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Abstract Two first-order forested watersheds (WS 80 and WS 77) on poorly drained pine-hardwood 
stands in the South Carolina Coastal Plain have been monitored since mid-1960s to characterize the 
hydrology, water quality and vegetation dynamics. This study examines the flow and nutrient 
dynamics of these two watersheds using 13 years (1 969-76 and 1977-81) of data prior to Hurricane 
Hugo (1 989) and nearly 10 years (1 990-1 992, 1996-99, and 2003-06) immediately after Hugo. WS 
80 remained as a control throughout the study period, whereas WS 77 underwent several treatments 
including prescribed burning, partial harvest, salvage logging and prescribed fire for red-cockaded 
woodpecker habitat management. Depending upon the antecedent moisture conditions, both the 
watersheds were highly responsive of rainfall events throughout the periods. Accordingly, annual 
outflows varied from 5% in 1981 to 59% in 1998 with an average of 22% of the annual precipitation 
for the control (WS 80) and from 9% in 2004 to 44% in 1991, with an average of 27% for the 
treatment watershed (WS 77). The coefficient of variation (COV) on WS 80 was higher (55%) 
compared to 36% for the WS 77. Annual rainfall variation was much lower (COV = 14%) than the 

The authors are solely responsible for the content of this technical presentation. The technical presentation does not necessarily reflect the 
official position of the American Society of Agricultural and Biological Engineers (ASABE), and its printing and distribution does not 
constitute an endorsement of views which may be expressed. Technical presentations are not subject to the formal peer review process by 
ASABE editorial committees; therefore, they are not to be presented as refereed publications. Citation of this work should state that it is 
from an ASABE meeting paper. EXAMPLE: Author's Last Name, Initials. 2006. Title of Presentation. ASABE Paper No. O6xxxx. St. Joseph, 
Mich.: ASABE. For information about securing permission to reprint or reproduce a technical presentation, please contact ASABE at 
rutter@asabe.org or 269-429-0300 (2950 Niles Road, St. Joseph, MI 49085-9659 USA). 



variation in stream outflows. Post Hugo average outflow from WS 77 increased relative to WS 80 
until 1992. By the regeneration period of 1996 reversal in outflow was noticed with the higher 
outflows on WS 80 than on the WS 77. While prescribed burning of WS 77 in a course of five years 
(1977-81) did not affect on stream outflows and chemistry, mastication in course of nine months in 
2001 followed by another prescribed burning of 84% of WS 77 on May 10,2003 seemed to have 
increased the outflows on WS 77 both in 2004 (64%) and 2005 (70%). Average nutrient 
concentrations were similar on both watersheds although there was a wide variability in NH4-N on the 
treatment watershed (WS 77) compared to WS 80. pH was slightly lower on the WS 77 (5.4) than on 
WS 80 (6.8). Both NO3-N and NH4-N concentrations were very low for both the watersheds, before 
and after Hugo, with organic nitrogen as the dominant factor on both watersheds. Phosphate was 
also very low (0.02 mg L-I, on average) on both the watersheds during both the periods. Hurricane 
Hugo substantially increased the nutrient loads primarily due to increase in outflows. Although data 
presented herein may serve as baseline information for assessing impacts of both the developments 
and natural disturbance in the region, further studies and analysis with additional data should be 
conducted to verify some results such as the reversal of flow pattern after the hurricane Hugo that 
may have changed the dynamics of regenerated vegetation after Hugo possibly affecting stream 
outflows via evapotranspiration (ET) on these humid coastal plain watersheds. 
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Introduction 

The low-gradient, forested wetlands of the Coastal Plain of the southeastern United States 
represent a unique eco-hydrologic system, yet there is a very little information available on the 
region's hydrologic and biogeochemical processes, flooding patterns, and water and nutrient 
balances. Long-term hydrologic monitoring can provide the information needed to understand 
basic hydrologic processes and their interactions with climatic variation, land use change, and 
other natural and anthropogenic disturbances. It also provides researchers with baseline data 
for evaluating responses, generating new scientific hypotheses, and testing eco-hydrologic 
models. For the southeastern Coastal Plain region, with its growing population, rapidly 
expanding development, and intensive timber industry, this information is crucial for the 
sustainable management of the region's water resources. 

Most of the lands in the southeastern lower coastal plain are drained by small streams, which 
are typically headwaters of black-water rivers or streams. They commonly begin as a minor 
swell or depressional area within broad wet flatwoods, pocosins, Carolina bays, or small 
depressional ponds, collecting excess surface water and gravitational water from the 
surrounding area into a channel. These streams are characterized by a low gradient streambed 
and side slopes, and relatively broad stream bottoms, which contribute slow surface drainage. 
Soils within the region often have clayey subsurface layers, which restricts internal drainage. 
Because of these physical features, headwater catchments in the southeastern lower coastal 
plain often contain forested wetlands (Harms et al., 1998). Accordingly, headwater watersheds 
may contain a mosaic of upland and wetland ecosystems, which enhances ecological function 
and values (Mitsch and Gosselink, 1993). 

The ecological functions and societal values derived from forested wetlands are dependent on 
hydrology. Hydrology regulates the formation of hydric soils and the occurrence of wetland 
vegetation (Skaggs et al., 1994). Through interactions with vegetation and soils, hydrology 
regulates ecosystem functions that eventually affect societal values that are derived from the 
wetland (Sun et al., 2002). Unlike the upland watersheds dominated by hillslope processes, in 
their natural state, hydrology of these watersheds is characterized by shallow water tables, 
which respond rapidly to rainfall and evapotranspiration (ET). Since the long-term annual 
rainfall of this humid coastal region is generally higher than the long-term annual ET, these 
poorly drained sites are normally wet. The main hydrologic functions of these watersheds 
draining the headwater streams are considered to be: (1) near surface or shallow subsurface 
water table, which drives most of the stream oufflows (as shallow surface runoff and drainage); 
(2) surface water detention that prevents flash flooding; (3) delayed discharge of surface- and 
subsurface-water which provides a steady water supply and improved water quality 
downstream. These hydrologic mechanisms control biogeochemical processes, support high 
biomass production, sustain diverse terrestrial, riparian- and aquatic-communities, and provide 
recreational opportunities. 

In this paper we examine the long-term hydrology (outflow processes) of two first-order forested 
wetland watersheds (WS 77 and WS 80) located at the headwaters of East Cooper River, a 
tributary of Cooper River draining to Charleston Harbor System in Charleston, South Carolina 
(Fig. 1). These watersheds were established by USDA Forest Service in mid-1 960's with an 
objective of studying water budget, rainfall-runoff processes, flooding patterns, and effects of 
rainfall on water table depth and soil moisture. Watershed 77 (WS 77) was initially established 
in November 1963 with a flow gauging station followed by the second watershed (WS 80) in 
October 1968. Young (1 968) in his water budget study for WS 77 showed that excess water in 
the form of runoff could be problematic in downstream flooding, and that there was no 
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dependable base flow generated from this undrained watershed. The watershed (WS 80) was 
created as a control in the paired system with WS 77 (treatment) with an objective of studying 
hydrologic and water quality (soils and stream chemistry) effects of prescribed burning on the 
poorly drained coastal plain soils (Binstock, 1978; Richter, 1980; Richter et al., 1983). These 
authors reported that prescribed burning would have only an insignificant effect on soil and 
stream chemistry. Monitoring of both of these watersheds was discontinued in early 1982 and 
was not continued again until November 1989 when Category IV Hurricane Hugo caused 
appreciable damage to the forests in the region in September 1989 (Hook et al., 1991). 
Although considerable efforts have been done since then to continuously monitor both the 
watersheds, flow data for the watersheds were not available for some periods between1 996 to 
2002. Soon after Hugo WS 77 was salvage harvested and WS 80 was not harvested. Both the 
watersheds now contain the vegetation that has naturally regenerated since after Hugo. 
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Figure 1. Location of two experimental watersheds (WS 77 and WS 80) and their monitoring 
stations within Santee Experimental Forest near Huger, SC (After Harder et al., 2006a). 

Sun et al. (2000) analyzed the outflows from WS80 for periods from 1976-1 980 and 1990 - Oct 
1992 and calculated an average annual outflow to precipitation coefficient of 0.30. For the near 
three-year period after Hurricane Hugo in 1989, which caused appreciable damage to the 
watershed, their results indicated an increase in annual outflows, which may be due to reduced 
evapotranspiration (ET) caused by fallen and damaged trees. Using 1989 to 1999 stream flow 
data from WS 80 and WS 77, Miwa et al. (2003) demonstrated that headwater stream flow was 
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highly responsive to rain events, and that headwater stream processes are regulated by rainfall 
intervals, antecedent soil moisture, vegetation, soil types, topography, and surface water 
storage. While Amatya et al. (2003) compared the hydrology of the control watershed with that 
of a drained pine forest in coastal North Carolina, Harder et al. (2006a) described its short-term 
water budget. Recently, Wilson et al. (2006) reported the increased stream outflows and 
nutrient export for three years after the Hurricane Hugo from the control watershed (WS 80). 

This study examines and synthesizes the results on the long-term outflow processes of these 
two first-order forested watersheds (WS 77 and WS 80) using data from 1964 to 1981 and 1990 
to 2005 during which watershed (WS 77) has gone into several anthropogenic treatments and a 
natural disturbance due to Hurricane Hugo (Table 1). No data was available from 1982 until 
after Hugo in 1989. 

Table 1. Chronology of activities that took place on the watersheds (WS 77 and WS 80), 

Year(s) 

1963 

1968 

1976 

1977 

1977-1 979 

1981 

983 

1989 

1990 

2001 

2003 

2006 

Description of studies/treatments/disturbances 

Watershed WS77 established as a treatment watershed 

Watershed WS80 established as a control watershed 

Water quality monitoring initiated 

20% of the watershed WS 77 burnt using prescribed fire 

60% of the watershed WS 77burnt using prescribed fire in course of three 
years 

Flow and water quality monitoring discontinued on both watersheds 

100% of the watershed WS 77 burnt using prescribed fire at various times 
in a period of five years (1 977-81) 

Hurricane Hugo damages 80% of forest in September 

Both flow and water quality monitoring reactivated in November on 
watersheds WS 77 and WS 80 

WS 77 was salvage harvested (entire vegetation harvestedlremoved); WS 
80 was non-salvage harvested (all roots, stumps, branches left intact on 
the watershed 

Secondary outlet unplugged reducing WS80 drainage area to 156 ha; 
Mastication (mowing) of understory vegetation occurred on WS 77 during 
the period of February to November. 

WS 77 undergoes prescribed burning on May 10; 

Thinning treatment of whole trees initiated in early July 



Site Description 
The study site is located at 33.15" N Latitude and 79.8" W Longitude within the Santee 
Experimental Forest, a part of the USDA Forest Service Francis Marion National Forest near the 
town of Huger in South Carolina (Figure 1). Both of these headwater watersheds (WS 77 and 
WS 80) drain the first order streams to Turkey Creek, a tributary of Huger Creek, which drains 
further down to East Cooper River, a major tributary of Cooper River forming the Charleston 
Harbor System. The monitoring of both the watersheds was discontinued in May 1982 and was 
restarted back in November 1989 after the Santee Experimental Forest and the surrounding 
area including these experimental watersheds experienced the full force of Hurricane Hugo on 
September 21, 1989. Over 80% of the trees and forest canopy was destroyed and nine long- 
term studies were prematurely terminated by this storm's passage (Hook et al., 1991). 
Common soils in the area are aquic alfisols or ultisols, which typically contain argillic horizons 
(SCS, 1980). These topographic and soil characteristics indicate a high surface water detention 
capacity and slow surface water drainage. The climate is mild and wet, with an average 
temperature of 18.3'C, and an average annual precipitation of 1370 mm (Harder et al2006). 
The preliminary annual water budgets and hydroperiods of these two watersheds for 1976-1980 
and 1990-91 have been described Sun et al. (2000), and for 1996-01 by Amatya et al. (2003). 

This first-order watershed (WS77) of1 55 ha area was established first in 1963 with the 
installation of a flow gauging station at its outlet on Highway 41 N (Fig. 2). The water balance of 
this watershed was first reported by Young (1968). Later this watershed served as a treatment 
watershed when the second watershed (WS 80) was established as a control. This watershed 
has received several silvicultural treatments over the past 40 years (Gilliam, 1983; Richter et al., 
1983; 1982; Binstock, 1978). This low-gradient watershed with elevations ranging from 9.98 m 
towards the northwest to about 5.8 m at the outlet (Miwa et al., 2003) drains into Fox Gulley 
Creek further down to Turkey Creek (Fig. 2). Soils on the watershed are mostly poorly to 
moderately drained sandy loam to clayey soils with seasonally high water tables (SCS, 1980). 
Soon after Hurricane Hugo, this watershed underwent a salvaged-harvest where any damaged 
or fallen trees profitable for timber were removed. Vegetation regenerated since then is 
comprised of loblolly pine, longleaf pine, and some bottomland hardwoods along the stream 
riparian bank. 

WS 80 is a 200 ha watershed established in 1968 with a flow gauging station as a control of the 
paired system with WS 77 as the treatment. In November 2001, a small part of the watershed 
in the northeastern corner was allowed to drain separately through a culvert reducing its size to 
only 156 ha. This is also a low-gradient watershed with elevation range from 4 to 6 m with 
topography yielding 0 to 3% slopes. The watershed is characterized by somewhat poorly to 
poorly drained soils. The soils are composed primarily of clayey and fine sediments influenced 
by seasonally high water tables. Before Hurricane Hugo, the vegetation was mostly old (> 80 yr) 
loblolly pine (Pinus taeda L.). After the hurricane, the watershed remained undisturbed with no 
timber including the fallen trees removed. The forest vegetation since then has regenerated with 
loblolly pine and hardwoods predominating. Detailed description of this site and field 
measurements and past studies are given elsewhere (Harder et al. 2006a; Amatya et al. 2005; 
Amatya and Radecki-Pawlik, 2005). 



Field Data Monitoring 

Rainfall 

Rainfall has been measured using only a weighing bucket (Gauge # 2) gauge located at Santee 
Experimental Forest Headquarter since 1946. Data from 1963 till 1990 were used from this 
gauge whenever available. Missing data were used from the nearby weighing bucket gauge at 
Lotti Road station (Fig. 1). There were four other manual gauges (# 2,3,4, and 5) in and 
around WS 77 and five manual gauges (# 1,20,21,22, and 23) in and around WS 80 that 
measured rainfall on a weekly to bi-weekly basis from 1964 till 1982 for estimating the spatial 
variability. Spatially averaged estimate using Thiessen polygon method (Dingman, 2002) was 
used for the annual rainfall for 1964-82 period on both the watersheds. Data from these gauges 
were not available after 1989 for the post Hurricane period. In 1990 automatic tipping bucket 
rain gauges, Met 05 on WS 77 and Met 25 on WS 80, were installed. However, data from a 
single automatic gauge on each watershed was used for the post-Hurricane years beginning in 
1990. An automatic tipping bucket rain gauge connected to the Campbell Scientific datalogger 
replaced the weighing bucket gauge at the Santee Headquarter Office in 1996. Data from this 
gauge was used starting in 1996. However the rain data from the study watersheds was used 
for the missing periods. All breakpoint data were processed to obtain daily and annual totals. 

Stream Flows 

Stream flow rates on watershed WS 77 have been estimated using measured stage heights 
upstream of a compound weir. The weir consists of a metallic 90' V-notch for a height up to 20 
cm from the V-bottom to measure low flow rates, after which it expands to 120' to a height of 30 
cm from the V-bottom. The weir above 30 cm is an 8 m wide, 140' concrete weir that measures 
large flow rates. The weir structure on the control watershed (WS 80) is similar to that on WS 
77, except that the top weir is a 10 m wide, horizontal weir for accommodating large event 
outflows. There is a stage recorder located in a concrete blockhouse located on right bank of 
each of the watershed outlets. All stage data prior to Hurricane Hugo and also from 1989 
to1995 were recorded in magnetic tapes using the Analog-Digital Recorder (ADR), which were 
digitized at USDA Forest Service Coweeta Hydrologic Laboratory. ISCO automatic flow meters 
were installed in 1996. Stage data have been collected in 10-minute intervals. Stage discharge 
relationships were developed by measuring the stage and corresponding velocities at each of 
the stream outlets in late 60's. These relationships that have been recently verified are being 
used to compute flow rates using the measured stage heights. 

Both watersheds have been continuously monitored using gauging stations (weirs and stream 
level recorders) since their establishment, except for the 1982-89 period. Also flow data for WS 
80 for November 1992 to December 1995 period have yet to be digitized from the old tape 
system. Similarly, the daily flow data from July 1999 to the end of December 2002 were either 
not available or there were no flows for most of the days due to the drought in South Carolina 
Kiuchi, 2002) and hence not included in the analysis. Data on the daily stream outflow 
measured between 1969-1 981 and 1990-2005 were analyzed for this study. Available 
measured oufflow rates were expressed in mean daily values, which were converted into area- 
based cumulative total depth. Metadata for flows for the Santee watersheds can be found at the 
HYDRO-DB wet site at http://www.fsl.orst.edu/climhy/hydrodb/hawest.htm.olosic 

Water Quality 

Weekly stream water quality samples were collected by grab sampling method between 1976- 
1982, 1989-1991, and 1992-1 994. The water samples were analyzed for pH, NO;, NH;, total 
N,  PO^^-, Cl-, K', Na', ca2', ~ g ~ ' ,  and so4'-. We herein briefly reported the findings from past 
studies and own results for post-hurricane Hugo effects (1990-94) on watershed WS 80. 



Data Analysis 
Rainfall data measured at the study sites were available for the entire period from 1964 till date. 
In this study we analyzed the rainfall from 1964 till 2005 to examine the annual and seasonal 
variability. Data from 1964 till 1981 were also examined for the spatial variability. 

We analyzed the long-term stream outflow data from 1964 till May 2006 breaking them down for 
six specific periods of interest as shown in Table 2. Stream outflow data was not available from 
November 1981 till October 1989. Similarly, data from November 1992 to 1995 could not be 
analyzed, as the data were not yet available for the control watershed (WS 80). Part of beaver 
affected data in the summer of 2003 (Harder et al., 2006a) was also omitted in this study. 
Results for the first three periods (1964 to 1981) were summarized based on the past studies. 
Effects of the treatments were analyzed using a paired watershed approach. (Gilliam, 1983) 
reported that the watershed WS 77 followed an operational intensive forest management 
treatments during 1977 to 1981 from prescribed burning (Table 2) to clear-cut harvest in a part 
of the watershed including phosphorus fertilization and planting of loblolly pine seedlings. 

Table 2. Periods for analysis of rainfall and stream outflow data 

Annual runoff coefficients (ROC, ratio of annual outflow and rainfall) were computed to compare 
rainfall normalized stream outflows for both the watersheds. We also analyzed the annual and 
monthly stream outflows between two watersheds to establish relationships for the calibration 
period (1969-76). Monthly and annual stream outflows were then compared for each of the four 
(1 977-81, 1989-92, 1996-98, and 2002-06) disturbance and regeneration periods. Daily and 
cumulative outflows for both the watersheds were compared using graphical and tabular 
analysis for each of these periods. Effects of these four treatments were analyzed using both a 
double mass curve as well as regression methods. Relationship of rainfall (R) and storm 
outflow (Q) was examined for several storm events for these five periods. Although Q is highly 
influenced by R, characterizing R and Q relationship is difficult since many other factors, such 
as multiple storm events, complicate a storm outflow hydrograph. In order to simplify the R-Q 
characterization following criteria were used to identify such events for analysis: 
I. A stormflow event consisted of a single peak exhibiting normal rising and falling limb trend. 

Therefore, a stormflow may include multiple rains as long as a rain does not disrupt normal 
stormflow pattern. 

Period 

1964 -1968 

1969 - 1976 

1977 - 1981 

1989 - 1992 

1996 - 1998 

1999 - 2001 

2002 - 2006 

Description of studies/treatments/disturbances 

Water budget of watershed WS 77; Hydrologic processes 

Calibration period; Relationship of WS 77 and WS 80 

Treatment period: Prescribed burning effects 

Hurricane Hugo effect: Loss of 80% forest canopy 

Effects of natural growth of forests after Hugo 

SC Drought; Not analyzed due to littlelno outflows or missing data 

Effects of mastication and understory burning 



2. Beginning of a stormflow is sufficiently low, so that no apparent influence from previous 
storm event is evident. This means that a stormflow event may be excluded if significant 
rain occurs within 36 hours prior to the flow. 

3. Outflow volume on falling limb has to drop to, at least, close to the beginning value, so that 
simple stormflow-baseflow separation line can be drawn. This means that stormflow events 
during a wet period (multiple rain and peak flows) are most likely excluded. 

4. Only a rain event with an antecedent moisture condition producing a stormflow for both 
watersheds was selected for comparison purpose. 

Results and Discussion 
Annual rainfall 

Annual rainfall at the study site for the years 1964 to 2005 is presented in Figure 2. Rainfall 
varied from as much as 1942 mm in 1994 to as low as 969 mm in 2004, with an average of 
1396 mm for the 42 years period. The coefficient of variation was 16%. Rainfall was below 
average in the years 1999, 2000, and 2001, consistent with the drought recorded in entire State 
of South Carolina (Kiuchi, 2002). According to that report, 2001 was the driest year with a very 
little stream oufflow. Although the drought was broken in late 2002 that followed 2003 with the 
above average rainfall, year 2004 again recorded the lowest rainfall (969 mm). 

In general, months of January and March in the winter and summer months from July to 
September were wetter months. February, May, and November are relatively dry months. 
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Figure 2. Measured annual rainfall at the Santee Experimental Forest Headquarters. 

An example of spatial variability of rainfall on the watershed (WS 77) is presented in Table 3 
with their arithmetic average and distribution for the 1967-83 period. Data in Table 4 represent 
a comparison of arithmetic average and Thiessen's average from all five gauges for each year. 
Aerial annual rainfall using arithmetic average was only slightly lower than the Thiessen average 
in most of the years. The variation among gauges in each year was very small with an average 
coefficient of variation (C.V.) of just 3% (Table 4) compared to the variation within years at each 
gauge with an average C.V. of 12% (Table 3). However, the difference between gauges was 
recorded as large as 155 mm in 1979 (Table 4). Most of the large differences between gauges 
exceeding 100 mm occurred for the years with above average rainfall. Although these data 
demonstrate that on an annual basis using data from a single gauge may introduce errors in 
rainfall of as much as 8% compared to using aerial average from five gauges for this relatively 
flat coastal watershed, larger errors may exist for temporal scales of months and events. 



Table 3. Average annual rainfall and their distribution for each of the five gauges on watershed 
WS 80 for 1 967-1 983 period. 

Max-Min 
Difference, 

mm 

596 

613 

Gauge 

1 

20 

Table 4. Annual rainfall using arithmetic average and their distribution for five gauges. Average 
is also compared 

YEAR 

1967 

1968 

1969 

1970 

1971 

1972 

1973 

1974 

1975 

1976 

1977 

1978 

1979 

1980 

Maximum 
Rainfall, 

mm 

1711 

1795 

Average 
Rainfall, 

mm 

1359 

1429 

to the 

Average 
Rainfall, 

mm 

1178 

1238 

1448 

1386 

1720 

1189 

1487 

1404 

1432 

1493 

1215 

1206 

1563 

1350 

Standard 
Deviation, 

mm 

168 

170 

Max-Min 
difference, 

mm 

46 

124 

52 

114 

114 

150 

1 54 

88 

95 

110 

74 

89 

1 55 

84 

spatial average 

Standard 
Deviation, 

mm 

20 

48 

20 

47 

46 

62 

60 

34 

37 

46 

28 

32 

64 

32 

Coefficient of 
Variation, 

% 

12 

12 

Minimum 
Rainfall, 

mm 

1115 

1182 

by Thiessen 

Coefficient of 
Variation, 

% 

2 

4 

1 

3 

3 

5 

4 

2 

3 

3 

2 

3 

4 

2 

polygon 
Thiessen 
Average 
Rainfall, 

mm 

1189 

1247 

1450 

1383 

171 5 

1189 

1491 

1399 

1440 

1503 

1217 

1200 

1563 

1359 

method. 

Minimum 
Rainfall, 

mm 

1156 

1195 

1431 

1347 

1680 

1148 

1434 

1369 

1401 

1461 

1177 

1168 

1494 

1312 

Maximum 
Rainfall, 

mm 

1202 

1319 

1484 

1461 

1795 

1298 

1 589 

1457 

1495 

1570 

1250 

1257 

1649 

1396 



Annual Rainfall, Annual and Monthly Stream Oufflows 

1964-1968 period 

Based on a three-year (1 964-1 966) data the Young (1 968) reported that the stream oufflow on 
this poorly drained watershed is influenced quite strongly by the moisture storage capacity of 
the soil prior to rainfall. Two of their three years had higher than average rainfall (Fig. 2) and 
20% of its annual rainfall was calculated as storm outflow. The runoff coefficient for the four- 
year ( I  965-68) period varied from 16% in 1968 with 1225 mm of rainfall to 33% in 1966 with 
1554 mm of rain, with an average of 24%. 

1969-1976 period 

Measured annual stream outflows for the 1969 to 2005 period (except for 1982 to 1989, 1993 to 
1995 and 1999 to 2002) are compared for the watersheds WS 77 and WS 80 in Figure 3. 
Annual precipitation and stream outflows for the 1964 to 1976 period was first analyzed and 
reported by (Binstock, 1978). The author reported the average annual precipitation of 1369 mm 
for the 1964-76 period using a Thiessen method with spatially distributed gauges around WS 
77. This was about 4% lower than the average of 1424 mm obtained using a single gauge data 
at Santee Experimental Forest station (Fig. 2). Stream outflow averaged 380 mm during the 
1964-76 for the treatment watershed WS 77 with an average annual runoff coefficient of 26.7% 
and 295 mm for the period of 1968-76 for the control (WS 80). The annual outflow in 1977 
(Rain = 1274 mm) measured for WS 77 after 20% burning in early 1977 was 180 mm (ROC = 
14%), which was 28% higher compared to 141 mm (ROC= 11%) for the control (WS 80). 

For the calibration period of 1969-76, the treatment watershed (WS 77) consistently yielded 
higher annual oufflows than the control (WS 80) with an average increase of 41%. Annual 
runoff coefficient (ROC) varied from 15.8% in 1972 to 27.8% in 1971 with an average of 19.8% 
for the control watershed (WS 80) compared to 20.8% to 41.4% with an average of 27.9% for 
the treatment watershed (WS 77). A strong relationship between annual outflows of these two 
watersheds (Flow77 = 1.42 Flow80; R~ = 0.93, p< 0.001) was obtained. Richter (1980) noted 
several possible reasons for this difference in oufflows such as differential deep seepage, large 
vegetational differences affecting ET, incorrect hydrologic boundaries including flow calibration. 
Richter (1 980) and Gilliam (1983) also found that the difference in outflows between WS 77 and 
WS 80 increased with outflows and WS 80 exceeded the WS 77 flow only in rare occasions. 
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Figure 3. Measured annual stream outflow for watershed WS 77 and WS 80 for he 1969-1981, 
1990-92, 1996-98, and 2003-05 periods. 



Monthly outflows for both the watersheds are compared for the 1969-76 period in the top panel 
of Figure 4. Stream outflows were consistently higher by as much as 127 mm in August of a 
very wet year 1971 (rain = 1776 mm) for WS 77 than on WS 80. Data showed that the increase 
was larger for higher oufflows than for the smaller values, possibly due to increased surface 
runoff on this watershed compared to the control (WS 80). This is also indicated by the 
regression relationship (Flow77 = 1.38 Flow80 + 0.76; R* = 0.90; p<0.001) (Fig. 5). However, 
there were no outflows on both the watersheds during some months of dry season (May to 
October). The average monthly outflow for this period was 34 mm on WS 77 compared to 24 
mm for the control (WS 80). 
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Figure 4. Measured monthly stream outflow for watershed WS 77 and WS 80 for he 1969-1 981, 
1990-92, 1996-98, and 2003-06 periods. 
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Figure 5. Measured and regression lines of monthly stream outflow for watershed WS 77 and 
WS 80 for the 1969-76 (calibration), 1976-1 981, 1990-92, 1996-98, and 2003-06 periods. 

7977-7987 period 

Annual outflows for the two watersheds from 1977 to 1981 (Fig. 3) indicated a similar pattern as 
in the calibration years of 1969-76 with higher oufflows for the watershed WS 77 that undewent 
various treatments of prescribed fire and harvest during this period (Table 2). But the average 
annual outflow of 267 mm on the treatment watershed (WS 77) was only 35% higher than 200 
mm for the control (WS 80), indicating that the 28% increase in ROC for 1977 immediately after 
20% burning (Binstock, 1978) had no effects on annual stream outflow. The average ROC of 
19% on the treatment watershed (WS 77) was only 35% higher than that of 14% for the control 
(WS 80). The lower values of slopes obtained for the regression line of the annual oufflows 
(Flow77 = 1.29 Flow80; R~ = 0.96, p<0.001) (not shown) as well as the monthly outflows (slope 
= 1.21) in this period compared to the calibration (slope = 1.38) (Fig. 5) also confirm this. These 
treatment effects on stream outflows were not as significant perhaps because the treatments did 
not occur at one time, rather occurred periodically throughout the five-year (1977-81) period. 
Moreover, the rainfall during this period was relatively lower (average = 1323 mm) (Fig. 2) 
compared to the 18-year (1 964-81) average of 1396 mm. This resulted in much reduced 
outflows with less than 15% ROC in three (1 977, 1978, and 1981) out of five years. On a 
monthly basis, there were many months without oufflows during this five-year period (Fig. 4, 2nd 
panel), with an average monthly outflow of 23 mm for WS 77 compared to only 17 mm for the 
control (WS 80). 

Gilliam (1 983) reported nearly an 8% increase in water yield as a result of forest cutting in one 
single compartment of the watershed. The author also found nearly identical percent change 
(pre- to post-harvest) between WS 77 and WS 80 in low and intermediate flow classes. Their 
data showed 35% increase in weekly post-harvest outflows for the treatment watershed WS 77 
in the 1.0 liters sec-I ha-' week-' class compared to only 17% increase for the control (WS 80), 



indicating that tree harvesting primarily affects higher (peak flows) and not lower base flows. 
The outflows from WS 77 returned to pre-harvest levels within one-year after cutting, probably 
due to the result of rapid re-establishment of herb layer vegetation with consequent reduction in 
surface runoff and recovery of ET rates to near pre-harvest levels. Amatya et al. (2006) found 
similar results for the peak flow rates but they reported six years of time period before the 
hydrology of a harvested pine forest returned to base line levels in eastern North Carolina. 

The daily cumulative outflows for the control (WS 80) and the treatment (WS 77) watersheds for 
all five treatment periods are compared using double mass curves (Figure 4). The cumulative 
outflow curve for the calibration (1 969-76) period (thick black) has the steepest slope much 
above 1:l line (dotted green) indicating a much larger rate of response from the treatment 
watershed (WS 77) than the control. The fact that the curve for this treatment (thin pink) during 
1977-81 fell below the calibration period (blue color) but above the 1:l line still shows higher 
oufflows from WS 77 than WS 80 but with a reduced rate of increase than during the calibration. 
This clearly indicates that the treatments during this period had no effects on stream oufflow. 
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Figure 6. Double mass curves for watershed WS 77 and WS 80 for five different treatment 
periods (1 969-76, 1977-81, 1989-92, 1996-99, and 2003-05). 

1989-1992 period 

The period of 1989-92 was a post Hurricane Hugo period when vegetation canopy on both 
watersheds were damaged badly by hurricane-force winds. The annual outflow for the 
treatment watershed that was salvage harvested varied from 385 mm in a relatively dry year 
1990 (rain = 1 122 mm) to as much as 594 mm in a relatively average year 1991 (rain = 1352 
mm) with an average of 483 mm (Figs. 2 and 3). Accordingly, the annual ROC varied from 33% 
to 44% with an average of 37%. Similarly, the ROC for the control watershed (WS 80), which 
was not salvage harvested varied from 23% to 32% with an average of 28%. Compared to the 
calibration period (1 969-76), the average annual ROC increased by 33% and 43% for the 
treatment (WS 77) and the control (WS 80) watersheds, respectively. Sun et al. (2000) also 
made similar observations. This increase in oufflows was attributed to the decrease in 
evapotranspiration (ET) as a result of loss of about 80% forest canopy due to Hurricane Hugo. 



The monthly outflow pattern was similar to the previous periods with higher outflows on WS 77 
compared to the control (Fig. 4, 3rd panel). Most of the earlier months in 1990 had low or zero 
outflows. The fact that the post-Hugo slope of regression line (1.41) of monthly outflows 
between these two watersheds was only slightly higher than that (1.38) for the pre-Hugo years 
(Fig. 5) indicates that the increase of the flow rates on WS77 was slightly higher than that on 
WS 80, which may well be insignificant. The double mass curve in Figure 4 shows that the rate 
of increase in outflows on WS 77 compared to WS 80 for this period was lower than during the 
calibration. For example, the cumulative outflow of 1527 mm on WS 77 in this three-year period 
(1 990-92) was almost the same as the total of 1524 mm for the first three-year of the 1969-76 
calibration period whereas the oufflows from WS 80 was 1178 mm in this period compared to 
1005 mm for the first three-year of the 1969-76. This might be perhaps explained by faster rate 
of vegetation (pine trees) recovery on WS 77, which was salvage harvested. Miwa et al. (2003) 
also reported that the differences in daily peak flow between the two watersheds decreased by 
1992, perhaps due to a result of vegetation recovery on WS 77. A closer look at the monthly 
outflows (Fig. 4) also shows this trend with higher outflows on WS 80 than on WS 77 for values 
below 50 mm. A recent study conducted by Wilson et al. (2006) to examine the post-hurricane 
effects of Hugo on the outflows and nutrient export from the control watershed (WS 80) showed 
similar results. Five years (1976-81) of data eight years prior to and five years (1989-94) 
immediately after the hurricane were used as pre- and post-disturbance data, respectively, for 
the evaluation. It was concluded that the post-hurricane annual increase of as much as 133 mm 
outflow (or 44 %) at least up to three years after the hurricane was most likely due to the loss of 
healthy vegetation canopy and the subsequent decrease in evapotranspiration. Data indicates 
that the system studied herein recovered much faster after its salvage harvesting than some 
upland watersheds in western North Carolina (Sun et al., 2004). 

I 7996-7999 period 

All years, except for 1996, had higher rainfall than the average in this period (Fig. 2) and 
especially 1997 had the highest rainfall (1 51 2 mm). Surprisingly, annual outflows shown in 
Figure 3 for this period show a reverse trend from the previous periods with the control 
watershed (WS 80) yielding consistently higher outflows than the treatment (WS 77) for all three 
years. Accordingly, the annual ROC for WS 80 in 1997 and 1998 were 43% and 59%, 
respectively, compared to only 35% and 40% for the treatment (WS 77). However, 
unfortunately, data for the control watershed (WS 80) from November 1992 to 1995 have not yet 
been available for examining when this reversal, if any, might have occurred. Furthermore, data 
for 1996 was not complete with only 233 days for WS 77 and 249 days for WS 80 as seen from 
the monthly plots in Figure 4 (4th panel), and hence not included in annual ROC calculation. We 
also speculate that data for four large events that occurred on WS 80 in February and March of 
1998 (La Nina effects) with much higher outflows than the rainfall amount might have been in 
error contributing to the very high ROC of 59% for that year. Monthly outflows were almost 
consistently higher on the control (WS 80) than the WS 77 as shown by the difference of 
monthly outflows between the two watersheds in Figure 7. This was also evident from the 
regression slope of 0.78 compared to 1.38 for the 1969-76 for the calibration and 1.40 for the 
post-hurricane period (Fig. 5). The cumulative mass curve in Figure 6 clearly demonstrated the 
reversal of flow response between these watersheds with the curve well below the 1:l line. We 
speculate that the vegetation on WS80 that was not salvaged after Hugo had more hardwood 
stands left than on WS 77 that was salvage logged and had large areas of immature pine trees. 
We showed earlier that in later part of 1989-92 period oufflows from the control (WS 80) was 
tending to be higher than from the treatment (WS 77) after the effects of Hugo perhaps due to 
faster recovery of pine trees with increased ET rates on the treatment watershed (WS 77). 
Past studies have shown that forests with pine trees have increased ET rates than those with 
the hardwoods (Swift et al., 1975). However, for an accurate determination of effects of 



recovery of vegetation since after Hurricane Hugo on both of these watersheds, data for the 
1992-95 period must be closely examined possibly together with ground water level data. 

2003-2005 period 

Rainfall amount of 1720 mm recorded in 2003 was well above average whereas the year 2004 
recorded below average rainfall of 969 mm (Fig. 2). Year 2005 also recorded above average 
rainfall of 1505 mm. However, because of a prolonged period with reduced rainfall from 
October 2003 to early spring of 2004 (Harder et al., 2006), annual outflow in 2004 was only 89 
mm from WS 77 and 73 mm on the control (WS 80) (Fig. 3). Estimated annual outflow for the 
control watershed (WS 80) in 2003 was 784 mm yielding a ROC of nearly 46%. But the outflow 
data for 2003 were not shown for both the watersheds as the data for the control were not 
complete for the whole year, as beavers affected flow measurements from May 15 to 
September 30. This was also the period with large outflows due to very wet rain events (Harder 
et al., 2006). The trend of outflows with higher values from the control watershed (WS 80) than 
the treatment watershed observed in 1996-99 period was still persisting from January to April 
2003 just before the prescribed burning was conducted on May 10, 2003 (Fig. 4). No data from 
July 1999 to September 2002 was available either due to drought (Kiuchi, 2002) or missing data 
(Fig. 7). Sporadic data available from October 2002 to December 2003 also indicated higher 
outflows on WS 80 than on WS 77. This indicates that the effects of mastication (mowing of 
understory vegetation), if any, performed during the course of February to November 2001 had 
already diminished by late 2002 due to regrowth of the vegetation. The outflows from October 
to December in 2003 were very small on both the watersheds but the trend was still similar to 
early 2003 with higher values on WS 80 than on WS 77 (Fig. 4). However, both the monthly 
and annual outflow data for 2004 and 2005 (Figs. 4 and 5) showed opposite flow pattern again 
similar to that observed before (1 969-81) and immediately after Hurricane Hugo (1 989-92), 
indicating possible effects of burning on reduction of ET. This reversal trend is even more 
clearly depicted in Figure 7 with the plot of difference in monthly outflows between WS 80 and 
WS 77 for the 1 996-06 period. 

Figure 7. Double mass curves for watershed WS 77 and WS 80 for five different treatment 
periods. 
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As a result the measured annual outflows in 2004 and 2005 were 56% and 70% higher than the 
expected values obtained using the relationship (with zero intercept) found with data from the 
regeneration period (1996-99) (Fig. 5). The substantially higher regression slope of 1.23 for this 
period compared to 0.78 for the regeneration period (1 996-99) also supports this result (Fig. 5). 
The double mass curve indicates a pattern of cumulative flow relationship very different from the 
1996-99 period with all data lying almost along I :I line (Fig. 6). However, no effects of burning 
on annual oufflows was found when compared with calibration relationship from 1969-76 period 
before the Hugo. This observation again depends upon the reality of the flow relationship found 
between these two watersheds for the 1996-99 period. 

Event total rainfall and stream outflow 

During the large storms Young (1968) found as much as 70% of the rainfall lost to storm 
outflow, and runoff values between 50% -70% of rainfall were not unusual. These stream flows 
occurred when the water table was near the soil surface. On the other hand rain storms as 
large as two inches have produced no storm-flow on the watershed when the water storage 
potential of the soil was high prior to rainfall. Their results also showed that excess water in the 
form of runoff could be problematic in downstream flooding, and that there was no dependable 
base-flow generated from this undrained watershed. 

Two examples of storm event stream outflow and rainfall relationships using data from single 
peaked events and the fitted regression lines for those data for the control (WS 80) and 
treatment (WS 77) watersheds are presented in Figure 8 for pre- and post-Hugo periods. 

200 

150 
E 
E 
Y 

8 
5 
g 100 

i! 
CI 

f 
3 

50 

0 
0 50 100 150 200 

Event total rainfall (R, mm) 

200 

- 150 
E 
E 
V 

g 
E z 100 - 
3 
CI 

Q) 

3 
50 

0 
0 50 1 00 150 20C 

Event total rainfall (I?, mm) 

Figure 8. Event outflow versus event total precipitation for selected single peak stormflow 
events for watershed WS 77 and WS 80 for 1969-76 and 1989-92. 

As observed in previous sections, the response of WS 77 to the rainfall was 82% higher than 
that for the control watershed (WS 80) for the pre-Hugo calibration period (1969-76) as shown 
by the regression slopes of 0.51 for WS 77 and 0.28 for WS 80. The storm response increased 
dramatically on both watersheds for the post-Hugo period (1 989-92), especially WS 80 had its 
slope doubled. As a result, the response of WS 77 was only 43% higher than that for the 
control watershed (WS 80) as indicated by the regression slope of 0.80 for WS 77 compared to 
only 0.56 for WS 80. These slopes indicated that approximately, 80% and 56% of large rain 



events were discharged as stream outflow for WS 77 and WS 80, respectively. The X-axis 
intercept was also larger for WS 77 (21.5 mm) than that of the WS80 (1 3.5 mm) for the post- 
Hugo period (1989-92). In other words, R less than 21.5 mm on average for WS 77 and 13.5 
mm for WS80 may not have directly contributed to storm outflow. This characteristic, a water 
storage potential, might have been influenced by many physical properties of the watershed 
such as canopy and surface storage, soil type and depth, antecedent soil moisture, mean water 
table, watershed shape. These data showed that the hydrology of these low-gradient coastal 
plain first-order watersheds was sensitive to rain events and ET, and that stormflow generation 
response was rapid (Fig. 8) as the saturation spreads to large areas almost simultaneously, 
especially during the wet seasons with high water tables. For instance, four large events (daily 
outflow above 10 mm) recorded in July and August 1991 were the result of an immediate 
response to 89, 76, 58, and 62 mm storm events. Frequent rain events during periods with low 
evapotranspiration demands, such as January 1991, also caused relatively constant high 
stream outflow. Headwater stream outflow was also strongly affected by antecedent soil 
moisture, i.e., preceding weather conditions. Between May and August 1990, relatively strong 
storm events of >20 mm size were recorded on MaylO, May 27-28, June 15, July 1, July 14, 
and August 7. However, the outflow during the same period was less than 1 mm, and there was 
no flow between midJune and mid-August. This indicated that occasional rain events during 
the summer do not exceed the soil water holding capacity with antecedent soil moisture content 
created by high ET demand, including canopy interception losses. 

Miwa et al (2003) reported that the storm peak flows on these watersheds were significantly 
affected by vegetation type. Detailed observations of hydrograph patterns between November 
1989 - April 1990 and April 1992 - September 1992 revealed that peak flow rate of WS77 were 
typically higher than WS80, although watershed area of WS77 was smaller than that of WS80 
(160 ha and 200 ha, respectively). WS77 contained a larger portion of pine trees and had more 
extensive damage from Hurricane Hugo compared to WS80. Most of WS80 was covered by 
undisturbed, mature hardwoods, which experienced less hurricane damage compared to WS77. 
The differences in peak flow rates between the two watersheds decreased in 1992. This may 
be due to a result of vegetation recovery in WS77. However, further study would be needed to 
ascertain the actual effects of vegetation on peak flow rates. This could be accomplished using 
additional data from the 1992-95 periods of the watersheds as pointed out earlier. 

Annual water budget 

Young (1968) described the water budget of the first-order forested watershed using three years 
of measured data on WS 77, and reported an average stream flow of 38% (590 mm) of the 
annual rainfall and an average ET of 950 mm for the treatment watershed (WS 77). However, 
on a longer term basis, Richter (1 980) found an average annual runoff coefficient (ROC) of only 
27% (with a range of 15% to 43%) leaving the remaining 73% for ET losses for a period from 
1965 to 1978 for watershed, WS77, while an average ROC of 20% (with a range of 12% to 
30%) with the remaining 80% for the ET was found on the control watershed, WS80, for a 
period from 1970 to 1978. Similarly, Gilliam (1 983) estimated the average annual stream 
outflow and ET for WS 77 as 350 mm and 1030 mm, and for WS 80 as 260 mm and 11 33 mm, 
respectively, for the treatment period of 1977-81. 

Sun et al. (2000) reported an average annual ET loss of 70% and 77% of total precipitation for 
these watersheds WS77 and WS80, respectively. Recently, Harder et al. (2006a) described a 
short-term water budget for the control watershed (WS 80) for a very wet year (2003 with rain = 
1671 mm) and a relatively dry year (2004 with rain = 962 mm). The authors found 47% and 8% 
of the rainfall lost to stream outflow in 2003 and 2004, respectively. The estimated ET of 906 
mm and 834 mm were 54% and 87% of the annual rainfall for 2003 and 2004, respectively. 



These numbers are consistent with many other water balance studies conducted on the 
southeastern coastal plain forested lands that show that 60-80% of annual water loss is due to 
evapotranspiration (Chescheir et al., 2003; Amatya et al., 2002; Amatya et al., 1996; 1997; Sun 
et al., 1998; Skaggs et al., 1991). In a companion study, Harder et al. (2006b) used 
DRAINMOD (Skaggs, 1978) to simulate the long-term (1956-2004) water budget of the control 
watershed (WS80). They found the simulated annual stream outflow varying from 2% to 50% 
with an annual average of 21% leaving remaining 79% for ET and seepage losses. 

Water Quality 

Gilliam (1983) reported that the prescribed fire, a common practice in the management of these 
forests, was found to have no detectible effects on water quality when administered over a- six- 
year sequence of winter and summer burns (Table 2). Based on a 4-year (1976-79) data, 
Richter et al (1 983) found the annual deposition rates of 2.3 kg ha-' and 0.12 kg ha-' for total 
inorganic nitrogen (TIN) (NH4 -N plus NO3 -N) and PO4, respectively, on these sites. However, 
using longer period of data (1976-81), Gilliam (1983) reported only 1.71 kg ha" for TIN and 
about the same (0.13 kg ha") for PO4. Both the studies reported an insignificant change in 
nutrient export after the treatments on WS 77 during these years, with TIN retained more (1.68 
kg ha") in the system than the PO4 (1.68 kg ha"). 

Binkley (2001) presented results of 10 years (1 976-81 and 1989-94) of data from the control 
watershed (WS 80) that included 5 years of post-hurricane Hugo data in the context of data 
from several other streams draining forested watersheds in the nation. The author reported that 
N03-N concentrations of stream water on these watersheds were very low, averaging 0.017 mg 
L-I, with a median of 0.009 mg L", with higher values tending to occur in winter and early spring 
than in summer. However, NH4-N concentrations were more than double those of nitrate, 
averaging 0.045 mg L-' with a median of 0.030 mg L-'. Ammonium concentrations declined with 
increasing stream flow although the later did not have effect on NO,N concentrations. 
Dissolved organic nitrogen (DON) concentrations were an order of higher magnitude than the 
dissolved inorganic nitrogen (DIN). DON averaged about 1 mg L-' with a median of 0.8 mg L-I. 

Phosphate (P04) concentrations average 0.028 mg L-I, with a median of 0.017 mg L-I. 

Increase in flow slightly declined the PO4 concentrations. No effect of the massive hurricane 
disturbance was apparent, except for NH4-N, if any. The concentrations observed on this 
watershed were consistent (lower DIN, PO4 and higher DON) with those from other south- 
eastern forested watersheds dominated by conifers (Chescheir et al., 2003). 

Wilson et al. (2006), in their study of post-Hurricane effects on nutrient exports on the control 
watershed (WS 80), concluded that the large increases in NH4-N and TKN loadings up to two 
years after the hurricane were primarily due to increase in stream outflows. 

Summary and Conclusion 

This study summarizes long-term (1 964-2006), but intermittent, rainfall, stream outflow, and 
nutrient data collected on two first-order forested watersheds located at USDA Forest Service's 
Santee Experimental Forest, which is the headwater of rapidly developing Cooper River basin 
draining to Charleston Harbor system. The first one (WS 77) was established in 1963 to 
understand the hydrologic processes and water budget of this poorly drained coastal forest 
system. Later the second watershed (WS 80), adjacent to WS 77, was established in 1968 as a 
control to study the effects of various silvicultural operations on the hydrology and water quality 
using a paired watershed approach. While WS 77 undetwent several management treatments 
during the study period, both the watersheds were severely damaged by Hurricane Hugo in 



1989. Thus this study analyzed the rainfall dynamics and its effects on stream outflows, which 
were further affected by both the management treatments and a natural disturbance. 

Annual rainfall for the 42 years (1 964-05) varied from 1942 mm in 1994 to 969 mm in 2004, with 
an average of 1396 mm. Stream outflow on these poorly drained forested watersheds was 
highly variable with flooding in some seasons and with or a very little flow at other times. It was 
very dependent upon rainfall, ET and the antecedent moisture conditions (soil storage capacity 
prior to rainfall). Rainfall-runoff analysis for both the annual and monthly periods showed no 
effects of prescribed burning and partial harvest treatments implemented during five years 
(1977-81) on the treatment watershed. Similarly, these treatments were shown to have no or 
very little effects on stream water chemistry. Data from pre- and post-hurricane Hugo showed 
as much as 44% increase in annual yield on the control watershed due to reduced ET as a 
result of substantial damage of forest canopy. Hurricane Hugo did not affect on stream nutrient 
concentrations, except for DIN, which was lower by an order of magnitude than the organic N 
for both the pre- and post-Hugo periods. The increased nutrient loadings after Hugo were 
attributed primarily to increase in stream outflows, which lasted for only three years in contrast 
with the upland watersheds with a much longer recovery period. The treatment watershed (WS 
77) also yielded increased outflows after Hugo. 

Interestingly, limited data for the period during 1996-99 after Hugo showed a reversal in stream 
outflow pattern with increased outflows as percent of annual rainfall from the control watershed 
(WS 80) compared to the treatment (WS 77). The fact that this trend was visible from about late 
2002 continued until early 2003 shows no evidence of effects of masticating the understory 
vegetation that occurred during a nine-month period in 2001 on WS77. However, data for 2004 
and 2005 shows the reversal of oufflows back to the pattern observed during the calibration 
period prior to Hugo, when the treatment watershed yielded higher outflows than the control. 
This was possibly attributed to reduction in ET due to both the prescribed fire treatment on 84% 
of the watershed on May 10, 2003 and possibly some minor effects of mastication in 2001. 

Synthesis of results from various phases of studies using the long-term data on these two 
headwater coastal forested watersheds provided some important insights on their hydrologic 
processes (rainfall, outflow, and ET) and nutrient exports and the effects of operational forest 
management (e.g. prescribed burning) as well as a natural disturbance (hurricane) affecting 
vegetation dynamics on poorly drained lands. However, this study clearly emphasized a need 
of uninterrupted long-term and good quality data for an accurate assessment of management 
treatments as we recognized here the complication of analysis and results the missing, bad 
and/or unavailability of some continuous data (e.g. 1982-89, 1992-95, and 1999-02) have 
created. In any case on the basis of the results observed herein, we made three important 
observations that may need further investigation: (a) hurricane-force winds can damage the 
forest and its canopy to the extent that the outflows and nutrient transport are significantly 
increased primarily due to reduction in ET, (b) whether the category IV hurricane Hugo in 1989 
and subsequent logging after the hurricane impacted the forested watersheds to the extent that 
the newly regenerated vegetation on both the watersheds behaved differently than how they did 
prior to Hugo in 1969-76 (calibration period), and (c) operational forest management using 
prescribed burning, especially when such a treatment occurs at once in a scale of the 
watershed WS 77 (160 ha) as was done in May 2003, may increase the stream outflows for a 
short term. The last observation may also be further verified using measured ground water 
table data on these watersheds as the ground water table generally tends to rise after the 
removal of vegetation reducing ET and increasing storm oufflows. 

The results of this synthesis can be a basis for long-term reference data on poorly drained 
forested lands in this region. For example, flow and water quality data from WS 80 are being 
utilized as a baseline for calculating reference watershed loads needed for TMDL (Total 



Maximum Daily Load) development for the Charleston Harbor System (Silong et al. 2005). 
Similarly, information from these watersheds is being used for a larger watershed-scale 
cumulative effects study on a near-by 5000 ha Turkey Creek watershed located mostly within 
Francis Marion National Forest. At the same time these results will be used for validating data 
being collected on a new study to examine the effects of biomass removal using commercial 
thinning in the first year followed by a prescribed fire in the second year both on a plot and a 
watershed scale on these watersheds (Trettin et al., 2005). Efforts are also underway to digitize 
the old data from the watersheds for the 1993-95 period that may help verify the speculations 
made for faster recovery of pine dominated vegetation on the treatment watershed (WS 77) 
compared to the control (WS 80), increasing the ET rates on the former with subsequent 
reductions on outflows, a pattern observed opposite prior to the hurricane Hugo on these 
watersheds. Similarly, the stream water quality data collected since 2003 may help explain 
whether the chemistry has changed due to the vegetation since its fast recovery, as data were 
not available after 1994. 
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