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• Land cover and water quality were linked
regionally and at public water intakes.

• Nutrient and sediment concentrations de-
creased with increasing forest land cover.

• Both intake setting and land cover were
important determinants of water quality.

• Small watersheds may experience the
largest losses of natural land cover
by 2070.
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Conversion of natural land cover can degrade water quality in water supply watersheds and increase treatment costs
for Public Water Systems (PWSs), but there are few studies that have fully evaluated land cover and water quality re-
lationships inmixed use watersheds across broad hydroclimatic settings. We related upstream land cover (forest, other
natural land covers, development, and agriculture) to observed andmodeled water quality across the southeastern US
and specifically at 1746 PWS drinking water intake facilities. While there was considerable complexity and variability
in the relationship between land cover and water quality, results suggest that Total Nitrogen (TN), Total Phosphorus
(TP) and Suspended Sediment (SS) concentrations decrease significantly with increasing forest cover, and increase
with increasing developed or agricultural cover. Catchments with dominant (>90 %) agricultural land cover had the
greatest export rates for TN, TP, and SS based on SPARROW model estimates, followed by developed-dominant,
then forest- and other-natural-dominant catchments. Variability in modeled TN, TP, and SS export rates by land
cover type was driven by variability in natural background sources and catchment characteristics that affected
water quality even in forest-dominated catchments. Both intake setting (i.e., run-of-river or reservoir) and upstream
land cover were important determinants of water quality at PWS intakes. Of all PWS intakes, 15 % had high raw
water quality, and 85 % of those were on reservoirs. Of the run-of-river intakes with high raw water quality, 75 %
had at least 50 % forest land cover upstream. In addition, PWS intakes obtaining surface water supply from smaller
upstream catchments may experience the largest losses of natural land cover based on projections of land cover in
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2070. These results illustrate the complexity and variability in the relationship between land cover andwater quality at
broad scales, but also suggest that forest conservation can enhance the resilience of drinking water supplies.
1. Introduction

Forests and water are inextricably linked (Jackson et al., 2004; Lockaby
et al., 2013), and millions of people depend on forests for clean and reliable
drinking water supplies (Liu et al., 2022; Millennium Ecosystem
Assessment, 2005). However, land cover change is threatening the ability
of forested lands to provision this ecosystem service (NRC, 2008; Sun and
Vose, 2016; Vose, 2019; Vose et al., 2016; Vose et al., 2011). Policymakers,
water utilities, and land managers need data and tools that link forests,
water quantity and quality, and Public Water Systems (PWSs) so that they
can make informed decisions regarding water treatment infrastructure in-
vestments as well as land cover, forest conservation programs, and forest
management in critical water supply watersheds under increasing develop-
ment pressure and climate change.

The assertion that forests support higher water quality than agriculture
or urban development land cover is well established in the literature
(Bolstad and Swank, 1997; Mehaffey et al., 2005; Piaggio and Siikamaki,
2021; Tong and Chen, 2002; Tu, 2013; Westling et al., 2020). Forests miti-
gate stormflows and reduce overland runoff (Bolstad and Swank, 1997; Shi
et al., 2017) due to higher evapotranspiration rates (Boggs and Sun, 2011;
Li et al., 2020) that provide water storage capacity in the soil, greater soil
porosity, and higher soil infiltration rates compared to developed or agri-
cultural watersheds (Price, 2011; Price et al., 2010). As a result, overland
flow and stream channel erosion rates are lower in forested watersheds
(Neary et al., 2009), resulting in lower sediment concentrations in streams
and lower concentrations of other pollutants associated with developed or
agricultural lands (Lockaby et al., 2013). Land cover is one of several impor-
tant controls on water quality, and some have found forests are particularly
beneficial at smaller scales (Lei et al., 2021) or in smaller watersheds
(Piaggio and Siikamaki, 2021). Multiple factors can influence the forest-
water quality relationship, including forest type and management (Shah
et al., 2022), landscape complexity (Shi et al., 2017), and the presence of
additional pollutant sources including wastewater treatment plants
(Tasdighi et al., 2017).

Sustainable forest management and conservation has been shown to
provide economic benefits through improved water quality and hydrologic
function (Gartner et al., 2014). Declining water quality affects water treat-
ment plant operations through temporary shutdowns, drinking water advi-
sories and development of alternate resources, which can result in higher
drinking water prices (Hanson et al., 2016; Henry, 2013; Jones et al.,
2007; Snider, 2014). The literature focuses on two important ways forests
reduce drinking water costs. First, vegetation in forests provides regulatory
ecosystem services that stabilize flows and clean the water flowing through
them, leading to cleaner and more predictable raw water at drinking water
intakes (Piaggio and Siikamaki, 2021; Piper, 2003; Warziniack et al.,
2017). Second, forests serve as buffers and protected lands, regardless of ac-
tual protected status, limiting higher-polluting activities in the watershed
such as agriculture and development (Abildtrup et al., 2013; Brown and
Froemke, 2012).

Investigating the link between forests and stable, clean surface water
supplies has been the focus of numerous but geographically dispersed
case studies at relatively small scales and/or over small sample sizes.
Some studies analyzed the linkage between forest and other land cover
types to water quality (Brogna et al., 2018; Tsegaye et al., 2006) and
some of these also included effects on municipal water treatment facilities
(Abildtrup et al., 2013; Cunha et al., 2016; Fiquepron et al., 2013; Lopes
et al., 2019; Warziniack et al., 2017). At the U.S. national scale, there
have been assessments linking forests and other land covers to water quan-
tity (e.g., Brown et al., 2008), including efforts to connect the benefits of
water supply originating on forested lands to downstream PWS intakes
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(Liu et al., 2021; Liu et al., 2022). However, syntheses of large-scale,
high-resolution data and tools that use a consistent framework to quantify
the linkage between forests, land cover, and water quality at drinking
water supply intakes are lacking.

Here we examined the relationships between water quality, forests, and
other land cover types across the southeastern US (hereafter, “South”) and
at drinking water intakes within the region. The extensive forest cover in
the region (Oswalt et al., 2019), widespread private forest ownership
(Hewes et al., 2017), forest vulnerability due to development (Wear and
Greis, 2013), and PWS dependence on surfacewater originating on forested
land formunicipalwater supplies (Liu et al., 2020)make the region an ideal
study area to gain insights on the relationship between forested land and
water quality. Our specific objectives included: (1) Link historical upstream
forests and other land cover types to downstreamwater quality usingwater
quality observations where available and spatially continuous published
model outputs across the region; (2) Characterize historical water quality
and upstreamwatersheds for PWS intakes across the South; and (3) Link fu-
ture projections of upstream land cover to PWS intakes to identify vulner-
abilities to forest loss due to land cover change. The overall motivation of
this study is to provide information that could be used to prioritize forested
watersheds for conservation, thereby enhancing the resilience of drinking
water supplies and minimizing drinking water treatment costs.

2. Methods

2.1. Study region

Forest land cover comprises nearly half of all land cover in the South
(Oswalt et al., 2019) (Fig. 1) and is an important yet threatened source of
water for millions in the region (Liu et al., 2020). Approximately 56.6 mil-
lion people in the South obtained their drinking water supply from surface
water in 2017 (approximately 50 % of the total population in the region),
and 14 million of these obtained more than half of their water from
State and privately owned forest land (Liu et al., 2020). The South has expe-
riencedmore loss of forest land to development than any other region in the
U.S., accounting for over 60 % of all land developed from forest between
2000 and 2015 (USDA, 2018). Wear and Greis (2013) projected that forest
land area across the South could decrease by 44,515–89,030 km2

(6.5–13.1 %) between 1997 and 2060 depending on socioeconomic and
timber pricing assumptions. Developed land rarely reverts to its natural
state of forest cover so these threats, once realized, are essentially irrevers-
ible (Homer et al., 2020). Where it remains, forest land in the South is also
highly dynamic. Timber harvest is the most common form of forest distur-
bance in the region and harvest rates are greater than other regions of the
U.S. (Oswalt et al., 2019; Schleeweis et al., 2020). Privately owned forest
land accounts for nearly 87 % of all forest area in the South (Hewes et al.,
2017) and the region is under significant pressure from the expansion of de-
veloped land (Wear and Greis, 2013).

2.2. Water quality data

It is challenging to assess relationships between land cover and water
quality across broad regions due to a paucity of water quality observations
across time and space (Jiang et al., 2020). Among the reasons for limited
water quality observations is that considerable effort and cost is required
to gather water quality monitoring data (Kirschke et al., 2020), and to stan-
dardize them across multiple collection entities and analytical methodolo-
gies for a given parameter (Jiang et al., 2020). Therefore, we used both
observedwater quality datawhere available and published spatially contin-
uous model output across the region. Use of water quality model outputs



Fig. 1. Aggregated land cover (A), and the 1746 water utility facilities (B) across the South. land cover in (A) based on the 2011 NLCD. Utilities in (B) were designated as
surface water source, community water systems, and an intake or reservoir in the EPA SDWIS database and are colored according to whether they occur on a reservoir/
lake/impoundment or are located on a run-of-river based on visual inspection. State abbreviations in (A) are: AL = Alabama, AR = Arkansas, FL = Florida, GA =
Georgia, KY = Kentucky, LA = Louisiana, MS = Mississippi, NC = North Carolina, OK = Oklahoma, SC = South Carolina, TN = Tennessee, and VA = Virginia.
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that leverage observations to extrapolate more broadly across and within
regions can help distinguish the relative contribution of different sources
to constituent loads and overcome some of the limitations imposed by
available observed data. The temporal resolution of all water quality data
was the long-term mean annual scale based on water quality observations
collected between 1999 and 2014 and model predictions representing ca.
2012. All water quality parameters were expressed in terms of concentra-
tion except where noted because concentration information is more mean-
ingful for and familiar to water utilities, and concentration is the basis of
most drinking water regulations (Title 40 Code of Federal Regulations
Part 141, 2022).
3

2.2.1. Observed water quality
We used observed mean Total Nitrogen (TN), Total Phosphorus (TP),

and Total Suspended Solids (TSS) loading estimates based on monitoring
stations across the region in Saad et al. (2019). Details on the compilation
of these datamay be found in Saad et al. (2019) but are briefly summarized
here. Streamflow, TN, TP, and TSS measurements from 1999 to 2014 were
obtained from Federal, State, Tribal, and regional agencies, universities,
and nongovernmental organizations across the U.S. Criteria for data inclu-
sionwere 1) flowmeasurementsmust have 10 or more years of daily obser-
vations with no gaps and must include the year 2012, and 2) water quality
measurementsmust have three ormore years of data, at least 24 samples, at
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least three samples per season, and must be within two years of 2012. Flow
sites were matched to water quality sampling sites based on proximity and
upstream/downstream relationships. Across the study region, loading esti-
mates from Saad et al. (2019) drew from data collected by 139 entities at
sites that were either within or in areas draining to the study region
(Table S1). In total there were 1304, 1311, and 999 total monitoring sites
in the South for TN, TP, and TSS, respectively (Fig. 2). We converted the
ca. 2012 annual load estimates to equivalent concentrations by dividing
constituent loads by the mean flow at each site.
Fig. 2. Observed TN (A), TP (B), and TSS (C) monitoring sites across the South,

4

2.2.2. Modeled water quality
We used published predictions of ca. 2012 mean annual TN, TP, and

Suspended Sediment (SS) loads using the SPAtially Referenced Regression
On Watershed attributes (SPARROW) model outputs developed by the
U.S. Geological Survey (USGS) to provide estimates of water quality within
all catchments across the South. SPARROW is a hybrid empirical and
process-based mass-balance model that relates water quality observations
to predictor variables such as constituent sources and watershed or channel
features that affect the rate of constituent delivery to receiving waters
colored according to observed equivalent concentration for base year 2012.
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(Hoos and Roland, 2019; Schwarz et al., 2006). The variables representing
land-to-water transport and delivery processes are generally physical char-
acteristics of the watershed (e.g., land cover, soil properties, topography,
climate variables) while aquatic-loss processes include loss or decay during
transport through the stream network (e.g., reservoirs) (Hoos and Roland,
2019). The benefit of SPARROW in relation to other water quality models
(e.g. SWAT (Arnold et al., 2012) or HSPF (Bicknell et al., 2005)) is that it
can be more easily implemented at a large scale to answer broad research
questions such as the relationship between land cover and water quality
across multiple river basins. It would be extremely resource intensive to de-
velop SWAT or other process-based models for these water quality param-
eters across a large region. One limitation of the SPARROW approach
compared to others is that it is largely empirical, and thus could be limited
in making predictions under conditions beyond those under which the
model was developed. Another is that SPARROW predicts water quality
under long-term steady-state conditions and does not capture fine-scale
temporal dynamics. While additional information could be generated
from other modeling approaches (e.g., temporal variation in water quality
by season and associated with precipitation events at a finer temporal
scale), SPARROW is a framework that provides reasonable estimates of
the sensitivity of water quality to land cover at the regional scale.

The published USGS SPARROWmodels were developed for five regions
across the conterminous U.S. Four of the regional SPARROWmodels inter-
sect with the South, including the Northeast (Ator, 2019), Southeast (Hoos
and Roland, 2019), Midwest (Robertson and Saad, 2019; Robertson and
Saad, 2021), and Southwest (Wise et al., 2019) regions (Fig. S1). It was
not our goal to evaluate the uncertainty and assumptions associated with
the published SPARROW models used in this study as those are described
in these references. These studies and numerous others have used
SPARROW to evaluate relations between sediment and nutrient sources
and water quality (e.g., Ator and Garcia, 2016; Ator et al., 2022; Hoos
and McMahon, 2009; Milstead et al., 2013; Preston et al., 2011). Collec-
tively this body of literature suggests that SPARROWprovides “a consistent
set of information for identifying the major sources and environmental fac-
tors affecting nutrient fate and transport” inwatersheds at regional and sub-
regional scales (Preston et al., 2011) and uncertainty in SPARROW water
quality estimates is comparable to other broad scale water qualitymodeling
approaches (McCrackin et al., 2013;Montefiore andNelson, 2022). Preston
et al. (2011) and references therein provide a thorough review of
SPARROW modeling applications for nutrient loading. Costa et al. (2019)
reviewed water quality modeling applications globally and found 47 stud-
ies using SPARROW in the literature, and noted that it is among the
seven most frequently used water quality models in the past 20 years. The
USGS models are briefly summarized here, additional detail regarding
SPARROW model assumptions, parameter estimates, and uncertainty can
be found in these references and are summarized in Table S2.

The spatial resolution of the SPARROW models was the National Hy-
drography Dataset (NHD) NHDPlus Version 2.1 catchment (Moore and
Dewald, 2016). There are >812,000 NHD catchments across the study re-
gion with a median area of 1.2 km2. The regional models use a consistent
methodology and databases but were developed independently. Only
those predictor variables with statistically significant coefficients are
included in the final model (p < 0.10 for southeast and northeast models,
p < 0.05 for Southwest and Midwest models). The regional models
generally included similar constituent sources, land-to-water delivery vari-
ables, and aquatic loss variables but varied in some instances to account for
regional differences in sources and losses (Table S2). Sources in the final
SPARROW models generally include natural and/or background sources
(e.g., atmospheric N deposition, P mineral content of surficial geologic ma-
terials, sediment from stream channel erosion), and anthropogenic sources
(e.g., wastewater treatment plants, fertilizer and manure application,
mining operations, and surface runoff from different land cover types)
(Table S2). Published standard error (SE) on the mean parametric
bootstrapped SPARROW load estimates computed using methods of
Schwarz et al. (2006) were used in this study to provide an estimate of
the uncertainty in the TN, TP, and SS loading and concentration estimates.
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Like the water quality observations, we computed equivalent concentra-
tions of TN, TP, and SS by dividing the SPARROW predicted loads by the
predicted flow for each NHD catchment.

The SPARROW model outputs for sediment were estimated as
Suspended Sediment (SS), while the water quality observations were mea-
sured as Total Suspended Solids (TSS). These parameters differ in their an-
alytical method; SS is the mass of all sediment in a volume of water
collected directly from awater bodywhereas TSS is themass of all sediment
in a subsample of water collected from a waterbody (Guy, 1969). Despite
differences in analytical methods, both TSS and SS represent the concentra-
tion of sediment in a volume of water collected from a water body as af-
fected by the overland and channel erosion, deposition, and suspension
processes of interest in this study. We treated these measures of observed
(TSS) and modeled (SS) sediment separately but equivalent for the pur-
poses of linking upstream land cover to downstream water quality.

The SPARROW predictions allowed us to attribute variability in water
quality within land cover classes to both natural and anthropogenic factors.
We selected comparison catchments across the region dominated by differ-
ent land cover types to examine how these factors influence water quality.

2.3. Assessment of baseline water quality at Public Water System Facilities

The PWS intake information was derived from the U.S. Environmental
Protection Agency (EPA) Safe Drinking Water Information System
(SDWIS) database of public drinking water systems (USEPA, 2017a). This
database contains information on those water systems such as intake loca-
tions, population served ca. 2017, and system type. PWS intake facilities
in the EPA database were screened for obvious locational errors in the
SDWIS, and only those designated as a community water system, having
a surface water source, and having an intake or reservoir facility type
were included. The facilities were indexed to the NHD catchments and
each facility was visually inspected to determine whether it was located
on a river or stream (hereafter run-of-river) or was on a reservoir. If the fa-
cility was on a reservoir, the NHD catchment associated with the facility
was revised if necessary to account for potential mixing dynamics within
the reservoir and inundated tributaries as in Caldwell et al. (2014). In
total there were 1746 unique PWS intake facilities over 1361 PWS in the
region (Fig. 1b).

We characterized the raw water quality and watershed characteristics
for PWS intake facilities across the region and identified those where
baseline raw water quality could be considered high. We used a similar ap-
proach to that implemented by the US EPA in the development of nutrient
criteria for rivers and streams by aggregated Level III Ecoregion (USEPA,
2021a) (Fig. S2). In their approach, the US EPA used the 25th percentile
of observed TN, TP, and turbidity by ecoregion to define conditions of sur-
facewaters that areminimally impacted by human activities and protective
of aquatic life and recreational uses. In our approach we used the 25th per-
centile SPARROW predicted TN, TP, and SS concentrations across all NHD
catchments in each ecoregion as the maximum threshold of high water
quality for these parameters. We used the SPARROW predicted concentra-
tions to estimate these criteria instead of observations because the observa-
tions are limited in their spatial distribution and therefore may not
adequately represent conditions in some locations and under some water-
shed conditions upstream of the PWS facilities.

2.4. Linking water quality to baseline land cover

The observed water quality data was linked to historical baseline land
cover across the region. The baseline land cover was based on the 2011 Na-
tional Landcover Dataset (NLCD) (Homer et al., 2015). We used the
Wieczorek et al. (2018) dataset that indexed the 2011 NLCD land cover
along to the NHD catchments. We used the 2011 NLCD because it closely
corresponds to the 2012 time period represented by observed and modeled
water quality data and the Wieczorek et al. (2018) version of the 2011
NLCD was also used as an input for the SPARROWmodels. We aggregated
the various land cover classes in the NLCD into four broad classes to
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simplify analysis, where Forest=deciduous forest, evergreen forest, mixed
forest, and woody wetland; Developed = developed open space, low, me-
dium, and high intensity development; Agriculture=Pasture/Hay and cul-
tivated crops; and Other-natural = barren, scrub/shrub, grassland, and
emergent wetland.

We then used two regression approaches to examine relationships be-
tween observed and modeled TN, TP, and TSS/SS concentrations and the
baseline proportion of upstream area in forest, developed, agriculture,
and other natural land cover. In both approaches we log-transformed the
water quality data because they tended to be lognormally distributed and
similar modeling approaches have found better model fits with log-
transformedwater quality parameters (Warziniack et al., 2017).We limited
our analysis to include only observation sites and modeled catchments that
were not nested within the watershed of another, thus it could be reason-
ably assumed that the remaining sites or catchments included in the analy-
sis were independent. Observation sites from the full dataset were excluded
beginning at the river basin outlets and moving upstream until there were
no observation sites upstream of another. Modeled catchments were ex-
cluded when the catchment cumulative upstream area was greater than
the catchment incremental area. The resulting dataset included 631 TN,
605 TP, and 495 TSS/SS observation sites, and 307,656 modeled catch-
ments across the region. We first performed independent linear regressions
of observed and modeled log-transformed TN, TP, and TSS/SS concentra-
tions with the proportion of upstream area in each of forest, developed, ag-
riculture, and other natural baseline land cover. The goal of this approach
was to examine overall relationships between these water quality parame-
ters and each land cover type to identify the significance and direction of
change in water quality with increasing land cover percentage in each
class. In our second approach we developed multiple regression models of
observed and modeled log-transformed TN, TP, and TSS/SS concentrations
with the proportion of upstream area in developed, agriculture, and other
natural baseline land cover. The goal of this approach was to quantify the
change in water quality for incremental changes in developed and agricul-
ture land cover types. The model form was:

log Qið Þ ¼ β0 þ βdevDEVELOPEDþ βagAGRICULTURE þ βonOTHERNAT þ ei

(1)

where Qi is the water quality parameter (TN, TP, or TSS/SS concentration),
DEVELOPED,AGRICULTURE, andOTHERNAT are the percentages of devel-
oped, agriculture, and other natural land cover classes upstream, respec-
tively, βx are regression terms, and ei is an error term. The β0 term
represents the water quality parameter concentration when all of upstream
developed, agriculture, and other natural land cover classes are zero,
i.e., the water quality parameter concentration with only forest upstream.
In conducting this regression analysis, we confirmed that 1) there was no
multicollinearity among the land cover predictor variables (Variance Infla-
tion Factor < 1.5), 2) samples could be considered independent (Durbin-
Watson statistic ranged from 1.2 to 1.6), 3) standardized residuals centered
on zerowithno clear pattern in relation to predicted values, and 4) residuals
were normally distributed as demonstrated by a linear relationship
between residual quantiles and theoretical quantiles from a normal distri-
bution in Normal Q-Q plots. If the estimated coefficient for a given non-
forest land cover type is βx, then a z percent change from forest cover to
that land use will result in a ez⁎βx – 1 % change in the water quality param-
eter (Warziniack et al., 2017). We used the β parameters of these water
quality regressions to estimate the change in the mean TN, TP, and TSS/
SS concentration for a one percentage point increase in developed and ag-
riculture land cover using water quality observations, presented as the
mean response ± 95 % confidence interval.

The SPARROWmodeled TN, TP, and SS concentrations for some catch-
ments across the region were zero or near zero. As a result, the log trans-
formed concentrations for these catchments were either undefined or
highly negative and thus were clearly outliers in the log-transformed
modeled water quality data. These concentrations are well below typical
6

Method Detection Limits (MDLs) for water quality analysis and thus cannot
bemeaningfully reported in practice.We assumedMDLs of 0.01mg L−1 for
TN and 0.002 mg L−1 for TP (USEPA, 2021b), and 1.0 mg L−1 for SS
(USEPA, 2010), and replaced the modeled concentration with one-half of
corresponding MDL when a modeled concentration was below the MDL.
This affected 0.4 %, 1.1 %, and 2.5 % of the 811,002 total catchments in
the region for TN, TP, and SS, respectively.

In addition to regressions between water quality and land cover, we
compared modeled TN, TP, and SS incremental export rates (i.e., loads)
among catchments dominated by each aggregated land cover type. We
assumed that any land cover that encompassed >90 % of a catchment
area was the dominant land cover for that catchment. This relatively
high threshold of dominant land cover was used because developed
and agricultural pollutant loads can easily overwhelm background
sources in forested or other natural dominant catchments at lower
thresholds, limiting our ability to isolate differences in incremental
pollutant loads across land cover types. In total there were 16,139 catch-
ments that were agriculture-dominant, 4785 developed-dominant,
94,446 forest-dominant, and 42,531 other-natural-dominant land
covers. The distribution of catchments by dominant land cover type
across States is shown in Fig. S3.

2.5. Future land cover upstream of Public Water System Facilities

Future projections of land cover were overlaid on watersheds upstream
of PWS intake facilities to identify those where raw water quality may be
most vulnerable to land cover change in the future. The future land cover
was based on the EPA Integrated Climate and Land-Use Scenarios (ICLUS)
Version 2.1.1 projections for 2070 under the SSP5 RCP85 HadGEM2-ES
scenario (USEPA, 2020), and was treated as a hypothetical land cover
change scenario in the evaluation of potential water quality impacts to
PWSs. This scenario represents a future of high dependence on fossil fuels
to support robust economic growth and thus high global greenhouse gas
emissions and high levels of population growth in the U.S. (IPCC, 2015;
O'Neill et al., 2017), representing a potential upper bound (i.e., worst
case) land use change scenario in the region. Although the ICLUS projec-
tions are based on land use rather than land cover, we apply the term
land cover here to be consistent with the historical baseline land cover
data from NLCD.

We examined projected changes in natural land cover by comparing the
2070 ICLUS land cover to the 2020 baseline ICLUS because direct compar-
isons to NLCD land cover were therefore not straightforward. ICLUS data
assigns land use (hereafter land cover) to 20 different categories that do
not precisely match NLCD land cover classes. We first aggregated ICLUS
land cover classes into broad natural, agriculture, and developed classes.
Natural land cover included ICLUS classes natural water, reservoirs/canals,
wetlands, recreation/conservation, timber, grazing, and parks/open space.
Agriculture land cover included ICLUS classes pasture and cropland. Devel-
oped land cover included ICLUS classesmining/barren, exurban, suburban,
urban, commercial, industrial, institutional, and transportation. We then
identified areas with natural land cover in 2020 that were projected to be
converted to developed land cover in 2070. The ICLUS models project the
conversion of natural and agricultural land covers to developed land
cover and increases in development intensity among developed land
cover classes. Thus conversion of natural to agricultural land cover, while
plausible, was not an outcome considered in ICLUS (USEPA, 2017b). The
gridded ICLUS data for 2020 and 2070 were scaled to the NHD catchment
and the upstream baseline and future land cover was computed for each
PWS intake watershed. We then identified those PWS intake facilities that
were projected to have the largest proportion of natural land cover con-
verted to developed land cover and therefore are most vulnerable to
water quality degradation. In this way, we did not directly link future
land cover to water quality at PWS intakes, rather the potential effects of
projected land cover change for PWS intakes can be inferred based on rela-
tionships between baseline land cover and water quality we quantified in
this study.
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3. Results

3.1. Observed water quality linkages to upstream land cover at monitoring sites

Sites with more upstream forest land cover tended to have lower ob-
served concentrations of TN, TP, and TSS than siteswithmore upstreamde-
veloped, agricultural, and other natural land cover (Fig. 3, Table S3). Across
all sites, the slope of the independent regressions between log-transformed
TN, TP, and TSS and upstream forest land cover percentage were all
significant (α = 0.05) and negative, indicating decreasing concentrations
with increasing upstream forest cover percentage. In contrast, slopes for
regressions with upstream developed, agricultural, and other natural
land cover percentage were generally significant and positive, indicating
increases in TN, TP, and TSS with increasing developed or agricultural
land cover upstream. The only exception was the slope of TSS with
increasing upstream developed land cover was negative but was not signif-
icant (p = 0.21). The slope of TP with increasing upstream other-natural
land cover was positive but was not significant (p = 0.27). While these
relationships were generally significant when considering all sites, there
was considerable variability in TN, TP, and TSS concentrations for any
given percentage of forest, developed or agricultural land cover upstream
(Fig. 3).

The multiple regression models corroborated the independent regres-
sion approach, and allowed an examination of the sensitivity of water qual-
ity to incremental changes in upstream developed and agricultural land
cover types. The β0 regression coefficient using the observed water quality
suggested that TN, TP and TSS concentrations across observation sites, on
average, could be 0.4±0.04, 0.03±0.01, and 12.2±4.2mg L−1, respec-
tively, if upstream developed, agriculture, and other natural land covers
were zero (i.e., all upstream area was forested) (Table 1). The βDEV, βAG,
and βON regression coefficients were all significant and positive, suggesting
that changes in upstream land cover from forest to any of these land cover
types would result in an increase in TN, TP, and TSS concentration. For
TN and TP, the regression coefficients in order of magnitude were
βAG > βDEV > βON, suggesting that upstream agricultural land cover in-
creased TN and TP concentrations more so than developed, and developed
more so than other natural land cover. In contrast, the TSS regression coef-
ficients in order ofmagnitudewere βAG> βON> βDEV however βDEVwas not
significant (p=0.13). On average in our sample, these results suggest that
a 1% change from forest to developed land cover could result in an approx-
imately 1.5 ± 0.2 % increase in TN concentration, a 1.9 ± 0.3 % increase
in TP concentration, and a 0.4 ± 0.5 % increase in SS concentration. Sim-
ilarly, these relationships suggest that a 1 % change from forest to agricul-
tural land cover could result in an approximately 2.4 ± 0.3 % increase in
TN concentration, a 3.2 ± 0.4 % increase in TP concentration, and a
1.4 ± 0.7 % increase in SS concentration.

3.2. Modeled water quality linkages to upstream land cover and other sources

Modeled concentrations of TN, TP, and SS exhibited spatial patterns
consistent with those of observed concentrations (Fig. S4) and allow a
more detailed analysis of the linkage between water quality and upstream
land cover and other sources. Similar to the water quality observations,
sites with more upstream forest land cover tended to have lower modeled
concentrations of TN, TP, and SS than sites withmore upstream developed,
agricultural, and other natural land cover (Table S3). Multiple regression
parameters relatingmodeled TN, TP, and SS concentrations to upstreamde-
veloped, agriculture, and other natural land cover types were similar to
those relating observed concentrations at observation sites (Table 1). Like
the regression models using observed water quality data, the regression
models using modeled water quality data had regression coefficients in
order ofmagnitude of βAG> βDEV> βON for TN and TP,whereas coefficients
for modeled SS in order of magnitude were βON> βAG> βDEV across the ob-
servation sites. These relationships suggest similar TN, TP, and SS concen-
tration responses to increasing upstream developed and agricultural land
cover from forested land across the observation sites.
7

Percent changes in modeled TN, TP, and SS concentration due to
changes in developed and agricultural land cover varied somewhat across
all independent catchments in the region compared to the observation
sites. For example, the responses of modeled TN, TP, and SS to changes in
upstream developed and agriculture for all independent catchments were
lower than modeled responses for only the observation sites. In addition,
the regression parameter estimates across all catchments in order of magni-
tude for SSwere βAG> βDEV> βON rather than βON> βAG> βDEV for only the
observation sites. Taken together, these results suggest that observed and
modeled TN, TP, and SS concentrations have similar sensitivities to changes
in land cover over the observation sites, and in some cases these sensitivi-
ties may differ from those across independent catchments in the region as
a whole.

Catchments with dominant (>90 %) agricultural land cover upstream
had the greatest export rates for all parameters, followed by developed,
then forest and other-natural (Fig. 4). While differences in the central ten-
dency of modeled TN, TP, and SS export among catchments with different
dominant land covers were clear, there was considerable variability around
these central values. For example, SPARROW estimates suggest the 90th
percentile TN export from forest-dominant catchments (4.2 (1.7 SE) kg
ha−1 yr−1) may be greater than the 10th percentile TN export from
developed-dominant catchments (3.2 (1.3) kg ha−1 yr−1) and only slightly
less than the 10th percentile TN export from agriculture-dominant catch-
ments (4.7 (1.8) kg ha−1 yr−1). Similar relationships between TP and SS
export of forest-dominated and developed or agriculture-dominated catch-
ments were also apparent (Fig. 4b and c). The relativemodeled TN, TP, and
SS export rates for the other-natural land cover type are seemingly at odds
with the regression coefficient βON in the multiple regression models; ex-
port rates for the other-natural land cover type are lower than those of for-
ested land cover, while the βON parameter is positive (Table 1). This reflects
the fact that water yield in west Texas and Oklahoma where most of the
other natural land cover type is located is typically low, resulting in low ex-
port in mass terms but could have higher concentration than other land
cover types with greater water yield.

The SPARROW TN models estimate the contribution of atmospheric N
depositionwhich varies considerably across the study area. This spatial var-
iability, along with spatial variability in catchment properties (e.g., runoff
rates, vegetation type, and density, etc.) is reflected in modeled TN export
rates from forest or other-natural-dominant catchments. According to
SPARROW model estimates, atmospheric deposition was the primary
external N source in forest and other-natural dominant catchments across
the region, contributing 90 % or more of the TN export for >90 % forest-
dominant and 70 % or more for >90 % of other-natural-dominant catch-
ments. For example,model estimates suggest that atmosphericN deposition
was the only external N source contributing to the 1.9 (1.5) kg ha−1 yr−1

TN export of a 98 % forested catchment in the Hillside National Wildlife
Refuge in western Mississippi (8.2 kg ha−1 yr−1 inorganic N deposition),
aswell as the only external N source of the 4.5 (1.8) kg ha−1 yr−1 TN export
of a 100 % forested catchment in Sumpter National Forest, South Carolina
(8.7 kg ha−1 yr−1 inorganic N deposition). Almost all of the other-natural-
dominant catchments are located in western Texas and Oklahoma (Fig. 1a,
S3), in predominantly grassland and shrubland land cover. Due to low at-
mospheric N deposition in this region, SPARROW estimated TN export
for other-natural-dominant catchments was also low, even lower than
forest-dominant catchments (Fig. 4a).

Similarly, natural geological sources of P vary across the study area re-
sulting in highly variable TP export from forested or other-natural-
dominant catchments. According to SPARROWmodels, geological sources
of P contributed 50 % or more of the TP export for >90 % of forest-
dominant and 23%ormore for>90%of the other-natural-dominant catch-
ments. The estimated contributions of geological sources to TP export for
these catchments was lower than the contribution of atmospheric deposi-
tion to TN export because geological sources of P are very low compared
to sources from other land covers (e.g., urban, fertilizer, manure) in the re-
maining 10 % land area of these forest or other-natural-dominant catch-
ments. Geological sources of P accounted for all of the estimated total



Fig. 3. Fit of observed TN (A), TP (B), and TSS (C) equivalent 1999–2014 mean concentration across the South as a function of upstream forested area based on the 2011
NLCD. The shaded grey region represents the 95 % prediction interval.
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Table 1
Coefficient values (standard error) and fit statistics for multiple regression models relating log-transformed TN, TP, and TSS/SS concentration to upstream developed,
agriculture, and other natural land cover types.

Water quality parameter Coefficient Observed Modeled at observation sites Modeled across all catchments

TN β0 −0.860 (5.15 × 10−2) −0.608 (4.05 × 10−2) −0.482 (2.60 × 10−3)
TN βDEV 0.015 (9.28 × 10−4) 0.012 (7.29 × 10−4) 0.006 (9.54 × 10−5)
TN βAG 0.023 (1.22 × 10−3) 0.020 (9.60 × 10−4) 0.015 (5.41 × 10−5)
TN βON 0.013 (1.21 × 10−3) 0.009 (9.54 × 10−4) 0.001 (5.46 × 10−5)
TN n 631 631 307,656
TN R2 0.41 0.45 0.20
TP β 0 −3.358 (8.96 × 10−2) −3.317 (6.83 × 10−2) −3.015 (4.11 × 10−3)
TP βDEV 0.019 (1.63 × 10−3) 0.021 (1.25 × 10−3) 0.015 (1.51 × 10−4)
TP βAG 0.032 (2.09 × 10−3) 0.038 (1.59 × 10−3) 0.027 (8.57 × 10−5)
TP βON 0.014 (2.02 × 10−3) 0.016 (1.54 × 10−3) 0.001 (8.66 × 10−5)
TP n 605 605 307,656
TP R2 0.31 0.51 0.27
TSS/SS β0 2.498 (1.51 × 10−1) 3.612 (1.43 × 10−1) 3.895 (5.97 × 10−3)
TSS/SS βDEV 0.004 (2.79 × 10−3)⁎ 0.009 (2.64 × 10−3) 0.010 (2.19 × 10−4)
TSS/SS βAG 0.014 (3.55 × 10−3) 0.025 (3.37 × 10−3) 0.022 (1.24 × 10−4)
TSS/SS βON 0.012 (3.27 × 10−3) 0.030 (3.09 × 10−3) 0.008 (1.26 × 10−4)
TSS/SS n 495 495 307,656
TSS/SS R2 0.05 0.20 0.10

⁎ Not significant (p = 0.13).
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export for 90% of catchments that are 100% forested (n=30,575); model
estimates suggest that the interquartile TP export among these catchments
could range from 0.13 (0.10) to 0.34 (0.26) kg ha−1 yr−1, a 2.6-fold
difference. For example, geological P was the only source of the 0.06
(0.10) kg ha−1 yr−1 estimated TP export of a 100 % forested catchment
in the Ouachita National Forest in eastern Oklahoma, as well as the only
source of the 0.39 (0.30) kg ha−1 yr−1 estimated TP export of a 100 % for-
ested catchment in the Chattahoochee National Forest in north Georgia.
Like TN export, catchments with other-natural-dominant land cover in
western Texas and Oklahoma were generally predicted to have much
lower geological P contributions to TP export than that of forest-
dominant catchments and thus had lower export (Fig. 4b).

SS export was also highly variable among forest and other-natural-
dominant catchments across the region. Sources of SS in the SPARROW
models were either overland erosion in catchment uplands or erosion of
sediment in stream channels (Table S2). SPARROW models estimated
that channel sediment sources were 25 %–100 % of the total SS loading
for 29 % of the forest-dominant catchments, adding variability to SS export
estimates for forest-dominant catchments. Among thosewith no channel SS
contribution, the estimated interquartile SS export among forest-dominant
catchments ranged from 127.2 (343.9) to 469.7 (1277.6) kg ha−1 yr−1 (a
3.7-fold difference) although these estimates should be considered in the
context of the relatively large standard errors in the model predictions.
These differences in SS export were largely related to differences in under-
lying soil types as well as land-to-water delivery variables in the SPARROW
model (e.g., soil erodibility factor, annual runoff values, etc.). For example,
estimated SS export of a 100 % forested catchment in the Sumter National
Forest in northwestern South Carolina (annual runoff = 1292 mm) could
be 590.3 (420.3) kg ha−1 yr−1, while SS export could be 22.8 (15.8) kg
ha−1 yr−1 for a 99 % forested catchment in Mount Hope Swamp near
Lake Marion in South Carolina (annual runoff = 214 mm).

3.3.Water quality assessment and linkages to upstream land cover at PWS intake
facilities

Across the South, there were a total of 1746 surface water supply intake
facilities in 1361 PublicWater Systems (PWS) and serving a total of 47 mil-
lion people (Fig. 1b). 59 % of all surface water intakes were on reservoirs,
and 46%of those intakes on reservoirs were in Texas (29%) andOklahoma
(17 %). In contrast, 53 % of all run-of-river surface water intakes were lo-
cated in Virginia (14.6 %), North Carolina (13.2 %), Kentucky (12.9 %),
and Tennessee (12.8%). Themedian upstream land cover across all intakes
was 50 % forested, 7 % developed, 18 % agriculture, and 10 % other-
natural land cover. Run-of-river intakes tended to have greater upstream
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forest cover (median 58 %) than intakes on reservoirs (median 43 %),
while upstream developed, agriculture, and other-natural land cover were
similar for intakes on reservoirs and run-of-river (median 7.4 % and
7.2 % developed, respectively; median 17.1 % and 18.6 % agriculture, re-
spectively; and median 12.8 % and 7.1 % other-natural, respectively).

SPARROW estimated concentrations of TN, TP, and SS were lower for
intakes with primarily forested upstreamwatersheds (i.e., >50% forested),
and estimated concentrations were lower for intakes located on reservoirs
than those that were run-of-river intakes (Fig. 5). For example, the median
estimated SS concentration was two times greater for run-of-river intakes
(130 (109) mg L−1) than for intakes on reservoirs (63.3 (54.7) mg L−1).
Among intakes on reservoirs, the median estimated SS concentration for
those with <50 % forest land cover upstream (99.3 (85.8) mg L−1) was
two times greater than those with >50 % forest land cover upstream
(49.5 (41.8) mg L−1). Similarly, the median estimated SS concentration
for run-of-river intakes with <50 % forest land cover upstream (226.8
(739.0) mg L−1) was two times greater than those with >50 % forest land
cover upstream (108.6 (101.2) mg L−1). In contrast, while the median esti-
mated TP concentration for intakes on reservoirs with <50 % forest land
cover upstream (0.072 (0.069) mg L−1) was virtually the same as those
with>50% forest land cover upstream (0.070 (0.064)mg L−1), themedian
estimated TP concentration for run-of-river intakes with <50 % forest land
cover upstream (0.206 (0.197) mg L−1) was 2.1 times those with >50 %
forest land cover upstream (0.099 (0.094) mg L−1). Similarly, the median
estimated TN concentration was 1.7 times greater for run-of-river intakes
with <50 % forest upstream but was 1.3 times greater for intakes on reser-
voirs with <50 % forest upstream. Despite the variability in TN, TP, and SS
concentration for a given upstream land cover and intake setting, these re-
sults suggest that both intake setting and upstream land cover are important
determinants of water quality and surface water intakes. Run-of-river in-
takes may bemore sensitive to upstream land cover in the context of future
land cover change than those on reservoirs as illustrated by the larger differ-
ences in TN, TP, and SS concentrations between watersheds with greater or
<50 % forest cover for run-of-river intakes than the differences in concen-
trations for intakes on reservoirs.

Using estimates of TN, TP, and SS criteria for high raw water quality by
aggregated EPA Level III ecoregion using SPARROW model outputs
(Table S4), 15 % (n = 268) of the intake facilities across 207 PWS met
criteria for all three parameters (Fig. 6a). Twenty-four percent of these facil-
ities were in Texas, followed by Oklahoma (24 %), Virginia (14 %), and
North Carolina (13 %), and in total serve more than eight million people.
Of the facilities with high water quality, 51 % had >50 % forest land
cover upstream and 90 % had <16 % and 30 % developed and agricultural
land cover upstream, respectively. Eighty-five percent of those facilities



Fig. 4.Distribution of ca. 2012 annual TN (A), TP (B), and SS (C) export rates across all catchments in the South by catchment dominant land cover computed fromSPARROW
predicted incremental loads. A given land cover was assumed by be dominant in a catchment if it occupied >90 % of the catchment land area. Circles are the 5th and 95th
percentile, whiskers the 10th and 90th percentile, boxes the 25th and 75th percentile, and line is the median export rate across all catchments with a given dominant land
cover.
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Fig. 5.Distribution of ca. 2012 TN (A), TP (B), and SS (C) concentration across intakes by setting (reservoir, run-of-river, all) and by upstream forest area (>50%,<50%, all).
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with <50 % upstream forest land cover were located in Texas and Okla-
homa, where the median percentage of other-natural land cover was
57 % and 93 % of facilities were on reservoirs. The generally lower up-
stream forest land cover for these PWS intakes is reflective of the lower for-
est land cover in Texas andOklahoma,while the generally drier climate and
more limited water availability in these states dictates the need for reser-
voirs to insure reliable water supplies. Of the facilities in the other 11 states,
87%had>50% forest land cover upstream. Eighty-five percent of facilities
with high water quality were on a reservoir overall, while the remainder
were run-of-river intakes. Forty-six percent of those on reservoirs had
11
>50 % forest land cover upstream, while 75 % of the run-of-river intakes
had >50 % forest land cover.

3.4. Public Water System intake facilities vulnerable to land cover change

Using the ICLUS projections of land cover change between 2020 and
2070, 98,658 km2 (7.3 %) of land in natural land cover in 2020 (including
forest) was predicted to be converted to developed land cover by 2070
across the South (Fig. 6b). Across the 1746 intake facilities, 10.4 % were
projected to have a reduction in upstream natural land cover percentage



Fig. 6. Public Water System surface water facilities with high raw water quality ca. 2012 for all water quality parameters (A), areas where natural land cover in 2020 was
predicted to be converted to developed land cover by 2070 (grey shading), and PWS intakes with high water quality and greater than a 10 % reduction in upstream
natural land cover percentage (B), and the number of intakes with varying projected loss of upstream natural land cover by intake setting and raw water quality
classification (C). The inset bar graph in (C) presents the same data as the main figure but with a magnified y-axis.
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>10 % (Fig. 6c). The 2020 natural land cover percentage among these in-
take facilities ranged from 12.2 % to 100 % (median 58.7 %). By 2070,
the natural land cover percentage among these intakes ranged from 1.3 %
to 86.1 % (median 39.8 %) with reductions in upstream natural land
cover of 11 % to 89 % compared to 2020. For example, natural land
cover in the 107 km2 Cherryville, NC water system Indian Creek intake wa-
tershed was projected to decrease from 12.2 % of the watershed in 2020 to
1.3 % by 2070, while natural land cover in the 6.0 km2 Griffin, GA water
system Still Branch Reservoir intake watershed was projected to decrease
from 99.3 % to 73.1 %.

Intake facilitieswith smaller upstreamwatersheds tended to have larger
projected reductions in upstream natural land cover than those with larger
upstream watersheds. Of the 181 intake facilities with greater than a 10 %
reduction in upstream natural land cover percentage, 90 % had watershed
areas <5077 km2 and the top 10 intake facilities in terms of projected up-
stream natural land cover loss had watershed areas <102 km2. Among
those facilities with greater than a 10 % reduction in upstream natural
land cover, 51 were classified as having high raw water quality, with 44
on reservoirs and seven run-of-rivers (Fig. 6b). All four facilities with
>50 % projected upstream natural land cover loss (one reservoir, three
run-of-river) were classified has having high raw water quality (Fig. 6c).
For example, upstream natural land cover was projected to decrease from
71.4% to 10.1% across the 101.6 km2watershed for the run-of-river intake
facilities associated with the Del Rio Utilities Commission serving 36,662
people in Texas, where rawwater quality is currently considered high. Sim-
ilarly, upstream natural land cover for a run-of-river intake with high water
quality associated with the Summerville, Georgia PWS serving 11,651 peo-
ple was projected to decrease from 48.0 % to 20.8 % across the 65.5 km2

watershed.

4. Discussion

We used observed and modeled water quality data to evaluate the link-
age between water quality and land cover across the South, with emphasis
on these relations at PWS intake facilities. Our results suggest that forests
provide the highest water quality in terms of TN, TP, and SS concentrations
relative to other land uses across the region. Further, PWS intake facilities
with high water quality tended to have more upstream forest or other-
natural cover, particularly for run-of-river intakes. Intakes on reservoirs
generally had lower concentrations of TN, TP, and SS than run-of-river in-
takes. While these broad generalizations were identified, there was sub-
stantial variability in land cover and water quality relationships that were
related to the influence of other factors including point sources, reservoir
characteristics, and background natural sources. We found that many in-
take facilities could be at risk of water quality degradation due to loss of up-
stream natural land cover by 2070, especially those with relatively small
upstream watersheds and those that were run-of-river intakes. To our
knowledge, this is the first study to combine observed and modeled water
quality datawith information about PWSs and future land cover projections
across a broad, heterogenous region, providing new insights into the rela-
tive influence of land cover on surface water supplies.

4.1. Land cover water quality linkages

Both observed and modeled TN, TP, and SS decreased with increasing
upstream forest land cover and increasedwith increasing developed and ag-
ricultural land cover across water quality monitoring sites and all indepen-
dent catchments in the region. For example, on average in our sample, these
results suggest that a 1 % change from forest to developed land cover could
result in an approximately 1.5 ± 0.2 % increase in TN concentration, a
1.9 ± 0.3 % increase in TP concentration, and a 0.4 ± 0.5 % increase in
SS concentration based on multiple regression models using water quality
observations. Warziniack et al. (2017) reported similar relationships be-
tween forest cover and raw water quality across a smaller sample size and
over a larger region that included 37 Public Water Systems in the US,
where a 1 % increase in forest land cover could result in a 3 % decrease
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in turbidity; whereas a 1 % increase in developed land cover could result
in a 3 % increase in turbidity. Other studies have also found that forested
watersheds tend to provide higher water quality by various measures albeit
over generally smaller regions and sample sizes than those of this study
(Abildtrup et al., 2013; Brogna et al., 2018; Cunha et al., 2016; Fiquepron
et al., 2013; Lopes et al., 2019; Tsegaye et al., 2006).

While the broad generalization that forestedwatersheds tend to provide
higher water quality has been well established, this study showed that nu-
merous confounding factors can affect the benefit of this ecosystem service
for drinking water supply and can complicate our ability to quantify forest
benefits across large scales in mixed-use watersheds. Modeled TN, TP, and
SS export rates at the catchment level show generally lower export of these
pollutants in forest-dominant than developed- or agricultural-dominant
land covers, but the variability in these export rates was considerable. At-
mospheric deposition of N, geological sources of P, underlying soil types,
and channel erosion all contributed to the variability in TN, TP, and SS ex-
port from forested watersheds, and some cases resulted in higher export
rates from forested catchments than developed or agricultural catchments
across the region. Despite the variability in export across land cover
types, changing land cover from forest to developed or agricultural land
cover under the same natural background pollutant sourceswould likely re-
sult in increases in TN, TP, and SS export depending on the intensity of the
developed land cover (i.e., open space, low, medium, high) or type of agri-
cultural land cover (i.e., pasture, row crop). This can partly be explained by
uptake of nutrients and settling of sediment in forests (particularly riparian
forests) (Lockaby et al., 2013) and also the general lack of additional
sources of these pollutants associated with developed or agricultural land
covers including fertilizers, manure, and surface erosion (Abildtrup et al.,
2013; Brown and Froemke, 2012).

In addition to land cover and associated non-point sources of TN, TP,
and SS, point sources (e.g., wastewater treatment plants) and reservoirs
add to the variability and complexity in linking land cover to water quality
at large scales. Wastewater effluent typically increases nutrient loads and
other constituents in receiving waters (Hamdhani et al., 2020); the extent
of these effects depend on the level of treatment and the relative flow vol-
umes of effluent discharge and receiving waters. Reservoirs can act as sed-
iment retention and nutrient cycling basins, typically resulting in decreases
in nutrient and sediment concentrations downstream (Ignatius and
Rasmussen, 2016).

4.2. Future land cover and climate change impacts on water quality

Land cover and climate change can independently and collectively alter
surface water quality with implications for aquatic ecosystems and Public
Water Systems. Most projections of land cover in the South suggest that
there will be continued conversion of agricultural and forested land cover
to developed land over the 21st century (e.g., Wear and Greis, 2013). The
results of this study suggest that these projected land cover changes, if real-
ized, could have negative implications for water quality in the region. Cli-
mate change could magnify these land cover change driven effects on
water quality through increases in the frequency andmagnitude of extreme
precipitation events (Gao et al., 2012; Zobel et al., 2018) as it is through
precipitation events that a majority of nonpoint source pollutant loads
from developed and agricultural land covers are delivered to surface
water supplies (USEPA, 2003).

4.3. Implications for Public Water Systems

Our results showed that both intake setting and upstream land cover are
important determinants of water quality and surface water intakes, and
run-of-river intakes may be more sensitive to upstream land cover than
those on reservoirs. Modeled concentrations of TN, TP, and SS were lower
for intakes with primarily forested upstream watersheds (i.e., >50 % for-
ested), and concentrations were lower for intakes located on reservoirs
than those that were run-of-river intakes. Of the PWS intake facilities
with high water quality by our definition, 90 % had <16 % and 30 %
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developed and agricultural land cover upstream, respectively. Under the fu-
ture land cover scenario, 181 intake facilitieswere predicted to have>10%
reduction in upstream natural land cover by 2070. Intake facilities with
smaller upstream watersheds tended to have larger projected reductions
in upstreamnatural land cover than thosewith larger upstreamwatersheds,
and the top ten PWS intake facilities in terms of natural land cover loss
served populations between 1385 and 36,662 (median 16,800). Among
these facilities, 51 were classified as having high raw water quality based
on modeled TN, TP, and SS concentrations and the water quality classifica-
tion developed in this study, with 44 on reservoirs and seven run-of-rivers.
These results suggest that smaller PWS (often with more limited resources)
may be most vulnerable to future water quality impacts of land cover
change.

These results could have implications for the costs and infrastructure
needed to treat raw surface water for drinking water use. Cities like New
York, Boston, Tokyo and São Paulo have implemented forest conservation
policies to provide high quality drinking water (Gartner et al., 2014;
McDonald and Shemie, 2014; Price and Heberling, 2018). Both surface
water quality and drinking water prices are important components in U.S.
EPA economic assessments of surface water quality regulations (Price and
Heberling, 2018). With this in mind, organizations like the American
Water Works Association (AWWA) and the U.S. Endowment for Forestry
and Communities are furthering research on the relationship between
drinking water treatment costs and forest cover and building partnerships
with water utilities to protect the forested watersheds (Gartner et al.,
2014). The federal government has contributed to water quality payments
for forest conservation to landowners in the South via several programs in-
cluding the Chesapeake Bay Watershed Initiative (CBWI) in Virginia and
the Kentucky Soil and Water Conservation Cost Share Program with the
goal of preventing soil erosion and protecting water quality. These govern-
ment programs have been relatively small in dollar terms, averaging about
$110,000 per year for forestry-related water quality projects in the region
(Frey et al., 2021a; Frey et al., 2021b). By comparison, compliance markets
for forestedwetlandmitigation, forested streammitigation, andwater qual-
ity trading credits from forested riparian buffers have averaged about $745
million per year for the region. The states of Florida and Louisianawere par-
ticularly active in forest wetlandmitigation trading, averaging $450million
and $130 million per year, respectively (Frey et al., 2021a; Frey et al.,
2021b). However, the benefits and costs of forest source water protection
are highly varied, due in part due to spatial heterogeneity in how forest
loss affects nutrient and sediment flow as well as variation in property
values (the opportunity costs of forest preservation).

4.4. Implications for water resource management

Our results are timely from a management perspective given the global
threats of forest loss to agriculture and development (FAO and UNEP,
2020), and potential implications for downstreamwater supplies. The link-
ages between land cover and water quality developed here could be
coupled with information quantifying drinking water treatment costs and
other benefits to estimate the economic value of forested lands for water
quality (FAO IUFRO and USDA, 2021). Studies of this nature have been
conducted in South Africa (Gelo and Turpie, 2022), Brazil (Cunha et al.,
2016), France (Fiquepron et al., 2013), Portugal (Lopes et al., 2019),
Costa Rica (Piaggio and Siikamaki, 2021), the United States (Warziniack
et al., 2017), and globally (McDonald et al., 2016). Our results align with
this larger body of literature linking land cover to water quality for Public
Water Systems, and provide new information at a high resolution across a
large, heterogenous region with clear dependence on water from forested
lands (Liu et al., 2020) and threats to land cover change (Wear and Greis,
2013).

While a majority of the forested land in the western U.S. is publicly
owned, most of the forested land in the eastern U.S. is privately owned
(Hewes et al., 2017) and is therefore vulnerable to land use change and
water quality impacts. Our results could inform a foundation for a payment
for ecosystem services program inwhich private forest landowners in water
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supply watersheds in the eastern US could be compensated for the down-
stream benefits of keeping their land forested (McDonald et al., 2016).
Such foundational efforts have been undertaken within some river basins
in the South, including the Catawba river basin inNorth and SouthCarolina
(Eddy et al., 2019) and riparian buffer credit trading in several other water-
sheds in North Carolina (NCDEQ, 2022), but the widespread PWS vulner-
abilities across the South and eastern U.S. calls for a broader assessment
of the value of forests for water supplies across the region.

4.5. Limitations and opportunities for future research

Regional assessments of water quality are challenging due to a lack of
monitoring data at sufficient spatial and temporal scales (Jiang et al.,
2020; Kirschke et al., 2020) and limitations of hydrological models used
to predict water quality (Fu et al., 2020; Hallouin et al., 2018). Limitations
of hydrological models are related to limitations of the monitoring data
used to parameterize and test the models, as well as their ability to capture
the complex and dynamic processes important for water quality in human-
altered watersheds (Fu et al., 2020). Here we used published SPARROW
model outputs to provide estimates of 1) the relative export rates of TN,
TP, and SS among land cover types, 2) the relative contribution of various
sources to TN, TP, and SS export, and 3) the concentration of TN, TP, and
SS at public water system intake facilities across the region. Like other
water quality modeling approaches, SPARROW is subject to uncertainty
in input data and uncertainty in the manner in which hydrologic and
water quality processes are simplified and represented. Uncertainty in the
model-predicted pollutant loading and concentration can be substantial.
For example, Moriasi et al. (2007) suggested that model bias of up to
70 % for N and P and up to 55 % for SS is indicative of “satisfactory”
model performance. In light of this uncertainty, estimates of export,
sources, and concentrations in this study should be considered in the con-
text of this uncertainty as quantified with standard errors, summarized in
Table S2, and detailed in cited SPARROW references. The contribution of
forests to water quantity is simpler to quantify than the contribution to
water quality and has been well studied (Brown et al., 2008; Liu et al.,
2021; Liu et al., 2022). However even in these studies the human move-
ment of water through withdrawals and interbasin transfers has added sig-
nificant complexity to such analyses at large scales (Liu et al., 2022).

Our results suggest that there is considerable complexity in the relation-
ship between land cover and water quality. These complexities are in part
the result of sources and processes that are not directly related to land
cover (e.g., point sources and reservoirs), gradients in the intensity of devel-
opment and types of agriculture that were not captured in our aggregated
land cover types, and others. Our goal was to examine broad land cover
and water quality relationships across a large region, and thus it was be-
yond the scope of this work to analyze these relationships in fine detail
with respect to these complexities. Further, present modeling tools are gen-
erally not sufficiently structured or parameterized, and model input data
and water quality observations are generally not spatially and temporally
distributed to make inferences at this level of detail at the regional scale.
Despite these complexities and limitations, we identified significant rela-
tionships between land cover and water quality. Future research could
seek to explicitly examine effects of these factors onwater quality in greater
detail.

Hydrologic model time-steps at the daily or hourly scale could provide
an improved representation of land cover impacts on water quality com-
pared to the long-term average time-steps such as that used in this study be-
cause land-cover related non-point source impacts on water quality are
largely driven by precipitation events (USEPA, 2003). However, these
models are difficult to parameterize and computationally expensive when
applied at large regional scales. The ideal application of hydrologic models
for regional land cover change impact studies would include relatively
coarse regional water quality models (e.g., SPARROW) to identify “hot-
spot” areas of concern, and then apply finer scale detailed river basin-
scale water quality models in those areas (Caldwell et al., 2015). For exam-
ple, Johnson et al. (2015) applied the SWAT (Neitsch et al., 2011)
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hydrologic model to predict streamflow, TN, TP, and SS loading in 20 river
basins across the US,finding that the effects of future urbanization onwater
quality is small compared to the effects of climate change overall, but the
effects could be greater in subbasins where development is concentrated.
Future research could couple the regional results of this study with results
of finer-temporal scale water quality model results in vulnerable water
supply watersheds under climate and land cover change, and then link
these products to economic models to assess the value of forests for a
variety of ecosystem services including surface drinking water supply, aes-
thetics, improved recreation services, and mitigation of harmful algal
blooms (Price and Heberling, 2018; Warziniack, 2014).

5. Conclusions

The objectives of this studywere to examine relationships between land
cover and water quality across a broad region in the southeastern US where
future population growth is projected to result in development of natural
land cover over the 21st century. We found considerable complexity and
variability in this relationship that could be related to several confounding
factors including catchment characteristics, background sources, point
sources, reservoirs, and varying levels of development intensity and differ-
ent agricultural activities. In addition, these results illustrate the challenges
and uncertainty associated with modeling these relationships at broad
scales. Despite these complexities, we identified significant relationships
between land cover and TN, TP, and SS concentrations suggesting that for-
ests support overall higherwater quality in the region.We found that Public
Water Supply intake setting (i.e., run-of-river or reservoir) and upstream
land cover could be important determinants of water quality for these in-
takes. Further, run-of-river intakes with small accumulation areas may be
most vulnerable to water quality degradation due to future loss of forest
and other natural land cover in the future. This study provides new and
timely broad-scale evidence that conserving or expanding forest land
cover where possible could support overall higher water quality and en-
hance the resilience of drinking water supplies.
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