A Key to Species of the Scorpionflies of Thailand with the Description of New Species of Panorpa and Neopanorpa (Mecoptera: Panorpidae) Based on Morphology and DNA Barcodes

Authors: Bicha, Wesley, Schiff, Nathan, Lancaster, Aaron, Suttiprapan, Piyawan, Dokjan, Theerapan, et al.

Source: Transactions of the American Entomological Society, 148(2) : 201-228

Published By: The American Entomological Society

URL: https://doi.org/10.3157/061.148.0202
A Key to Species of the Scorpionflies of Thailand with the Description of New Species of *Panorpa* and *Neopanorpa* (Mecoptera: Panorpidae) based on Morphology and DNA Barcodes

WESLEY BICHA¹, NATHAN SCHIFF², AARON LANCASTER², PIYAWAN SUTTIPRAPAN³, THEERAPAN DOKJAN³, & BRIAN SCHEFFLER⁴

¹121 Old Batley Road, Oliver Springs, TN 37840 USA. E-mail: mecoptera@live.com
²United States Department of Agriculture, Forest Service, Southern Research Station, Insects Diseases and Invasive Plants. P.O. Box 227, Stoneville, MS 38776 USA. E-mail: nathan.schiff@usda.gov
³Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand. E-mail: piyawan.s@cmu.ac.th, theerapan_dokjan@cmu.ac.th
⁴USDA Agricultural Research Service, USDA-ARS-CGRU, MSA Genomics Laboratory, 141 Experiment Station Road, Stoneville, MS 38776 USA. E-mail: brian.scheffler@usda.gov

ABSTRACT

The first Panorpa was recently discovered in Thailand even though the genus had not been thought to occur south of the Himalaya. We now add a second new species, *Panorpa apscisacera n. sp.*, also from Northern Thailand, which has nearly immaculate pale-yellow wings with only a pronounced stigma. The male has a blunt, vestigial bifid anal horn, and thin, bare ventral parameres. Additionally, we describe *Neopanorpa appendicema n. sp.* with mesad-curled male hypovalve apices and large, basomesal lobes, a relatively large species, *N. inchoata n. sp.*, with overlapping elliptical hypovalves and incomplete apical bands, *N. setosiloba n. sp.* with huge bristly lobes on the mesal margin of the male gonostyles, and *N. mandangensis n. sp.* with a narrow 3rd tergum process extending to the posterior margin of the 4th tergum. *Neopanorpa nielseni* Byers, 1965, previously known from northern Vietnam and southern China, has recently been discovered in northern Thailand. *Bittacus leptocaudus* Byers, 1965, known from a lone male has been rediscovered and locality details and photo of the habitat provided. These bring the number of species of Mecoptera occurring in Thailand to 22 (19 *Neopanorpa*, two *Panorpa*, and one *Bittacus*) and the number of Mecoptera species known from Indochina to 56 (48 *Neopanorpa*, three *Panorpa*, 4 *Bittacus*, and one *Bicaubittacus*). A key to the species of Mecoptera in Thailand with illustrations is provided. DNA was extracted from specimens and the DNA Barcode, mitochondrial cytochrome oxidase I (COI) gene fragment sequenced and analyzed for 19 of the 22 species of Thai Mecoptera. The results are figured as a Neighbor-Joining tree.

Key words: *Bittacus*, Cambodia, COI, distribution records, hangingfly, K2P, Project Tiger, scorpionfly, Vietnam.
INTRODUCTION

Mecoptera are unique among insects of other orders for having a rostrum with mouthparts at the apex, and fore- and hind wings of similar size and venation. Only Bittacidae and Panorpidae of the 9 extant families of Mecoptera occur in Southeast Asia. Members of the family Panorpidae are commonly called scorpionflies because the males have characteristic recurved, bulbous abdominal terminalia resembling the stinger of scorpions. Scorpionflies are saprophagous, feeding on dead insects and other soft-bodied, small animals, but have also been observed feeding on pollen and fermenting berries (Bicha 2018; Bicha, et al. 2020). The adults are typically observed sitting on the upper surfaces of herbaceous vegetation growing in moist forest ecotone and are noted for their mating behavior, which may include males offering nuptial gifts of food (Thornhill & Alcock 1983). Members of the family Bittacidae are commonly known as hangingflies because the adults typically hang from undersides of vegetation in moist forest and are predaceous, capturing small insects with their raptorial hind tarsi.

Panorpidae was recently divided into two subfamilies, Neopanorpinae and Panorpinae (Wang & Hua 2021). Two genera of Neopanorpinae (Leptopanorpa MacLachlan, 1875 and Neopanorpa Weele, 1909) and six genera of Panorpinae (Panorpa Linnaeus, 1758, Sinopanorpa Cai & Hua in Cai, et al., 2008, Furcatopanorpa Ma & Hua, 2011, Dicerapanorpa Zhong & Hua, 2013, Cerapanorpa Gao, Ma, & Hua, 2016, and Megapanorpa Wang & Hua 2019) are currently recognized worldwide and all occur in Asia. Nearly all Southeast and South Asian scorpionflies are currently assigned to Neopanorpa with only two currently described species of Panorpa known from the region. Bittacidae has 18 currently recognized genera and approximately 218 species worldwide. Thailand has one described species of Bittacidae in the genus Bittacus, although Bicaubittacus Tan & Hua, 2009 is known from nearby Burma.

Panorpidae have euciform larvae with compound eyes and bear long setae that tend to trap soil. They have similar biology with four instars of larvae dwelling in the soil and feeding on debris (Mampe & Neunzig 1965, Boese 1973). Both Neopanorpina and Panorpa larvae are eudaphic, inhabiting the soil most of their lifetime, however Panorpa larvae...
were found to be nocturnal coming to the surface at night to feed, while only a comparatively small fraction of *Neopanorpa* were found to venture to the surface at night (Jiang, et al. 2019). We presume this behavior might be an adaptation to competition with ants, which dominate tropical regions. *Neopanorpa* adults may be active all months of the year in Thailand but appear to fly most abundantly in April, May, and September. In contrast, *Panorpa* are active in late October and into November in the mountains of northern Thailand. In Taiwan, where both *Neopanorpa* and *Panorpa* are active at the same time of year, *Neopanorpa* are typically found below 1200 m and *Panorpa* at elevations above 2000 m, where it is often cool, and vegetation moistened from morning mist. Panorpid pupae are decticous, exarate (Yie 1951, Boese 1973). Larvae of bittacids also dwell in the soil and are eruciform appearing similar to the larvae of panorpids with compound eyes and long setae (Setty 1940). Bittacids tend to live at much lower elevations than panorpids.

Neopanorpinae typically have wings narrowed basally compared to the other panorpid genera and the 1A vein usually, but not exclusively, proximal to the origin of the radial sector (ORs) rather than distal in the case of the Panorpinae genera. The male genitalia of *Neopanorpa* in Southeast Asia lack or have vestigial ventral parameres, while the Panorpinae have well-developed ventral parameres, which are typically taxonomically diagnostic. Thus, other characters such as wing patterns or the shape of the male hypovalves or gonostyles must be used for *Neopanorpa* species determination.

We previously reported on the Mecoptera collected during Project Tiger, a collaborative effort involving Thai field researchers surveying the insect fauna in national parks throughout Thailand (Sharkey 2018), which provided a much better understanding of temporal and spatial species distribution (Bicha 2019). A remarkable find was the discovery of the genus *Panorpa* in Thailand when it has been assumed that the genus was restricted north of the Himalaya. We herein describe an additional species of *Panorpa* from northern Thailand later discovered among unsorted Project Tiger material as well as 4 additional *Neopanorpa*. We previously considered one of these species of *Neopanorpa* occurring in northwest Thailand to merely be a variant of *Neopanorpa panda* Byers, 1965, when we reported its distribution in Thailand (Bicha 2019). Subsequent morphological and mitochondrial cytochrome oxidase I (COI) DNA comparison of a number of specimens of these two forms has since lead us to conclude that *Neopanorpa panda* is endemic to the Vietnam Central Highlands and adjacent Cambodia and a larger form without twisted hypovalves occurring in Vietnam, Cambodia, and Thailand to be an undescribed species.

We increase the number of described Mecoptera species in Thailand to two *Panorpa, 19 Neopanorpa*, and one *Bittacus* (Byers 1965, Webb & Penny 1979, Bicha 2010, 2019) and the number of Mecoptera species in Indochina to 56, which includes 3 *Panorpa, 48 Neopanorpa*, and 5 Bittacidae (Byers 1965, 1999; Willmann 1976; Bicha 2018, 2019). We provide an updated, illustrated key to the Mecoptera species of Thailand.

MATERIAL AND METHODS

The majority of the specimens from Project Tiger were collected by malaise traps or pan traps set up at a number of Thailand national parks, supplemented by hand netting. Bulk samples were sorted by local parataxonomists and distributed to taxonomic specialists for determination. Follow up collecting after the Project Tiger survey was conducted by baiting using raw squid followed by hand netting (Bicha, et al. 2020). Additional Project Tiger material, which was discovered at Chiang Mai University and in the QSBG collection, following our initial report (Bicha 2019) was examined.

Cytochrome Oxidase 1 DNA barcodes (Hebert et al. 2003) were generated using the protocols described in Schiff, et al. (2012) and Bicha, et al. (2017). Individual legs were collected from either pinned dried specimens or specimens stored in alcohol and their total genomic DNA extracted using the Biosearch Technologies, Epicentre line, MasterPure Complete DNA and RNA Purification Kit. DNA was amplified using one of three primer combinations: LCO1490 and HCO2198, Wes1 and HCO2198 and Wes1 and Nancy. LCO1490, 5’-GGT-CAA-CAA-ATC-ATA-AAG-ATA-TTG-G-3’, HCO2198 5’-TAA-CTC-GGG-TGA-CCA-AAA-AAT-CA-3’ and Nancy 5’-CCC-GGT-AAA-
ATT-AAA-ATA-TAA-ACG-3' are described in detail by Simon et al. (1994). Wes1, 5'-GGC-TTT-TCT-CTA-ATA-AGG-ATA-TTG-G-3', is a minor modification of LCO1490 of our own design first used for scorpionflies in Bicha et al. (2015). The amplified DNA was sequenced in both directions following the protocols in Schiff et al. (2012) and the sequences combined to form individual specimen contigs using Seqman Pro by DNASTar. Individual specimen contigs were aligned using Clustal W and a Neighbor-joining tree produced and K2P values calculated in Megalign also by DNASTar. Bootstrap values (1000 trials starting with a random seed of 111) for branches of the tree were also generated by Megalign. We generated two sets of trees and bootstrap values. The first tree includes all 134 sequences of Thai Mecoptera available to us but it is too large to fit on a single page, so we generated a more easily viewed tree using two representative sequences from each species. We present two sets of Bootstrap values for each branch, the first is the value using two representative sequences and the second in parentheses is the value for that branch based on the larger sample size. A Maximum likelihood tree was also computed using MEGA X (Kumar et al, 2018).

Photographs and measurements of wings, genitalia, and other features of each species for this paper were taken with a Keyence VHX7000 digital microscope system. Plates were prepared from photographs using GIMP image manipulation program (www.gimp.org). Descriptive nomenclature for wing venation and markings follows Esben-Petersen (1921); terminology for male genitalia used follows that of Issiki (1933).

RESULTS

Panorpa apscisacera Bicha & Suttiprapan, new species
(Figs. 1–5)
urn:lsid:zoobank.org:act:8C133989-3EAB-41BD-84B5-154CBA759388

Diagnosis — Pale-yellow immaculate wings, blunt slightly bifid anal horn, thin, widely-separated hypovalves, and two-branched, long, thin, bare ventral parameres. Male of only other described Southeast Asian *Panorpa* (*P. auripennis* Bicha, 2019) has brown pterostigmal and basal bands on intensely orange wings and males have thick, bushy ventral parameres.

Description — One male preserved in ethanol. Body length approximately 10.1 mm; fore wing length 8.8 mm; hind wing length 8.2 mm.

Head yellowish orange including rostrum. Ocellar triangle black. Ocelli and eyes brown. Antennae with 41 flagellomeres; scape and pedicel yellowish orange, flagellomeres black.

Pronotum pale brown, anterior margin with approximately 10 black setae, posterior margin dark brown; mesonotum and metanotum pale brown with median sordid white stripe one-third tergum width anteriorly, narrowing to one-fourth width mid-length for remainder, clothed with fine light brown caudad setae, posterior margin dark brown, scutellum sordid white. Pleural areas, coxae, femora, tibiae, and tarsi sordid white; anterior of fore- and mesocoxae with apicad fine, black setae; femora and tibiae with numerous apicad shorter, fine, black setae; tibiae with few sparse, longer, black setae; tarsomeris brown, tarsal claws, dark brown, serrate.

Wings (Fig. 1) broad with rounded apices; membranes pale yellowish; veins ochre; distal two crossveins pale, basal crossveins ochre to brown. Pterostigma pronounced, yellow. Forewing with apical and pterostigmal bands reduced to a few small faint brown markings, and basal band represented by a small spot between CuP and 2A. Hind wing completely immaculate. R5 in forewings with two branches. Thyridium and nygma present. Two to six rows of macrotrichia in center of cells distal to M3+4. Posterior base of forewings with 4–6 stout setae and anterior base of hindwings with 2–3 stout setae. Two cross veins between 1A and 2A in forewings, and 1A terminating at wing posterior margin distal to origin of Rs (ORs).

Male terga 2–5 lateral margins pale brown with sordid white midline stripe and posterior margins; no obvious posterior median process of tergum 3, however posterior margin broadly curved caudad and setose (Fig. 2). Sterna 2–5 and pleural areas sordid white. Segments 6–8 yellowish brown; each segment comparatively short (Figs. 3 & 4). Segment 6 posterior margin bluntly truncate, with slightly bifid anal horn. Segment 7 length 60% of segment 6; with dorsal hump 50% of width at mid-length. Segment
8 elliptical; 75% length of segment 6. Genital bulb (Fig. 5) yellowish brown in its entirety. Epandrium (tergum 9) tapered toward apex; deeply emarginated, with two digitate lobes; clothed in fine, black apicad setae; cerci yellowish-brown. Hypantrium (sternum 9) with no stalk, bearing two, narrow, widely separated sordid white hypovalves extending four-fifths distance to bases of gonostyles. Gonocoxites (basistyles) fused basal one-third length, elliptical with width four-fifths length, apical margins truncate. Gonocoxites, gonostyles, and epandrium covered with fine brown caudad hairs. Ventral and dorsal valves white dorsal valves approximately similar in size and shape as ventral valves; ventral parameres bifurcated with dorsal and ventral branches, both long, slender, lacking “barbs,” extending to base of gonostyles, acuminate. Gonostyles (dististyles) bearing large, rounded basomesal lobe; prominent median tooth; outer margins slightly concave with falcate, slightly darkened apices.

Female unknown.

Etymology — The specific epithet, apscisacera, a combination of, apscisa (= blunt) and cera (= horn), refers to the blunt anal horn of this species.

Remarks — This species can be readily recognized in the field by the immaculate pale-yellow wings held roof-like over the abdomen, and under a microscope by the slightly bifid blunt anal horn, thin widely-separated hypovalves, and two-branched, long, thin, bare ventral parameres of the male.

Neopanorpa is the predominant scorpionfly genus throughout Southeast Asia, with 86 percent of the described species. In contrast, P. apscisacera, n. sp. is only the second species of Panorpa described from Thailand. The males of this remarkable species resemble seven members of the Chinese guttata-group, with a blunt anal horn on the caudodorsal margin of segment 6 and a hump on the dorsum of segment 7, especially Panorpa substricta Wang & Gong, 2021, whose anal horn is slightly bifid.

The unexpected presence of Panorpa in northern Thailand is presumed to be due to the cooler temperatures of the late season at the elevation that the two were collected.

Neopanorpa appendicema Bicha & Suttiprapan, new species
(Figs. 6–13)
urn:lsid:zoobank.org:act:3D863131-92C3-427B-86D0-99134A438E7D

Diagnosis — Male hypovalve apices curl mesad nearly forming complete circles somewhat resembling hypovalve apices of Neopanorpa malaisei Byers, 1999, but differing in hypovalves possessing large, basomesal lobe on hypovalve basomesal margins, which N. malaisei lacks. Male genital bulb entirely ochre, that of N. malaisei is glossy black. Wing pterostigma pronounced, while that of N. malaisei faint.

Description — 15 males, 7 females initially preserved in ethanol, 4 males and one female subsequently pinned and spread. Male body length approximately 11.3 mm. Female body length approximately 11.6 mm. Male fore wing length 11.2 mm; hind wing length 10.2 mm. Female fore wing length 11.5 mm; hind wing length 10.7 mm.

Rostrum pale yellow with smoky longitudinal stripe. Frons pale yellow. Ocellar triangle and vertex black. Ocelli amber; eyes plum to gray. Antennae nearly as long as wings with 42 flagellomeres; scape, pedicel, and flagellomeres brown.

Wing membranes slightly smoky brown. Male wings (Fig. 6) immaculate except for conspicuous ochre pterostigma and faintly smoky apical and pterostigmal bands. Female wings (Fig. 7) more heavily marked with anterior half of apical band complete; anterior portion of pterostigmatic band triangular, posterior apical branch complete with basal branch reduced to a spot in forewing, posterior
pterostigmal band absent in hindwing; basal band reduced to anterior and posterior spot. Veins brown. Cross veins light brown except colorless in apical band. R 2 bifurcate Thyridium present. Nygma brown. Two or four rows of macrotrichia in center of cells distal to pterostigmal band. One cross vein between 1A and 2A in forewings, and 1A terminating at wing posterior margin proximal to ORs, typical of Neopanorpa.

Male abdomen with terga 2–5 black. Tergum 3 posterior process (notal organ) broadly triangular, extending one-half length of tergum 4, somewhat hook-shaped ventrad against tergum 4 (Figs. 8 & 9). Tergum 4 with raised setose peg at midpoint. Sterna 2–8 yellowish orange and equal length as segment 6. Genital bulb (Fig. 10) yellowish orange. Epandrium apical margin truncate. Hypandrium base width two-thirds length, apex width one-fourth length, bearing two hypovalves. Hypovalves (Fig. 11) yellowish orange, extending to base of gonostyles becoming dark near apex, narrowing and curling basomesad nearly completing circle. Gap between hypovalves (vertex) circular. Hypovalves with large, basomesal ear-shaped appendage. Gonocoxites fused basal one-third of length, elliptical with width nearly equal to length, yellowish orange, apical margins truncate bearing 2–6 long, black setae. Hypandrium, gonostyles, and epandrium covered with fine black caudal hairs. Aedeagus white. Ventral parameres present, straight, bare, length one-fifth length of hypovalves. Gonostyles with large basomesal lobe bearing black basad setae on basal finger; with slight median tooth; falcate, long, slender, with outer margins nearly straight.

Female abdomen with terga 2–6 brownish black; sterna 2–5 sordid white; terga 7–9 light ochre; sterna 6–9 light ochre; cerci black. Subgenital plate of sternum 8 brown with long setae; tapered apically (Fig. 12). Genital plate with axial portion thick; apodeme darkened; arms spatulate, twisting to become vertical posteriorly, equal in length to axial portion (Fig. 13).

Material examined — Holotype male, allotype female, and 7 male, 1 female paratypes, THAILAND, Chiang Mai Province, Doi Inthanon National Park, Mae Aum, 18°30’32.9’’N, 98°30’19.2’’E, 1628 m elevation, sweep net, 5 September 2019, leg. W. Srisuks. Additional paratypes: 2 males, 2 females, same area but 18°31’39.5’’N, 98°29’59.7’’E, 1639 m elevation, malaise trap 2–9 May 2014, sample 2014-130; 1 male, 1 female, same locality, 29 May–1 June 2014, malaise trap, sample 2014-158; 1 male, Doi Inthanon National Park, Checkpoint 2, 18°31.559’’N, 98°29.941’’E, 1700 m elevation, 15 July 2006, malaise trap, sample T67; 1 male, 2 females, same locality, 3 September 2019; 1 male, same locality, 4 September 2019; 1 male, same area, 18°31’39.5’’N, 98°29’59.7’’E, 1639 m elevation, 29 September–November 2014, malaise trap, sample 2014-274.

Holotype, allotype, and most paratypes reside in the QSBG collection, Chiang Mai. Additional paratypes deposited in Illinois Natural History Survey (INHS) collection, Champaign, Illinois.

Etymology — The specific epithet, appendicema (feminine), is derived from the Latin appendicem, meaning appendage and refers to the ear-like appendage on the basomesal margin of each male hypovalve.

Remarks — This insect may be differentiated in the field from other scorpionflies with which it coexists by its nearly immaculate (male) to faintly marked (female) wings and ochre genital bulb. The wings of all other Neopanorpa in northwest Thailand except N. malaisei have dark brown bands. Neopanorpa malaisei has a glossy black genital bulb. The male genitalia, wings, and body coloration of this species superficially resembles N. zhengyuchen Wang & Gong, 2021 from China but differs by males having a shorter notal organ on the third tergum, lobes on the basomesal margin of the hypovalves, and more pronounced mesal curl of the apices of the hypovalves. This species may also be related to N. lifashengi Hua & Chou, 1999 and N. nigritos Carpenter, 1938 of China.

Neopanorpa inchoata Bicha & Schiff, new species
(Figs. 14–20)

Material examined — Holotype male, allotype female, and 7 male, 1 female paratypes, THAILAND, Chiang Mai Province, Doi Inthanon National Park, Mae Aum, 18°30’32.9’’N, 98°30’19.2’’E, 1628 m elevation, sweep net, 5 September 2019, leg. W. Srisuks. Additional paratypes: 2 males, 2 females, same area but 18°31’39.5’’N, 98°29’59.7’’E, 1639 m elevation, malaise trap 2–9 May 2014, sample 2014-130; 1 male, 1 female, same locality, 29 May–1 June 2014, malaise trap, sample 2014-158; 1 male, Doi Inthanon National Park, Checkpoint 2, 18°31.559’’N, 98°29.941’’E, 1700 m elevation, 15 July 2006, malaise trap, sample T67; 1 male, 2 females, same locality, 3 September 2019; 1 male, same locality, 4 September 2019; 1 male, same area, 18°31’39.5’’N, 98°29’59.7’’E, 1639 m elevation, 29 September–November 2014, malaise trap, sample 2014-274.

Holotype, allotype, and most paratypes reside in the QSBG collection, Chiang Mai. Additional paratypes deposited in Illinois Natural History Survey (INHS) collection, Champaign, Illinois.

Etymology — The specific epithet, appendicema (feminine), is derived from the Latin appendicem, meaning appendage and refers to the ear-like appendage on the basomesal margin of each male hypovalve.

Remarks — This insect may be differentiated in the field from other scorpionflies with which it coexists by its nearly immaculate (male) to faintly marked (female) wings and ochre genital bulb. The wings of all other Neopanorpa in northwest Thailand except N. malaisei have dark brown bands. Neopanorpa malaisei has a glossy black genital bulb. The male genitalia, wings, and body coloration of this species superficially resembles N. zhengyuchen Wang & Gong, 2021 from China but differs by males having a shorter notal organ on the third tergum, lobes on the basomesal margin of the hypovalves, and more pronounced mesal curl of the apices of the hypovalves. This species may also be related to N. lifashengi Hua & Chou, 1999 and N. nigritos Carpenter, 1938 of China.
N. inchoata n. sp. is noticeably larger, and wings have incomplete apical bands. Other species of Thai scorpionfles with overlapping hypovalves have complete apical bands.

Description — 8 males, 16 females initially preserved in ethanol.

Body length approximately 18.7 mm male, 11.0 mm female. Male fore wing length 14.8 mm, hind wing length 13.3 mm. Female fore wing length 11.5 mm, hind wing length 11.2 mm.

Dorsum of head dark brown. Ocelli amber; eyes plum to grey. Rostrum yellowish-brown; labrum and mouthparts yellowish-brown except apex of maxillary palps dark brown. Antennae long, extending to stigma of forewing, with 42 flagellomeres; scape ochre, pedicel brown, flagellomeres brownish black.

Pronotum dark brown. Mesonotum anterior half dark brown, remainder sordid white to yellowish-brown with broad dark brown medial stripe including scutellum. Metanotum with broad dark brown median stripe including scutellum, lateral portions sordid white to yellowish-brown. Pleural areas sordid white. Coxae, femora, tibiae, and tarsi sordid white to light brown with numerous fine black apicad setae; tibiae with few sparse, longer, black setae; tarsal claws serrate with five dark brown teeth.

Wing membranes (Fig. 14) hyaline except for anterior half of area between apical and pterostigmal bands slightly frosted (whitish); markings brown; most veins brown. R₂ in forewings with three or sometimes four branches. Posterior portion of apical bands posterior to R₃ or M₁ generally incomplete. Pterostigmal band forked posteriorly with basal branch generally always present, anterior branch sometimes incomplete or faint. Marginal spots present. Thyridium present. Nygma brown. Two or four rows of macrotrichia in center of cells distal to pterostigmal band. Basal bands thin, often interrupted to form two spots. No humeral spots. Wing markings somewhat reduced in hind wing. One cross vein between 1A and 2A in forewings, and 1A reaching wing posterior margin proximal to ORs. Posterior base of forewings and anterior base of hindwings with 2–3 stout setae.

Abdomen of male: Terga 2–5 dark brown; corresponding sternae pale yellowish orange; pleural areas sordid white; posterior process of tergum 3 (notal organ) broadly triangular, extending one-third to one-half length of tergum 4, twice thickness anteriorly as posteriorly (Fig. 15), to fit slightly raised, setose ridge on tergum 4 (Fig. 16). Segment 6 cylindrical with slight diameter reduction caudally; brown anteriorly sometimes grading to ochre posteriorly. Segments 7–8 subconical, expanding from anterior to posterior, ochre, covered with fine, black, caudad hairs. Epandrium apical margin truncate; apex extended slightly beyond segment 10; cerci brown. Hyalium base width nearly equal to length, apex width two-thirds base width, bearing two hypovalves. Hypovalves dark brown, elliptical, overlapping, extending one-third length beyond base of gonostyles obscuring genital bulb interior, densely covered with fine black hairs. Gap between hypovalves (vertex) circular (Fig. 17). Gonocoxites fused basal four-fifths of length, elliptical with width three-fourths length, ochre, apical margins truncate. Hyalium, gonostyles, and epandrium covered with fine yellowish-brown to black caudad hairs. Aedeagus elongate (Fig. 18); ventral valves conspicuous, long, extending to base of gonostyles; dorsal valves approximately similar in size and shape as ventral valves, darkened; ventral parameres vestigial; lateral parameres pronounced, blade-like; dorsal parameres vestigial. Outer margins of gonostyles straight to slightly convex, apices brownish black, bases ochre; basal lobe notched, often obscured under aedeagus and hypovalves.

Abdomen of female: Terga 2–6 brownish black; sternae 2–5 pale yellowish orange; terga 7–10 reddish-brown; sternae 6–10 reddish-brown; cerci black. Subgenital plate of sternum 8 dark brown, oval, deeply incised apically; lobes and lateral edges with long setae, remainder with shorter setae (Fig. 19). Genital plate with axial portion one-third length of arms; arms broad at base, flat (Fig. 20).

Material examined — Holotype male, allotype female, and 3 male, 4 female paratypes, THAILAND, Nan Province, Na Noi District, Khun Sathan Unit, 18°16'40.4''N, 100°30'19.0''E, 1346 m elevation, 13 November 2018, leg. W. Srisuka. Additional paratypes: THAILAND, Chaiyaphum Province, Pa Hin Ngam National Park, car park at Tung Dok Grajeaw, 15°38.438’N, 101°23.576’E, 780 m, 6–7 July 2006, 2 females, pan trap sample T324, leg. K. Sa-nog & B. Adnafai; Chiang Mai Province, 18.85660°N, 99.36531°E, 1,426 m, 11
males, 4 females, leg. W. Bicha & W. Srisuka; same locality, 2 November 2018, 2 males, 2 females, leg. W. Bicha & W. Srisuka; Phetchabun Province, Nam Nao National Park, forest check point, 16°43.695'N, 101°33.797'E, 921 m, 26–27 October 2006, 1 female, pan trap sample T1006, leg. N. Hongyothi; Same locality, 29–30 October 2006, 1 female, pan trap sample T1009; Phetchabun Province, Nam Nao National Park, forest check point, 16°43.695'N, 101°33.797'E, 921 m, 26–27 October 2006, 1 female, pan trap sample T1006, leg. N. Hongyothi; Same locality, 29–30 October 2006, 1 female, pan trap sample T1009; same locality, 21 November 2006, 1 male and 1 female, pan trap sample T1318; same locality, 22–23 November 2006, 1 male and 1 female, pan trap sample T1319; same locality, 23–24 November 2006, 2 females, pan trap sample T1320; Phitsanulok Province, Thung Salaeng Luang National Park, dry evergreen forest, 16°50.277'N, 100°52.917'E, 486 m, 11–18 September 2006, 1 female, malaise trap sample T926, leg. P. Pranee.

Holotype, allotype, and the majority of the paratypes reside in the QSBG collection with additional paratypes in the CAS and INHS collections.

Etymology — The specific epithet, *inchoata* means incomplete and refers to the distinguishing incomplete posterior portion of the apical wing band of this insect.

Remarks — This insect may be differentiated in the field from other scorpionflies that it coexists by its slightly larger size, wider wings, and incomplete posterior portion of the wing’s apical bands. Unlike Panorpinae, where species can readily be determined by the shapes and configurations of male ventral parameres, many Southeast Asian *Neopanorpa*, such as this species, have vestigial ventral parameres hidden under large, oval overlapping hypovalves so that male genitalia generally are of little diagnostic value. Fortunately, the wing patterns of many *Neopanorpa* (Figs. 6, 7, 14, 21, 26, and 33–49) are generally diagnostic as they are in this species.

Neopanorpa gestroi Navás, 1929 has similar male genitalia, but boldly marked basal, pterostigmal, and (complete) apical bands on the wings and uniquely darkened meta- and mesosterna.

Previously, we considered this a variant of *Neopanorpa panda* Byers, 1965 and erroneously reported it as occurring in Vietnam, Cambodia, and Thailand (Bicha 2010, 2019; Bicha et al. 2015, 2017). However, analysis and comparison of COI DNA gene fragments revealed that the smaller specimens with the twisted hypovalves and complete apical bands (the true *N. panda*) are shown to be unrelated on a COI Neighbor-Joining tree (Fig. 70) and differ by an average 10.3% K2P distance from the larger form with the simple, overlapping hypovalves and incomplete apical bands (*N. inchoata* n. sp.) (Fig. 14). The average intraspecific K2P distance within *N. inchoata* n. sp. is 1.8% for specimens from Thailand and 8.2% for specimens from Cambodia, Thailand, and Vietnam contrasted with 2.8% intraspecific K2P distance within all species of Thai Panorpidae.

It is possible that each of these three countries populations, may in time with further collecting and study, be proved to be unique species. *Neopanorpa pulchra* Carpenter, 1945 appears to be a somewhat similar-appearing Chinese species but has a COI DNA average interspecific K2P distance from *N. inchoata* n. sp. of 10.7%, is geographically isolated from *N. inchoata* by the Himalaya, and we consider it to be a unique, but possibly related species.

Neopanorpa inchoata n. sp. appears to be one of the most widespread species in mountainous areas throughout Southeast Asia, being found in the Vietnam Central Highlands and adjacent Cambodia to northwest Thailand. In northwest Thailand it was found to coexist in the spring and early autumn with *N. arcuata* Bicha, 2019, *N. byersi* Webb & Penny, 1979, *N. siamensis* Byers, 1965, *N. spatulata* Byers, 1965, and *P. auripennis* Bicha, 2019 on the upper surfaces of ground vegetation along forested trails. In the Vietnam Central Highlands, it was found to coexist with *N. cucullata* Bicha, 2017, and *N. dorsalis* Byers, 1965.

Neopanorpa setosiloba Bicha & Suttiprapan new species (Figs. 21–24)

urn:lsid:zoobank.org:act:EEBE3CAA-6BD0-4753-920D-5E5671334EB8

Diagnosis —Male gonostyle basomesal margins of this species possess large, bristly lobes, which other Thai *Neopanorpa* lack. Wing membranes slightly smoky brown, nearly immaculate except for conspicuous ochre pterostigma and faint apical and pterostigmal bands.
Description — Two males pinned and spread from ethanol. Male body length approximately 9.4 mm; fore wing length 12.0 mm; hind wing length 10.9 mm.

Rostrum pale brown. Frons blackish brown. Ocellar triangle and vertex blackish brown. Ocelli amber; eyes plum to grey. Antennae nearly as long as wings with 42 flagellomeres; scape pale yellow, pedicel and flagellomeres black.

Wing membranes slightly smoky brown. Wings (Fig. 21) nearly immaculate except for conspicuous ochre pterostigma in fore and hind wings, and faint apical band and nearly indiscernible pterostigmal band in fore wings. Veins brown. Cross veins light brown except colorless between M₁ and M₂ and M₂ and M₃. R₂ bifurcate. Thyridium present. Nygma brown. One cross vein between 1A and 2A in forewings, and 1A terminating at wing posterior margin proximal to ORs, typical of Neopanorpa.

Male terga 2–5 blackish brown. Tergum 3 (Fig. 22) posterior broadly triangular at base, graduating to rod-like caudally, extending one-third length of tergum 4. Tergum 4 (Fig. 23) with raised setose hook-like peg at mid point. Sternae 2–5 and pleura light brown. Segment 6 blackish brown. Segments 7 and 8 yellowish orange and equal length as segment 6. Genital bulb (Fig. 24) pilose, brown basally, blackish brown apically. Epandrium apical margin truncate. Hypandrium length slightly longer than base width, bearing two widely separated hypovalves. Hypovalves ochre, extending approximately halfway to base of gonostyles, narrowing and bending mesally. Gonocoxites fused basal one-third length, elliptical with width equal to length, ochre, apical margins truncate. Hypandrium, gonostyles, and epandrium covered with fine black caudad hairs. Aedeagus (Fig. 25) white basally, dorsal parameres blade-like, apically rounded, extending to base of gonostyles. Gonostyles blackish brown, falcate, long, and slender, with outer margins slightly concave. Gonostyle bases with large bristly mesal lobes bearing long, black basal setae.

Type material examined — Holotype male, THAILAND, Chiang Mai Province, Ban Lek Nai Pa-yai village, 20.0752°N, 99.18196°E, 1559 m, 28 April 2022, leg. Srisuka. One paratype male, same locality, 6 October 2019, CBHR DNA sample #7779, leg. Srisuka & Bicha. Holotype in the QSBG collection.

Etymology — The specific epithet, setosiloba, a combination of, setose (= bristly) and loba (= lobe), refers to the bristly lobes on the basomesal margin of the male gonostyles of this species.

Remarks — This insect superficially resembles Neopanorpa malaisei, with the dark brown body and nearly immaculate wings, but the male genitalia details are significantly different.

Neopanorpa mandangensis Bicha & Schiff, new species (Figs. 26–30) urn:lsid:zoobank.org:act:35364472-1A3F-4770-9A07-5427258438C2

Diagnosis — Male hypovalve apices of this species curve mesad as those of Neopanorpa arcuata Bicha, 2019 however, notal organ of tergum 3 is narrow and extends to posterior margin of tergum 4, while the notal organ of N. arcuata is broad and short.

Description — 1 male pinned and spread from ethanol. Body length approximately 17.0 mm; fore wing length 12.3 mm; hind wing length 11.3 mm.

Rostrum light brown. Frons black. Ocellar triangle and vertex black. Ocelli amber; eyes plum to grey. Antennae nearly as long as wings with 44 flagellomeres; scape pale yellow, pedicel and flagellomeres black.

Wing membranes slightly smoky brown, markings brown (Fig. 26). Wings with apical band complete posteriorly to R₅. Anterior portion of
pterostigmal band wide, triangular, proximal branch of posterior portion thin, distal branch reduced to spot in fore wing and absent in hind wing. Basal band reduced to two faint spots in fore wings and absent in hind wings. Marginal spot present in fore wings and absent in hind wings. Veins brown. Cross veins light brown. R₂ bifurcate. Thyridium present. Nygma brown. One cross vein between 1A and 2A in fore wings, and 1A terminating at wing posterior margin proximal to ORs, typical of Neopanorpa.

Male terga 2–5 brown. Tergum 3 (Fig. 27) posterior process (notal organ) broadly triangular at base, immediately narrowing to long rod-like appendage extending to tergum 4 posterior margin. Tergum 4 (Fig. 28) with anterior-leaning raised setose hook-like peg at midpoint. Sterna 2–5 and pleura sordid white. Segment 6 anterior two-thirds brown, posterior one-third ochre. Segment 7 ochre and equal in length as segment 6, narrow anteriorly, wider posteriorly. Genital bulb (Fig. 29) ochre. Epandrium apical margin truncate. Hypandrium, gonostyles, and epandrium covered with fine black caudad setae. Aedeagus (Fig. 30) white basally, dorsal parameres blade-like, extending to base of gonostyles, brown. Gonostyles ochre with basal cups, slight medial tooth; falcate, long, slender, with outer margins slightly concave.

Female unknown.

Type material examined — Holotype male, THAILAND, Phitsanulok Province, Phu Hin Rong Kla National Park, Man Dang, 18°30′32.0″N, 98°30′19.2″E, 1628 m, 18 June 2019, light trap sample PL1, CBHR DNA sample #8065, leg. Srisuka. Holotype in the QSBG collection.

Etymology — The specific epithet, mandangensis, refers to the specific location within Phu Hin Rong Kla National Park where this specimen was collected.

Remarks — The species is very similar to N. arcuata, from which it can be differentiated by its long, narrow tergum 3 notal organ that extends to posterior margin of tergum 4, vs the short, broad notal organ of N. arcuata. This lone specimen was initially recognized as being different from N. arcuata and other Thai species by having an average COI interspecific K2P distance from N. arcuata of 13.1% and all Thai species of 14.1%. Interestingly, while the male genital details of this species are most similar to N. arcuata, the notal organ of this insect is most similar to N. byersi from which this species has an average interspecific K2P distance of 10.9%.

DNA Barcode Results and Discussion

We assembled DNA barcodes for 134 Mecoptera including 123 new sequences from Thailand representing 19 of the 22 Thai species and 11 sequences from China, Vietnam, Cambodia, and the United States that were either new or available from Genbank (see Fig. 70). The sequences were aligned using Clustal W and a neighbor-joining tree was generated using Megalign. The tree divided the specimens into 25 species clusters including 6 branches that consisted of a single specimen and 19 branches that included multiple representatives of an individual species. Three of the singletons represented the uncommonly collected species N. apscisacera, N. mandangensis and Merope tuber Newman, 1838 and were only represented by single specimens. The other 3 singleton branches were two specimens of N. arcuata and one specimen of N. malaisei. These latter species are well represented in the data set with 21 and 7 specimens respectively and the three specimens should have clustered with their congeners but didn’t. Typically, when a specimen forms a unique branch on a tree, the specimen is investigated morphologically as a potential new species. We inspected these specimens but were unable to separate them morphologically from their congeners. Specimens that do not assign to their morphological species are well known from large barcode datasets and are considered dead ends (Hajibabaei et al 2006, Schmidt et al 2017). The three specimens here represent only 2.2% of the data set and have been eliminated from further analysis.

Eight further specimens were “misplaced” in the barcode analysis. Four specimens of N. spatulata were placed in the N. siamensis cluster, two specimens of N. siamensis were placed in the N. spatulata cluster, one specimen of N. malaisei was placed in the N. appendicema cluster and the sole Thai representative
of *N. harmandi* was placed in the *N. spatulata* cluster. It is possible that these represent mistakes made in the laboratory, but the specimens were re-extracted and re-sequenced with the same results. As the sequences were not random but fit nicely into different species clusters, and mitochondrial DNA is maternally inherited in insects and not rearranged by crossing over, we suggest these misplaced individuals may represent old hybridization events. Species with individuals that belong to different barcode clusters is also well known (Hajibabaei et al. 2006, Schmidt et al. 2017). The clustering of the single Thai specimen of *N. harmandi* with *N. spatulata* suggests that we did not have the *N. harmandi* barcode from Thailand. We did have *N. harmandi* specimens from Cambodia and since they were morphologically identical to the Thai specimen we suspect the Cambodian barcodes are the true *N. harmandi* barcodes and that the sole Thai specimen was the result of a hybridization event between *N. harmandi* and *N. spatulata*. In contrast, even though the sole Thai specimen of *N. nielseni* did not cluster with another species, we included two available sequences of Vietnamese *N. nielseni* in the analysis and found that all three sequences clustered together such that we believe the Thai *N. nielseni* barcode is legitimate.

The 131 specimens remaining after the 3 dead end singletons were removed were further analyzed by Maximum Likelihood using MEGA X (Kumar et al., 2018). The results were not phylogenetically informative at the generic level, the 2 species of *Panorpa*, *P. auripennis* and *P. apscisacera* were not on the same branch and the *Neopanorpa* species formed a comb, but they did cluster specimens into 22 species groups supported with high bootstrap values. As the resulting tree was too large for a journal page, we selected 2 individuals representing the diversity of the species and generated a representative neighbor-joining tree (Fig. 70). The tree lists significant bootstrap values for the representative tree followed by values in parentheses for the same branches from the full tree. The tree is rooted with *M. tuber* which is an archaic family of the Mecoptera (Byers 1973). We further generated a Kimura 2 parameter (K2P) distance table using Megalign on the abbreviated data set (data not shown) that allowed us to calculate average distances between species clusters based on DNA sequence data. *Merope tuber* was clearly the most distant taxon with 17.7% distance between it and *N. arcuata*. Most of the other species were approximately 10–12% different from each other, for example distances between *N. nielseni* and *N. infuscata* 11.3%, *N. appendicema* and *N. arcuata* 12% and *N. panda* to *N. apscisacera* 10.85%. This applied to the genera *Panorpa* and *Bittacus* as well, *B. leptocaudus* to *N. arcuata* 12.45% and *B. leptocaudus* to *P. auripennis* 11.98%. The most closely related taxa were *N. siamensis* and *N. tuberosa* at 5.76% and *N. spatulata* to *N. harmandi* at 6.85%. These distances combined with the high bootstrap values support 22 separate taxa.

DNA Barcodes did not definitively identify individual specimens to species because they could not differentiate between the species itself and putative hybrids, but they did sort 131 out of 134 specimens into barcode clusters that represent individual species including hybrids. Barcodes were particularly useful identifying instances of cryptic diversity in this study. First, we did not initially recognize *N. inchoata* as a new species because it is similar in appearance to *N. panda* from Vietnam, but disparate barcodes forced us to examine the specimens more closely and we discovered that the hypovalves were twisted and the wing apical bands were complete in *N. panda* but not the case in *N. inchoata*. Second, based on their nearly identical genitalia we considered *N. mandangensis* to be just another specimen of *N. arcuata* but further examination prompted by a significantly different barcode revealed a much longer process on the third tergum in *N. mandangensis*. Finally, large barcode differences assure us that *N. pulchra* from China is not the same as *N. inchoata* or *N. panda* although this difficult complex would benefit from more extensive sampling and study. The results of this study support the use of morphology and barcodes to uncover new Mecoptera diversity in Southeast Asia.

Bittacus leptocaudus Field Observations

Nothing has been reported about Thailand’s one described hangingly, *Bittacus leptocaudus* Byers, 1965, beyond the original description. Recently, the insect was observed in a dipterocarp forest with 1 m tall grass while hanging from the undersides of vegetation (Fig. 71) southeast of Lamphun,
MECOPTERA OF THAILAND

18°32'14"N, 99º7'26"E, 430 m elevation, 29 October 2020, with one male and three females collected by Theerapan Dokjan. The females have darkened wing membranes and a distinct pterostigma (Fig. 33), compared to the holotype male which had pale, unmarked wings.

Key to Thai Species of Mecoptera

1. Tarsi with one claw (Figs.31). Wings as Fig. 33. Male terminalia as Figs. 50 & 51 (Bittacidae).

 — Tarsi with two claws (Fig. 32) (Panorpidae). 2

2. Wings with 1A vein terminating at wing margin distal to ORs (Fig. 1); wings comparatively wide at base (Panorpa) 3

 — Wings with 1A vein terminating at wing margin basal to ORs (Fig. 14); wings comparatively narrow at base (Neopanorpa) 4

3. Wings golden with thin, brown bands (Fig. 34). Male genital bulb as Fig. 52. Neopanorpa auripennis Bicha, 2019.

 — Wings pale yellow, nearly immaculate (Fig. 1). Male genital bulb as Fig. 5. Neopanorpa spcisacera n. sp.

4. Wings with wide black bands (Fig. 39). Male genital bulb as Fig. 57. Common species in disturbed areas. Neopanorpa harmandi (Navás, 1908).

 — Wings with thin brown to dark brown markings or no markings. Neopanorpa mandangensis n. sp.

5. Male hypovalve apices curled (Figs. 11 & 60) 6

 — Male hypovalve apices not curled (Fig. 17) 7

6. Male gonostyle bases bearing large, black, setose, ventromesal lobes (Fig. 24). Neopanorpa setosiloba n.sp.

 — Male gonostyles basomesal lobes digitate or small. 7

7. Male hypovalves lacking basomesal appendages (Fig. 60). Wings as Fig. 42; 7th and 8th segments white. Neopanorpa malaisei Byers, 1999.

 — Male hypovalves with basomesal appendages (Fig. 11); 7th and 8th segments yellowish brown. Neopanorpa appendicema n. sp.

8. Male 3rd tergum with elongated rod-like process (notal organ) extending to at least the 6th abdominal segment (Fig. 68). Wings as Fig. 44. Male genital bulb as Fig. 62. Neopanorpa normpennyi Bicha, 2019.

 — Male 3rd tergum process not extending to 6th abdominal segment (Fig. 28). 9

9. Male 3rd tergum process slender, extending more than halfway across 4th tergum (Fig. 28) 10

 — Male 3rd tergum process wide, not extending more than halfway across 4th tergum (Fig. 15) 11

 — Male 3rd tergum process not extending to 6th abdominal segment (Fig. 28). 9

10. Relatively large species; male hypovalves overlapping (Fig. 61). Wings as Fig. 43. Neopanorpa nielseni Byers, 1965.

11. Male hypovalves apices darkened and conspicuously extending ventrally out of genital bulb (Fig. 55). Wings as Fig. 37. Neopanorpa cuspidata Byers, 1965.

12. Male hypovalves not overlapping (Figs. 53, 56, & 59) 13

 — Male hypovalves overlapping (Fig. 17) 14

13. Male hypovalves widely separated; base between hypovalves subquadrate (Fig. 59). Wings as Fig. 41. Neopanorpa latiseparata Bicha, 2010.

 — Male hypovalves slightly separated; base between hypovalves (vertex) circular. 14

14. Male hypovalves slender with acuminate apices (Fig. 56). Wings as Fig. 38. Neopanorpa cuspidata Byers, 1965.

 — Male hypovalves apices not acuminate (Fig. 17) 15

Downloaded From: https://bioone.org/journals/Transactions-of-the-American-Entomological-Society on 19 Aug 2022
Terms of Use: https://bioone.org/terms-of-use Access provided by United States Department of Agriculture National Agricultural Library (NAL)
15. Male hypovalves base wide, mesal margins deeply emarginated near mid-length, apices twisted together and drawn to a point (Fig. 53). Wings as Fig. 35. Southern Thai species.

16. Male hypovalves short and wide, shield-like (Figs. 63 & 65). Wings with the basal band extending distally along the posterior margin (Fig. 45 & 47).

17. Male gonostyles with basomesal lobe divided into upper cup-like portion and large pendulous lower appendage (Fig. 63). Wings as Fig. 45.

18. Wings smoky brown without distinct bands, with long, dark brown stigma and circular pale area behind stigma (Fig. 40). Male genital bulb as Fig. 58.

19. Male gonostyles basomesal lobes spherical, knob-like (Figs. 67 & 69). Wings as Fig. 49. Southeastern species.

20. Males gonostyles basally thickened with outer margins slightly convex bearing dense setae (Fig. 66). Wings as Fig. 48.

21. Slightly larger species with male tergum 3 process (notal organ) length equal with width (Fig. 15); posterior one-third of apical band of wings often incomplete (Fig. 14). Male genital bulb as Fig. 17. Slightly smaller species with male tergum 3 process (notal organ) narrow (acute triangular). Wings apical bands entire (Fig. 46). Male genital bulb as Fig. 64.

1. Tarsi with (claw) 1 ocellus. (Foot texture 31) Wing apex truncate to subacute (terminalia) (Wings 1 and 51 (Wing Bittacidae)).

2. Wings apical bands entire (Fig. 46).

3. Genital bulb as Fig. 64.

4. Males gonostyles basomesal lobes not knob-like (Fig. 18).

5. Males gonostyles basomesal lobes spherical, knob-like (Figs. 67 & 69).

6. Southern Thai species.
พื้นที่ส่วนโคนของ gonostyle มีรูปร่างคล้ายหนึ่งมือหรือมีขนาดเล็ก

7. ในแมลงกลุ่มหน่อยในกลุ่ม hypovalves (ภาพที่ 60) ปีกมีลักษณะตามภาพที่ 42 ห้องลงของที่ 7 และ 8 มีลักษณะ Neopanorpa malaisei Byers, 1999.

8. มีขนาดที่บริเวณโคนด้านในของ hypovalves (ภาพที่ 11) ห้องลงของที่ 7 และ 8 มีสีน้ำตาลอมเหลือง Neopanorpa appendicema n. sp.

10. Hypovalves มีลักษณะเป็นแผ่นแน่นที่ขึ้นที่บ้าน (ภาพที่ 61) ปีกมีลักษณะตามภาพที่ 43 เป็นซีดที่มีขนาดต่างจากใหม่ Neopanorpa n. sp.

12. Hypovalves เรียงตัวไม่แน่นที่บ้าน (ภาพที่ 53, 56, และ 59) Neopanorpa mandangensis n. sp.

15. Hypovalves มีขนาดน้อยกว่าไม่ถึงในกลุ่ม กับบริเวณส่วนกลางมีรูขุมสำลัก ส่วนปลายมีลักษณะบิดเกลียว (ภาพที่ 53) ปีกมีลักษณะตามภาพที่ 35 แบ่งเป็นบางส่วนเห็นได้ชัดเจนที่กว้างกระจายที่หัวในภาพเหลา ... Neopanorpa angustipennis (Westwood, 1841).

17. ส่วนโคนของ gonostyles มีลักษณะเป็นความ ออกเป็นส่วนมากมีรูปร่างคล้ายยาวและส่วนปลาย มีลักษณะเป็นแผ่นแยกจากใหม่ (ภาพที่ 63) ปีกมีลักษณะตามภาพที่ 45. Neopanorpa pendulifera Byers, 1965.

18. ปีกมีสีน้ำตาลของมีรูขุมไม่ชัดเจน ทางสัง (stigma) บางมีสีน้ำตาลstem ในแมลงมีที่รูปร่างกลม (ภาพที่ 40) Genital bulb มีลักษณะตามภาพที่ 58. Neopanorpa infuscata Banks, 1931.

19. โคนของ gonostyles มีลักษณะเป็นพู่หรือ กรอบปลายรูปร่างกลม (ภาพที่ 67 และ 69) ปีกมีลักษณะตามภาพที่ 49 เป็นชุดที่มีขนาดต่างกันกระจายที่หัวในภาพแสดง ... Neopanorpa tuberosa Byers, 1965.

ACKNOWLEDGMENTS

A heartfelt thankyou is extended to Wichai Srisuka, QSBG for providing the Thai version of abstract and key-to-species, additional collecting, allowing specimens to be examined at the QSBG museum, and graciously hosting visits. We thank the faculty and entomology students at Chiang Mai University (CMU) for their gracious hospitality and allowing Project Tiger specimens at CMU to be examined. We are grateful to Katherine Parys, USDA ARS, Southern Pollinator Health Center, Pollinator Health in Southern Crop Ecosystems Research Unit, Stoneville, Mississippi, for allowing photos to be taken using the Keyence digital microscope, and Ellen Green, Delta State University, Cleveland, Mississippi for allowing use of facilities. We thank Bob Zuparko, California Academy of Sciences, San Francisco, California; Zack Falin, University of Kansas Biodiversity Institute, Lawrence, Kansas; and Luca Bartolozzi, Università degli Studi di Firenze, Natural History Museum Department, Florence, Italy; and Jerome Costant, Belgium Royal Institute of Natural Sciences, Brussels, Belgium for kindly allowing specimens to be examined. A sincere thank you is extended to Dr. Alexandre Monastyriskii, Vietnam Forest Museum of the Forest Inventory and Planning Institute, Hanoi, Vietnam, for graciously providing Mecoptera specimens over the years.

Literature Cited

Carpenter FM (1945) Panorpidae from China (Mecoptera). *Psyche* 52: 70–78.

Figures 1–5: *Panorpa apscisacera* n. sp. holotype male: 1. Wings, ORs = origin of radial sector, 1A = 1st anal vein, scale bar = 1 mm. 2. Terga 3 & 4, left lateral aspect, scale bar = 0.5 mm. 3. Segments 6–8, left dorsolateral aspect, scale bar = 0.5 mm. 4. Segments 6–8, left lateral aspect. 5. Genital bulb, ventral aspect, GC = gonocoxite, GS = gonostyle, H = hypovalve, VP = ventral paramere, scale bar = 0.5 mm.
Figures 6–13: Neopanorpa appendicema n. sp.: 6. Male wings. 7. Female wings, scale bar = 1 mm. 8. Terga 3 & 4, scale bar = 0.2 mm, left dorsolateral aspect. 9. Terga 3 & 4, scale bar = 0.2 mm, left lateral aspect. 10. Genital bulb, scale bar = 0.5 mm, ventral aspect. 11. Male hypovalves, scale bar = 0.2 mm, ventral aspect. 12. Female subgenital plate, scale bar = 0.1 mm, ventral aspect. 13. Female genital plate, scale bar = 0.1 mm, ventral aspect.
Figures 14–20: *Neopanorpa inchoata* n. sp.: 14. Wings, ORs = origin of radial sector, 1A = 1st anal vein, scale bar = 1 mm. 15. Terga 3 & 4, dorsal aspect, scale bar = 0.2 mm. 16. Segments 6–8, left lateral aspect, scale bar = 0.2 mm. 17. Genital bulb, ventral aspect, scale bar = 0.5 mm. 18. Aedeagus, ventral aspect, scale bar = 0.5 mm. 19. Female subgenital plate, scale bar = 0.50 mm, ventral aspect. 20. Female genital plate, ventral aspect.
Figures 21–25: *Neopanorpa setosiloba n. sp.*: 21. Wings, scale bar = 1 mm. 22. Terga 3 & 4, dorsal aspect, scale bar = 0.5 mm. 23. Segments 6–8, left lateral aspect, scale bar = 0.5 mm. 24 Genital bulb, ventral aspect, scale bar = 0.5 mm. 25. Aedeagus, ventral aspect, scale bar = 0.5 mm.
Figures 26–30: *Neopanorpa mandangensis* n. sp.: 26. Wings, scale bar = 1 mm. 27. Terga 3 & 4, dorsal aspect, scale bar = 0.5 mm. 28. Segments 6–8, left lateral aspect, scale bar = 0.5 mm. 29. Genital bulb, ventral aspect, scale bar = 0.5 mm. 30. Hypovalves and aedaeagus, ventral aspect, scale bar = 0.25 mm.
Figure 71. *Bittacus leptocaudus* hanging from the undersides of broadleaf ground vegetation growing in a dipterocarp forest southeast of Lamphun.
Figure 70. Thai Mecoptera mitochondrial cytochrome oxidase I relational tree.