change can occur in the rate (a) or level (b) of a process once a 
threshold is crossed. An abrupt change in both the rate and level of 
a process could also occur. We do not specifically consider this case. 
but the models we present could be easily generalized to this case. 

(a) 
Threshold 

into estimates of their location. The subsequent estimation of 
ecological quantities depends on the location of the under- 
lying spatial or temporal threshold. A modeling approach is 
needed that simultaneously estimates the location of the 
threshold and the state of the system on either side of 
the threshold boundary, and that incorporates uncertainty in 
the threshold location into estimates of the state variables. 

We illustrate this problem using two examples from our 
own research in forest dynamics and apply a class of models 
for addressing these challenges. In the first example, we estimate 
the allometric relationship between tree diameter and tree 
height in longleafpine (Pinwpdmh.iJMill.) for use in a forest 
simulation growth model. Longleaf pine shifts its allometric 
patterns as a function of life-history stage, producing a 
distinctly different relationship between tree height and 
diameter as a function of tree size. Our objective is to estimate 
the relationship between tree diameter and height across life- 
history stages, which may necessitate estimating the location 
of change-points (i.e. thresholds, abrupt changes or disconti- 
nuities in this relationship). In the second example, we estimate 
tree seedling recruitment along a transect from closed canopy 
forest through gaps in the forest canopy created by the death 
of overstory trees. Light is often a limiting resource in forest 
understories (Canham, 1988; Pacala et al, 1994) and its avail- 
ability plays a central role in tree regeneration (Platt & Strong, 
1989). Estimating changes in seeding densities associated 
with canopy and gap conditions requires identification of 
the transition from low to elevated light levels in the forest 
understory. The identification of this transition can be diffi- 
cult in the absence of spatially extensive measurements of light 
levels because: (1) light gaps are offset towards the north in the 
northern hemisphere, with the degree of offset dependent 
on latitude, slope, and canopy height (Canham et d, 1990); 
and (2) the canopies of bordering trees are irregular and 
change with time as they grow into the light gap (Valverde & 
Silvertown, 1997). Our objective is to estimate the locations of 
the canopy to gap transition in light levels, and corresponding 
levels of seedling recruitment of red maple (Am rubrum L.) 
associated with gap and dosed canopy conditions. In this 
example, the analysis is further complicated by consideration 
of spatial correlation between adjacent measurements of 
seedling recruitment. Spatial correlation in seedling counts 
in adjacent quadrats can result from patchy soils, local seed 
sources or other spatially variable processes that effect seedling 
establishment. 

We address these estimation problems using a class of 
statistical models referred to as change-point models. We first 
use a simple change-point model to estimate the allometric 
relationship between tree height and diameter. We next 
employ a hierarchical change-point model to estimate the 
probable transitions from canopy to gap conditions with a 
hierarchical dependence between multiple transects and 
associated seedling densities in closed canopy and gap envi- 
ronments. Finally, we extend this model to allow for spatial 
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correlation between adjacent seedling counts. We fit these 
models using Bayesian methods. 

Data and model description 

Tree allornetry 

Platt et a1 (1988) collected extensive data on the demography 
of longleaf pine in an old-growth stand in southern Georgia. 
The sampling of longleaf pine was stratified into two general 
size classes; stems with a diameter at breast height (d.b.h.) 
> 2 cm and stems with a d.b.h. < 2 cm. For the larger size class 
(referred to as 'trees' or 'adults'), a random sample of 399 
individuals was selected across the 40 ha study site, and the 
height and d.b.h. ofeach sampled stem was recorded. Individual 
trees ranged up to 75.4 cm d.b.h and 244 yr of age. For the 
smaller size class, four I-ha plots were randomly selected out of 
a total of40 1-ha plots. All stems < 2 cm d.b.h. were censused 
in the four selected plots, resulting in a total of 222 juveniles. 
These juveniles consisted of individuals that had not yet 
reached breast height, c. 1.4 m, and so the diameter at the base 
and the height of their terminal bud were measured. 

Our objective is to predict the height of longleaf p' ~ n e  trees 
as a function of their diameter. Previous studies have used 
power relationships or other nonlinear model forms to relate 
tree height to diameter and usually estimate model parameters 
through linear regression on log transformed scales (O'Brien 
etuL, 199 5; Colbert etaL, 2002), but we model tree h+t 
using a linear model on unuansformed tree height and diameter. 
Whiie a single linear relationship is unlikely to be appropriate 
across life-history stages (e.g. seedling, sapling, adults), the 
relationship may be piecewise linear, meaning linear over 
restricted ranges of tree diameters where the transitions 
between these linear regions are change-points. Both the slope 
and the residual variance of the linear model are expected 
to vary among these different regions. Finally, we expect a 
discontinuity between the juvenile and adult size classes that 
reflects the offset introduced by measuring the diameter 
of these two size classes at different locations on the stem- 
juveniles are measured at their base while adults are measured 
at breast height. Our model must accdunt for all these aspects 
of the data. 

Model description Our change-point model is a piecewise 
linear regression with the transition points between adjacent 
linear regions unknown (Fig. 2). We allow for separate slopes 
and variances within each linear region, and estimate the 
offset introduced by measurement of stem diameter at 
different points on the stem. All parameters were estimated 
simultaneously using Bayesian methodology, allowing us to 
quantifl both the uncertainty in the change point locations 
and the parameters defining the species abundance by means 
of probability distributions. In the Bayesian paradigm, before 
seeing the current data, our knowledge ofthe model parameters, 

Tree diameter 
Fig. 2 Graphical illustration of our change-point model for tree 
allornetty. The model is piecewise linear with the change-point (cp) 
locations defining the separate linear regions. Within these regions, 
P,-P3 are the slopes, o,-a3 represent the standard deviations, and 
p, represents the intercept. We estimate a separate variance for 
each linear region. In addition, we estimate an 'offset' that represents 
the difference in stern diameter at the base and at breast height 
since stems were measured at alternative locations depending 
on stem height. 

including change-points, is described by a joint prior prob 
ability distribution. Once we have collected and modeled the 
current data through the change-point model's likelihood 
function, we revise our previous distributions to posterior 
distributions in light of this new information. These posterior 
distributions may then be used to make updated probability 
statements (i.e. inferences) about the parameters describing 
the species abundance as well as the change-point locations. 

We modeled the height, hi, of individual i as: 

P(hi I pi, T ~ )  - Normal(pi, zi) where pi is defined by the 
conditional: 
if (4 < cp, & individual, = juvenile) then {pi = Po + P,di} 

else if ((dbhi + k) < ql & individuali = adult) then 

{pi = Po + P1(dbhi + k)} 
else if (p l  < di < p2 & individuali = juvenile) then 

{pi = Po + (PI - P 2 ) ~ 1  + Pz'i} 
eke if (cpl < (dbbi + k) < p2 & individuali = adult) then 

{pi = Po + (PI - P2)p1 + P2(dbhi + 41 
else if (q2 < di & individuali = juvenile) then 

{pi = Po + (PI - + (Pz - P3)q2 + P3di} 
else if (q2 < (dbh, + k) & individuali = adult) then 

{pi = Po + (PI - P 2 ) ~ 1  + (P2 - P~)CPZ + 
P3(db4 + 4 1  

(4 is the diameter at the stem base; dbbi is the stem diameter 
at breast height; &is the offset that converts diameter at breast 
height to basal diameter for adult data, pl and cp2 are the first 
and second change-points; and the P parameters are 
regression coeffcients). The precision parameter T ~ ,  which is 
the inverse of variance, is given by the conditional: 
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if (di < cp, & individuali = juvenile) then {T,} model sensitivity. Our inferences were insensitive to variation 

eke if ((&hi + k) < p, & indivjddi = d U l t )  tbm {=,I in our diffuse priors. Of course, the priors may be selected to 

eke if (cp1 < di < cp, & individdi =juvenile) then it21 reflect results from previous studies or one's knowledge of 

eke if (rp, < (&hi + k) < rp, & indiuidZldli = adult) {r,) the i)mem and be lllowed to drive the inference lo a parer 

eke if (cp2 < di & individuali = juvenile) then it3] degree than in the current analysis. 
While expression (1) above is proportional to the posterior 

eke if (P2 < (''hi + k) EL ind'v'd~a'i = d u l t )  then distribution of the model normalizing the post- 

The posterior distribution of the model parameters is 
proportional to 

where X represents the observed data and 8 represents the 
prior parameter vector. The likelihood function is normal 
conditional on the mean and precision as indicated above. 
Bayesian analyses require a prior distribution over all 
unknown parameters. The parametric form of the prior 
probability distributions for the model components are: 

The form of these prior probability distributions was chosen 
both to facilitate computations and to represent beliefs 
regarding model parameters. Our general strategy was to employ 
diffuse or noninformative prior distributions, so that final 
inferences will depend solely or almost solely on the data. 
The exception to this was the uniform prior on k, which was 
constrained to lie between - 1 and 5 (cm). The prior parameter 
vector that we used, and that was assigned a priori, was: 

The normal prior on the P. coefficients, for example, is 
J 

centered at 0 with a small precision (equivalent to a large 
variance), which allows the Pj's to be primarily determined by 
the data. Nevertheless, it is sometimes possible that even 
'noninformative' prior distributions will have some iduence 
on the posterior distributions, so that the sensitivity of the 
model to the priors is assessed. We varied both the form of the 
prior distributions (for example, replacing the gamma priors 
on cp, and cpz with uniform priors over the range (0,80)) as 
well as the parameterization of the prior distributions to assess 

erior distribution requires integration of the expression over 
its entire parameter space. Although this is intractable, an 
alternative approach is to simulate a large number of random 
samples from the posterior distribution of model parameters, 
represented by a vector 0, and to use these random samples to 
make inferences about 0. We did this using Markov Chain 
Monte Carlo (MCMC) methods (Gelman et aL, 2003). With 
a large number of vectors of 0, drawn from the joint posterior 
distribution of 8, we can abstract any component parameter 
of interest and use the large number of simulated values to 
approximate the marginal posterior distribution of the parameter. 
We programmed our MCMC sampler in the open source 
language R and the code is available from the author. 

Seedling recruitment 

Beckage et d (2000) studied tree recruitment with respect to 
canopy gaps and presence of the understory shrub Rhodo- 
dendron maximum L. The research was conducted in mixed- 
oak forests at the Coweeta Hydrologic Laboratory located 
near Franklin, NC, USA (in the Southern Appalachians). The 
mixed oak forests are dominated by QarmprinusL., Quercw 
coccinea Muenchh., Qicerm rubra L., and Qarwcw velutina 
Lam., but Acer rubrum dominates the seedling bank. Much 
of the forest understory is dominated by R w 'muna ,  an 
ericaceous, evergreen shrub that occurs at all elevations in 
the Coweeta basin (Swank & Crossley, 1988). Rhododendron 
forms a dense subcanopy layer 3-7 m in height. Stem 
densities range from 5000 to 17 000 ha-' (Baker &van Lear, 
1998) and leaf area indices (W) range from approximately 
4.8 to 6.6. Stem densities in our plots were approx. 8900 ha-' 
with diameters most frequently ranging from 4 to 7 cm d.b.h., 
but sometimes > 10 cm d.b.h. 

Beckage et a1 (2000) created a series of 12 artificial gaps 
under two understory conditions: half of the plots had a dense 
Rhododendron understory, while the remaining plots lacked 
Rhododendron. Rhodoahdron has a patchy distribution at 
these sites, permitting experimental gaps (with and without 
Rhododendron) to be located in close proximity, thus allowing 
for consistent overstory composition, slope, soils and micro- 
climate. Up to five canopy trees were girdled to create each 
gap. Gaps were approx. 20 m in diameter (for expanded gap 
definition see Runkle, 1981) with standing dead trees and, 
thus, resulted in minimal disturbance to the understory. 

A transect comprised of 40 contiguous 1-m2 quadrats 
was established across each planned gap before its creation. 
Transeas included 20 central quadrats spanning the diameter 
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Seedling Transect 

First change at quadrat S, Second chaAge at quadrat T; 

Light Level 

of the gap and 20 outer quadrats beneath the surrounding 
canopy. However, the border between gap and canopy con- 
ditions is irregular, reflecting the canopy shapes of bordering 
trees so that all 20 central quadrats might not subtend the 
canopy gap (Fig. 3). Consistency of transect orientation is 
an important consideration in the present analysis because 
elevated light levels, offset toward the north side of canopy 
gaps in the northern hemisphere (Canham et aL, 1990), affect 
the expected distribution of change-point locations. Seven of 
the twelve transects were oriented in a general north--south 
direction and these were the focus of our analysis. Only three 
of these transects contained Rhododendron in their understory. 
Beckage et al. (2000) conducted annual surveys of tree 
seedlings in the transects in mid to late summer. Recruits that 
germinated in the year in which the census was conducted 
(i.e. seedlings) were distinguished from older recruits by the 
presence of cotyledons and a lack of terminal bud scale scars. 
Acer rubrumwas the only species with abundant seedlings that 
was widely distributed across transects. In the current analysis, 
we focus on seedlings of A. rubrum that occurred in the seven 
transects, identified above, in a single year (1997). 

Model description The Bayesian change-point model for 
seedling counts has two components: a model describing 
seedling abundance and a model describing change-point 
locations. The seedling model is a hierarchical Bayesian 
model, so that similar transects or portions of transects 
(e-g. with Rhododpndron, gap conditions, etc.) were united by 
higher levels of the model. This is the Bayesian analogue to 
classical random effects models. 

The hierarchical model can be described in three stages or 
levels. We represent the seedling counts in quadrats by a 

Fig. 3 (a) Layout of a typical experimental 
gap. The long axis of the transect was 
oriented in a north-south direction. The 
experimental gaps were designed so that 
the central 20 auadrats should subtend the 
canopy opening but the irregular shapes of 
the surrounding canopies make this unlikely. 
(b). The change-point model for a single 
transect. The first change-point occurs at 
quadrat Si for transect i while the second 
change occurs at quadrat Tc is the rate 
parameter of a Poisson distribution describing 
the seedling counts in canopy conditions 
while Af describes the rates in gap conditions. 

vector YSj, with subscript i designating the transect and j 
representing the quadrat within uansect i. At the first level of 
the hierarchy, seedling counts in transect i are assumed to be 
independent and to follow Poisson distributions with respective 
rate parameters kt and k: depending on whether the portion 
of the transect occurs under gap or canopy conditions (Fig. 3). 
The second level of the hierarchy links the hi's for similar 
conditions (e.g. gap vs canopy and Rhododendron vs non- 
Rhododrndron) across transects and assumes that the hi's follow 
a Gamma distribution. We choose the Gamma distribution 
because it is commonly used to represent variability in the 
means of Poisson random variates. This level allows for the 
'borrowing of strength' or the use of inbrrnation from separate 
sampling units at a lower level in the hierarchy to estimate a 
higher level parameter that spans across sampling units, which 
is an important advantage of hierarchical models. While the 
seedling counts in individual quadrats are independent Poisson 
variates, the means of these Poisson variables are assumed 
to be similar, but not identical, across transects. In general, if 
only a small amount of data are available for a particular YSj, 
then the parameter value for the mean level in the gap or 
canopy portion of the transect will be close to the mean level 
of the other similar transects, there being little evidence to the 
contrary. Conversely, if many data are available, the estimated 
mean will be dose to the mean of the data. With moderate 
amounts of data, the estimated mean will be a data-based 
compromise between the observed mean level and the overall 
mean levels of all similar transects. At the top level of the 
hierarchy the b-' parameter of the Gamma distribution is 
itself distributed as an Inverse Gamma. The hierarchical 
random effects model structure allows global inferences to 
be made on the two recruitment rate parameters for similar 
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transects while still allowing for individual transect parameters ~ ( s i  Ipj, = ... 20) - ~ d ~ i ~ ~ ~ ~ ( ~ ,  pj, j = 1 ,.. 20) 
to vary. Within groups of similar transects, inferences are 

P(Ti I p;, j = 21 ... 40) - Mdtinomial(n, p!, j = 21 ... 40) 
made through lambda stars, h*'s, which are the expected value I 

of a randomly selected lambda in that treatment combination '(pj 1 aj. j = ... 20) - Dirich1et(aj9 j = ... 20) 

group. Our seedling model is then P(pilai, j = 21 ... 40) - Dirichlet(ai j = 21 ... 40) 

P(Xi 1 2,) - Poisson(kg) 

P(X: I kc) - Poisson(kc) 
P(kg la,, bil) - Gamma($, bil) 

P(zc la,, b,-') - Gamma(a,, 6,-') 
P(bilIyg, 5,) - Inverse Gamma(yg, s ~ )  

P(b;'Iyc, sc) - Inverse Gamma(yc, sc)  

where the subscripts g or c indicate gap or canopy conditions, 
respectively. 

The parameters q, ag, yc, yg, 6, and % were assigned values 
a priori and determined the prior distributions of the seedling 
portion of the model. We used the same priors for both canopy 
and gap portions of transects allowing the prior parameter 
vector to be written as 0 = (a, y, 4. Our set, ep, of prior 

P 
parameters was (1.05,0.01,0.01). We explored the sensitivity 
of our inferences using two other prior sets: alternative prior 
set 1 (1.0, 0.01, 0.01) and alternative prior set 2 (12.0, 0.5, 
0.5). The prior specification was diffuse for all three prior 
sets, allowing the current data to play a dominant role in the 
final inference (i.e. the posterior predominately reflects the 
data with the prior exerting little influence). In fact, the prior 
sets carry the equivalent weight of 0.05, 0 and 11 seedlings, 
respectively. In the present case, the results from the three 
prior sets were very similar, indicating that they had little 
influence on the posterior distribution. 

We modeled each transect as having two change-points. In 
transect i, the first change-point occurs in quadrat S, and 
represents the unknown point where canopy conditions end 
and gap conditions begin (Fig. 3). Similarly, q is the quadrat 
where the second change-point occurs and represents the 
transition back h m  gap to canopy conditions. Si was modeled 
as following a multinomial distribution (psj, j = 1.. .20) where 
pSj is the probability of the change occurring in quadrat j. The 
prior probabilities for the vector pS were given a Dirichlet 
(asj, j = 1 . . . 20) distribution: the Dirichlet distribution is 
conjugate to the multinomial distribution, which facilities 
computation of the posterior distribution (Gelman e t d ,  
2003). The second change-point, q, was modeled in a similar 
manner. We set, a priori, the components of the vectors a, and 
a, to 11200 so that these priors were diffuse; their influence on 
the posterior distribution was equivalent to only 1/10 of a 
transect. It is apparent from our model description that we 
have constrained the first change-point to occur in the first 
half of each transect and the second change point to occur in 
the second halfof the uansect. Furthermore, we have, a priori, 
said that the change-point is equally likely to occur in any 
quadrat within this region. The change-point of our model is 
given by 

(Si and T' refer to the first and second change-points in 
transect i; 3 and aJ are the Dirichlet priors on the 
probabilities, p and p', of the multinomial distribution for the 
first and second change-points). 

We combined the Poisson and multinomial portions of our 
model to estimate the posterior distribution of all model 
parameters. The posterior distribution is proportional to 

P(hCi, hgi, a,, bc, ag, bg, 4,aj, pi, q, pi: +lX*) = 

P(X, Ih,,, hgi, Sit q )  * P(hci la,, bc) * P(ac) * 
P(bc I y,, 5,) * P(y,) * P(s,) * P(Agi lag, 6,) * P(ag) * 

We again estimated model parameters using MCMC, but in 
this case we sampled the posterior distribution using the freely 
distributed WINBUGS sofiware that generates samples from the 
posterior distribution of a user-specified model (Spiegelhalter 
et at!, 1995, http:llwww.mrc-bsu.cam.ac.uWbugs). 

Spatial correlation The model in the preceding section 
assumes conditional independence between adjacent quadrats 
within each transect. This assumption may be reasonable, 
since, given the mean values that apply to a pair of adjacent 
quadrats, the actual seedling recruitment within each quadrat 
may be independent from neighboring quadrats. Nevertheless, 
it is also possible that, for example, soils are more similar in 
adjacent areas within a transect compared with quadrats 
further away, so that some correlations may appear across 
adjacent quadrats, even given the overall mean level. There- 
fore, we extended our model to account for potential corre- 
lation in adjacent quadrats. The change-point model remains 
identical to that above, but we now allow correlations between 
seedling counts in adjacent quadrats by including a Gaussian 
Markov random field (GMRF) prior for random effects on 
the h across quadrats within a transect (Besag & Kooperberg, 
1995; Besag & Higdon, 1999). 

We modified the structure of the seedling model to 
incorporate the GMRF prior by incorporating a linear model 
for treatment effects that allowed for modeling of spatial 
effects, i.e. the zi's, of being in quadrat j: 

I 

l?(Xji 1 kj) - ~oisson(k~) 
= yB + zi 

I 

P(P, IT,) - Normal(0, zo) P(T, la,, bO) - Gamma(%, bo) 
P(Pc I .tc) - Normal(O,.t,) P(Pg 1 .tg) - Normal(0, T ~ )  
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(Y is the design matrix that codes for gap and canopy 
conditions as well as for transects; $ is the vector of regression 
parameters describing canopy, gap and transect effects). 
The transect effect is assumed to be random with mean 0 
and precision T ~ ,  where zo has a Gamma prior distribution (a 
hierarchical model structure). Our design matrix is not full 
rank but is nevertheless estimable using Bayesian methods. 
The prior vectors were given values of (%, bo) = (0.1,O. 1) and 
(T,, TJ = (1.0 x 10-~,1.0 x We placed a locally linear 
GMRF prior on 2;: 

( :] where 2;. = z + z: P(zj lz:,) - Normal Z:i, - 
1 r ;.I 

where the spatial effect of being in quadrat j depends on only 
quadrats immediately adjacent to the focal quadrat j. The 
spatial effects (is) model spatially structured residual variance 
in seedling abundance that remains afier the main effects (e.g. 
gaps, Rbodoctendron, transects) have been estimated. The prior 
on the precision parameter T: is 

P(T: la,, 6,) - Gamma(a,, 6,) 

with (a,, 6,) = (0.001,0.001). The diffuse specification of the 
prior on means that its estimated value will be primarily 
determined by the data. We fit this spatial model using the 
'car.normal' functionality within the GeoBUGS module of 
WINBUGS. 

Results 

Tree allometry 

Our two change-point model fit the observed data well, 
with the regression line and change-point locations bisecting 
the cloud of observed data points (Fig. 4b). The discontinuity 
created by the diameter measurements being taken alterna- 
tively at the stem base or breast height has been accounted 
for through estimation of an offset (i.e. 'k' in Table 1): The 
data points in Fig. 4b have been adjusted by k. The estimates 
of variance among the three change-point regions were very 
diierent, confirming the need to allow for separate variances 
(Table 1). Summary statistics for all model parameter estimates 
are presented in Table 1. We also fit a three change-point 
model to these data but there was no strong support for a 
third change-point, as shown by a flat likelihood and 
subsequent strong correlation between change-point locations 
and k in this model. 

0 20 40 60 80 

Diameter (crn) 
Fig. 4 Allometry of longleaf pine in an old growth forest. (a) Heights 
and diameters of individual trees. Stem diameter is measured at the 
base for sterns c 1.4 m in height and at 1.4 rn for all other sterns. 
Note the discontinuity this imposes on the plots of raw data. (b) 
Model fit with location of change-points (vertical dotted lines) and 
estimated tree height (solid line). Note that the discontinuity has been 
adjusted for in the model fit (data points have been adjusted by the 
parameter 'k' that estimates the difference in diameter between stem 
base and breast height). 

Table 1 Parameter editnates for the two change-point model of tree 
allometry 

Quantile 

Parameter Mean 

Estimates are based on 40 000 samples following a bum in of 10 000 
samples. 'Burn in' is the practice of discarding early Markov Chain 
Monte Carlo (MCMC) iterations to allow convergence to the target 
distribution before using samples to learn about model parameters 
(Gelman et at.. 2003). Although our model was parameterized in 
terms of precisions (inverse of variance), we report results in terms of 
variances for ease of interpretation. 

Seedling recruitment nonRbo&&ndron transects showed evidence of a strong gap 
effect (e.g. higher recruitment rates in the center portion of 

Our models captured the observed variability in seedling the transect) with a much weaker effect i n  the remaining 
counts across uansects (Figs 5 and 6). Three of the four transect (Fig. 5). All three of the Rhododendron transects 
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Fig. 5 The mean Vs or 'seedling recruitment 
rates' (solid lines) along with 95% credible 
interval (broken lines) for each 1 m2 quadrat 
(1-40) in the four transects that lack 
Rhododendron. The four transects are 
displayed in separate vertical panels. The 
open circles represent the observed seedling 
counts. The left column (a) display results for 
the nonspatial model while the right column 
(b) displays results for the spatial model. 

Fig. 6 The mean 2s or 'seedling recruitment 
rates' (solid lines) along with 95% credible 
interval (broken lines) for each 1 m2 quadrat 
(1-40) in three transectswith Rhododendron. 
The three transects are displayed in separate 
vertical panels. The left column (a) display 
results for the non-spatial model while the 
right column (b) displays results for the spatial 
model. 

0 1 0 2 0 3 0 4 0  0 10 20 30 40 

Quadrat 

0 10 20 30 40 0 10 20 30 40 

Quadrat 
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had higher recruitment rates in the central region of the 
transect where the gap was located (Fig. 6). The region of 
elevated seedling density was offset to the north in the 
Rhododendron transects, as expected in the northern hemisp- 
here. The seedling model that included spatial correlation 
captured much of the local variation in seedling density 
within transects outside of the main gap-canopy effects 
(Figs 5b and 6b). 

The expected seedling recruitment rate h* was greater in 
gaps compared with closed canopy conditions, with a pro- 
bability between 0.92 and 1 .OO depending on model and 
Rhodohdron presence (Table 2). The spatial model resulted 
in a higher probability of a gap effect than the nonspatial 
model: 0.99 compared with 0.92, and 0.97 compared with 
1.00 for nonRbodoa5ndron and Rhododendron conditions, 
respectively (Table 2). The number of seedlings was 2.8 times 
greater in gaps without Rbodoahdron compared with adja- 
cent canopy, but 5.4-7.4 times greater in gaps with Rhodo- 
dmdron. Despite the larger gap effect with Rhodohdron, 
seedling density was greater without Rhododmdmn by a factor 
of 2.6 (gap conditions) to 5.1 (canopy conditions). Seedling 
density was greater without Rhododendron regardless of 
canopy condition with probabilities ranging from 0.90 to 
0.98 (Table 2). 

Our estimates of seedling recruitment rate integrated across 
the uncertainty in change-point locations (Fig. 7). The 
change-point locations were better defined in the Rbodoh- 
dmn compared with the nonRhodo&ndron transects (Fig. 7a,c 
vs 7b,d). Most of the probability was distributed in narrow 
regions for both the first and second change-points in the 
Rhododrndron plots but was more diffusely distributed in 
the nonRhoLdendron plots. This result is consistent with the 
larger gap effect estimated in the Rhodoahdron plots (Table 2). 

Discussion 

biological processes, while also estimating parameters that 
describe that process on either side of the threshold. We 
were able to incorporate the uncertainty in our change-point 
locations into estimates of parameters of interest (e.g. slopes 
and variance of an allometric relationship, and recruitment 
rates of seedlings). We anticipate that this methodology will 
be particularly appropriate for modeling ecological responses 
to current and past global climate change. Anthropogenic 
forcing of the dimate system is increasingly expected to result 
in large nonlinear system responses as thresholds are crossed 
(CACC, 2002): increasing evidence suggests that ecological 
systems will display similar threshold responses (Higgins 
et aL, 2002; Maslin, 2004). The change-point methodology 
  resented here provides a technique for modeling these 
threshold processes. 

Tree allometry 

Our two change-point model captured the relationship 
between tree height and diameter for longleaf pine (Fig. 4b). 
We believe that the piecewise linear formulation of our 
change-point model is a biologically appropriate model for 
this process since the change-points reflect significant 
life-history events in longleaf pine. The first change-point, for 
example, represents the transition from the 'grass' stage during 
which longleaf pine juveniles experience growth in stem 
diameter and in their root system but little growth in stem 
height. This is an adaptation to frequent fires: the juveniles 
have dense tufts of needles (superficially resembling a grass 
clump) that protect their apical meristems from fire damage 
until they have stored sufficient energy reserves for rapid 
height growth. This 'bolting' strategy safely removes the apical 
meristem from the region in the understory where fire damage 
is most likely (Platt et d, 1988; Platt & Rathbun, 1993). The 
second change-point reflects the entry of the longleaf into 
the canopy, after which height growth slows with respect to - - 

Change-point models provide a methodology for concurrently diameter-growth. Once the stem transitions into the canopy, 
estimating the location of thresholds in ecological or height growth is less important as competition for light is 

Table 2 Results for seedling counts in gap and canopy conditions in the presence or absence of the understory shrub Rhododendron 

NonRhododendron (R) Rhododendron (F) 

Nonspatial model Spatial model Nonspatial model Spatial model 

P(h; > h: ) 0.92 0.99 0.97 1.00 
4.82 (1.65,12.9) - 1.83 (0.50,5.89) - 

a: 1.73 (0.60.4.69) - 0.34 (0.08,1.13) - 
Multiplicative factor - 2.84 (1.68,4.11) - 7.45 (2.48,21.5) 

Canopy Gap 
P(R > RC1 0.98 0.97 0.90 0.91 

hi and referto the expected recruitment rate of seedlings in gap or closed canopy conditions, while Rand R+ refer to the absence or presence 
of Rhododendron, respectively. The estimates presented are means while the values in the parentheses given the 95% credible intervals, based 
on 40 000 samples following a burn in of 10 000 samples. The 'Multiplicative Factor' represents the factor by which the number of seedlings 
found in quadrats is increased in gap relative to closed canopy conditions. 

Nnu Phytologist (2007) 174: 456-467 www.newphytologist.org 8 The Authors (2007). Joumal ampilation Q New Pbyologist (2007) 



New 
Phytologist 

I I 
Fig. 7 The probable locations of the first and 2 - I I 

second change-points for new (first-year) I 2 - I - 
seedlings along transects in 1997 estimated I I 

I I 
for (a) nonRhododendron plots using 2 -. 2 - I 

nonspatial model. (b) Rhododendron " I 

plots using nonspatial model. (c) I 

1 

nonRhododendron plots using spatial model 2 -. o! o - I 

and (d) Rhododendron plots using spatial I 

model. The first change-point is constrained I 

-. -. -. -, 
I 

to occur in the first half of each transect (left o o I 

of broken line) while the second change-point 
must occur in the second half of the transect. 3 -- 8 -. The height of the ban represents the 
probability of the change point occurring in 1 6 12 19 26 33 40 1 6  12 19 26 33 40 

a given quadrat. Quadrat 

reduced (i.e. the stem has captured a region of the canopy with 
unrestricted exposure to sunlight). We note that inspection 
of Fig. 4b suggests that an additional change-point may be 
justified in the diameter range of 60-70 cm, where height 
growth appears to cease (perhaps as a result of recurrent hurri- 
cane damage; Matt & Rathbun, 1993). There are currently 
insufficient data to support definitively calling this a change- 
point: the likelihood is flat and a third change-point tends to 
be placed at smaller diameters. One advantage of Bayesian 
methods is that we can use our own judgment to place a 
strong prior distribution on the location of the change-point 
in the region of 60-70 cm, forcing a change-point in this 
region. 

Seedling recruitment 

Our change-point analysis found strong evidence for an effect 
of both gaps and Rbohdendron on seedling recruitment. The 
density of seedlings was greater in gaps compared with closed 
canopy regardless of the presence of Rhododendron (Table 2). 
Seedling density was greater in areas outside of Rhohdendron 

in both gap and canopy conditions compared with areas 
lacking the shrub (Table 2). The change-point locations were 
more clearly identified in the Rhododendron transects than in 
transects without Rbohctendron (Fig. 7), which was consistent 
with a stronger gap effect, relative to canopy conditions, 
within Rhododendron transects (Table 2). Light levels are 
!generally much lower beneath R b o h h d r o n  than in forests 
lacking the shrub (Beckage etaL, 2000); our results suggest 
that wen modest increases in light lwels associated with small 
overstory gaps can increase seedling recruitment under very 
low light conditions, such as occur beneath Rhohdendron. 
The more equivocal identification of the change-point 
locations in areas without Rhohdendron may be because 
background light levels beneath the intact canopy in areas 
lacking Rhododendron were relatively high (Beckage e t d ,  
2000), which would tend to obscure the gaplcanopy 
boundary when the gap effect on light levels is not large. Our 
canopy gaps produced only modest increases in light levels 
because of their relatively small size and because of the 
presence of standing dead trees, which would tend to reduce 
increases in insolation (Beckage et aL, 2000). 

@The Authors (2007). Journal compilation Q Nnu PLytohgm (2007) www.newphytologist.org Nnu PLytohgm (2007) 174: 456-467 



Bayesian models 

We fit out change-point models using Bayesian methodology 
because of advantages associated with the Bayesian approach 
compared with dassical approaches. The Bayesian analysis 
easily allows inclusion of information from previous studies 
through the prior distribution (Gelman eta!, 2003). This 
provides a simple way of building on the results of previous 
work rather than basing a l l  inferences on the current data only 
Furthermore, while some change-point models are estimable 
using classical statistical methodology, extending these methods 
to more complex problems that are hierarchical or that incor- 
porate spatial autocorrelation can be problematic. Bayesian 
methods can easily accommodate a large class of complex 
models (Clark, 2005). Finally, the types of inferences available 
from Bayesian models are better able to address questions of 
direct scientific interest (Ellison, 2004). The results of Bayesian 
analyses are straightforward to interpret (i.e. they are pro- 
bability statements about model parameters conditional on 
the data and any available prior information, which is not the 
case in classical statistics). 

Change-points models have been used extensively in the 
statistical literature, but have not been commonly used in 
ecology. Edge detection methods have been used by ecologists 
to identify regions of rapid change; this is a similar objective 
to change-point analyses (Fortin & Drapeau, 1995). Ver Hoef 
(1996) presented a change-point model for vertical cover in a 
single transect through a grassland, and fitted the model using 
an empirical Bayes procedure. The methodology used here 
differs from this application in several aspects. Our transect 
model accommodates multiple transects by combining them 
into several similar groups and using a hierarchical model to 
combine information from across groups. Our Bayesian 
approach also avoids the practice of using the current data to 
estimate parameters of the prior distribution, advocated in 
empirical Bayes methods, but generally not accepted by 
Bayesians (Ver H o d  1996). Finally, we explicitly model spatial 
dependence between adjacent quadrats: these methods could 
also be used to model temporal dependence in time series data. 
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