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ABSTRACT: Stream discharge is a key hydrological factor for water supply planning, wetland loss investigation,
ecological service assessment, and climate change impact estimation. Conceptually, stream discharge is expected
to be highly and positively related to precipitation. In reality, however, such a relationship may be weaker
because precipitation characteristics are affected by local climate of watersheds. For many watersheds around
the world, a vast amount of precipitation data are readily available but the stream discharge data are very lim-
ited or unavailable. It would be time-saving and cost-effective to predict stream discharge based on precipitation
data. Unfortunately, this task is very difficult to achieve using the traditional methods. Although the copula
method is able to establish a good relationship (or a good dependence structure) between discharges and precipi-
tations, this relationship does not include the time series process, and thus is impractical for applications.
Therefore, a hybrid of copula prediciton and time series computation was developed (with detailed procedures)
here to estimate stream discharge based on precipitation data. The method was validated using the measured
daily discharges with the good statistical measures, that is, the Kandell’s τ (0.42–0.44), normalized root mean
square error (2.19–2.28 m3/s), and R2 (0.66–0.84). This study suggests that the hybrid method is a useful tool to
predict stream discharges based on precipitation data.
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INTRODUCTION

Water resource sustainability due to increasing
water demand is a critical concern worldwide (Scan-
lon et al. 2012; Famiglietti 2014). Many parts of the
world, including North Africa, Middle East, South
and Central Asia, north China, North America, and
Australia, are now experiencing water resource deple-
tion and/or shortage (Garduno and Foster 2010; Doll
et al. 2014; Dalin et al. 2017; Ouyang et al. 2019,
2020). Stream discharge is a crucial hydrological fac-
tor for water resource management. More specifically,
stream discharge is used to determine the minimum

streamflow and level, assess wetland loss, reconstruct
ecological service, and estimate climate change
impact (Ouyang et al. 2013, 2019). Conceptually,
stream discharges are expected to be highly and posi-
tively related to the amounts of precipitations. In
reality, however, such a relationship may not be
strong enough because the precipitation characteris-
tics, including the direction, amount, and frequency,
are also governed by the biophysical features of local
watersheds (Clement and Djebou 2017). In other
words, although precipitation is a major source of
water for stream discharge, the correlation between
discharge and precipitation depends on a wide range
of biophysical features and social activities that have
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temporal and spatial interactions (Tidwell et al.
2004). Because of this complexity, methods to esti-
mate stream discharges using precipitation data are
still not well developed. Dawdy and Bergmann (1969)
studied the effect of rainfall variability on stream dis-
charge in a 25.12 km2 basin in southern California.
They found that the use of a single rain gage can pre-
dict peak discharge with a standard error of 20%.
Nandagiri and Shetty (2003) analyzed the relation-
ship between the daily stream discharge and the
daily rainfall for the Yennehole catchment (327 km2)
in India using the linear and nonlinear regression
equations and artificial neural network (ANN) mod-
els. These authors compared the prediction accuracies
of regression and ANN approaches and concluded
that the ANN approach has a better prediction of
accuracy. Moon et al. (2004) estimated the stream
discharge using spatially distributed rainfall in the
Trinity River Basin, Texas using the Soil and Water
Assessment Tool (SWAT) model and NEXRAD data.
They reported that the SWAT-NEXRAD simulations,
in general, overpredict the high flow events and
underpredict the low flow events. Supriya et al.
(2015) estimated stream discharges for flood forecast-
ing in the Vellar River Basin, southern India using
the annual maximum daily rainfall and multiple
regression analysis and found that the lower Vellar
River Basin is the most vulnerable catchment needed
for the flood control. Although the above studies have
provided some useful insights into estimating stream
discharges from precipitations, a thorough literature
search reveals that no reliable method has been
developed for such a purpose due to the complex rela-
tionship between discharges and precipitations asso-
ciated with the effects of a wide range of biophysical
and social systems. However, there are vast amounts
of precipitation data readily available for most water-
sheds around the world. It would be time-savings,
cost-effective, and a great breakthrough if one could
estimate the steam discharges in watersheds using
the precipitation data. To this end, a new method is
developed here to resolve this issue using the copula-
based approach associated with a novel time series
computational algorithm.

Copula method is a multivariate probability
approach used to identify the relationships among
many random variables, which is otherwise very diffi-
cult (if not impossible) by using traditional methods
(Sklar 1959; Schweizer and Wolff 1981; Dall’Aglio,
et al. 1991; Nelson 2006). For example, we normally
quantify the dependence of two or more variables by
the linear or nonlinear multiple regressions. When
we obtain poor statistical measurements such as
lower coefficient of determination (R2) and larger
probability value (p-value), we may naturally con-
clude that very poor correlations exist among the

variables. However, this conclusion may not be
always true if we apply the copula method for the
analysis. The Latin word “copula” means “a link, tie
or bond” and was first employed in a mathematical
analysis by Sklar (1959). The copula theory and its
applications have been around for a while, especially
in actuarial science and finance applications (Frees
and Valdez 1998; Sun 2013) and its uses to hydrologi-
cal processes and water quality have just begun since
last decade (Salvadori and Michele 2004; Wang et al.
2012; Alizadeh et al. 2018). Salvadori and Michele
(2004) applied the copula method to study the return
periods of hydrological events such as flooding peak
and storm intensity and concluded that the calcula-
tions on the return periods of hydrological events are
greatly simplified using the copula method. Shiau
et al. (2007) estimated the relationship between
drought duration and drought severity in Yellow
River, China using the copula approach. Their results
showed that the return period of the drought in the
late 1920s to early 1930s is 105 years, whereas the
return period of the drought that occurred from 1997
to 1998 is only 4.4 years. Madadgar et al. (2013) per-
formed a drought analysis under climate change at
the upper Klamath River Basin in Oregon, USA with
copula method. They argued that the duration sever-
ity has the strongest correlation with drought,
whereas the duration intensity shows the least corre-
lation with the drought. Although more intense
extreme events are projected to occur in most parts of
the world in the future, their results showed that the
upper Klamath River Basin will experience fewer
intense droughts as affected by climate change. Chen
et al. (2013) applied the copula method to analyze the
drought characteristics such as drought duration,
severity, and time interval in Han River, China.
These authors demonstrated that the normal copula
fits every state of the drought periods well and is
selected for computing probability and return period
analysis of the drought. Alizadeh et al. (2018) devel-
oped a copula-based hydro-economic optimization
model for optimal design of reservoir-irrigation dis-
trict systems under multiple interdependent sources
of uncertainty. Their results showed that the smaller
sizes of reservoir, irrigation district, and stress-
avoidance irrigation policies are better than the
deficit-irrigation policies. All the above studies have
provided useful information on the applications of
copula method to determine the correlations among
the hydrological processes. However, no effort has
been devoted to establishing the relationship between
discharges and precipitations using the copula
approach.

Several studies have applied the copula regressions
to predict one variable using the other variable
(Parsa and Klugman 2008; Masarotto and Varin
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2017; Cote et al. 2019). The major advantage of the
copula regression is that no restriction on probability
distribution is required as compared to the ordinary
least square and generalized linear regression meth-
ods (Parsa and Klugman 2008). Masarotto and Varin
(2017) developed a Gaussian copula regression model
in the R platform to fit the bivariate data using the
maximum likelihood inference function. The model is
applied to the malaria data with a very good linear
correlation. Cote et al. (2019) applied the ranked-
based tools using the copula regression for property
and casualty insurance analysis. All of these copula-
based regression studies have provided good insights
into the copula regression analysis. However, for
some natural processes, the linear and/or nonlinear
correlations between two or more variables such as
discharges and precipitations may not exist even
after the copula transformation. These make the
application of the copula-based regressions difficult.
Additionally, the copula bivariate distribution func-
tion is normally used to randomly generate the
paired values of two variables simultaneously, which
do not include the time series process. In real-world
practices, however, we are sometimes required to pre-
dict one variable using the known values of the other
variable at a given time. For example, we need to
predict the future stream discharges when the future
precipitations at the given dates are known. There-
fore, the time series computational algorithm is
required to associate with the copula method.

The goal of this study was to develop a copula-
based method in conjunction with a novel time series
computational algorithm to predict stream discharges
using precipitation data. Specific objectives were to:
(1) select a better copula model based on Kendall’s
statistics for randomly generating the discharge and
precipitation data; (2) validate the selected copula
model using the long-term measured discharge and
precipitation data; (3) develop a novel computational
algorithm connected to the copula-based approach to
predict the time series stream discharges using the
precipitation data; (4) verify the computational algo-
rithm; and (5) apply the method to predict the future
stream discharges using the future precipitation data
that were obtained from a climate change scenario.

MATERIALS AND METHODS

Copula Model

A copula is a function that couples a multivariate
distribution function to its marginal distribution
function (Sklar 1959) and is used to define the

nonparametric measures of dependence among ran-
dom variables. An elaboration of the copula theory
can be found elsewhere (Genest and Mackay 1986;
Frees and Valdez 1998; Dupuis 2007; Zhang and
Singh 2007). There exist several methods to derive
copula functions and the widely used ones are the
inversion, generation, and extreme value methods
(Nelsen 2006). The copulas derived from the inversion
method are defined as elliptical copulas; the copulas
built by generator functions are termed as Archime-
dean copulas; and the copulas represented the depen-
dence structure between extreme values or
exceptional events are named as extreme value copu-
las (Nelson 2006). Copulas derived by these methods
are determined by a small number of parameters that
are normally not flexible in developing dependent
structure, especially with multi-variables. This weak-
ness can be circumvented by the Vine copulas (Bed-
ford and Cooke 2002).

Vine copulas are highly flexible in applications
that are based on a decomposition of the joint copula
density into bivariate building blocks (Bedford and
Cooke 2002; Aas et al. 2009). A vast variety of copula
families are available in the Vine copulas for select-
ing the dependence structure, which makes the
choice of appropriate copulas somewhat difficult. In
this study, the commonly used copulas such as Clay-
ton, Frank, Gumbel, and Normal copulas, which are
available in the Vine copula package of the R-
Statistics, were employed to determine the correla-
tions between discharge and precipitation. The
resulted correlations were then validated with the
long-term field-observed data. The copula that has
the best goodness-of-fit was selected for applications
in this study.

Although an elaborate discussion of the copula
models is beyond the scope of this study, a brief
description of each copula model used in this study is
given below for readers’ convenience.

Clayton copula, first introduced by Clayton (1978),
is an asymmetric Archimedean copula and is defined
as:

Cclayton u1,u2;θð Þ ¼ u�θ
1 þ u�θ

2 � 1
� ��1=θ

, (1)

where C is the copula, u is the distribution function
and θ is the copula parameter at the interval (0, ∞).
When θ = 0, the marginal distributions become inde-
pendent. This suggests that the Clayton copula can-
not be used to approximate the negative dependence.
It should be noted that copula is a tool to assess the
dependence structure (or correlation) of random vari-
ables. In Clayton copula, the Kendall’s tau (τ) is nor-
mally used to measure the dependence of random
variables (or the correlation of random variables) and
is given as:

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION JAWRA473

A HYBRID OF COPULA PREDICTION AND TIME SERIES COMPUTATION TO ESTIMATE STREAM DISCHARGE BASED ON PRECIPITATION DATA



τ ¼ θ

θ þ 2
: (2)

Frank copula is defined as (Frank 1979):

CFrank u1,u2;θð Þ ¼ �θ�1log 1þ e�θu1 � 1
� �

e�θu2 � 1
� �

e�θ � 1

� �
,

(3)

with θ at the interval (-∞, +∞). Frank copula allows
the approximation of positive and negative depen-
dence in the data. When θ approaches -∞, the
Fréchet–Hoeffding lower bound is attained; while θ
approaches +∞, the Fréchet–Hoeffding upper bound
is reached. When θ is equal to 0, the independence
case is approached. Frank copula is suitable for mod-
eling data characterized by weak tail dependence. In
Frank copula, the Kendall’s tau (τ) is calculated as:

τ ¼ 1þ 4 D θð Þ � 1½ �=θ: (4)

where D is the Debye function.
Gumbel copula is used to model asymmetric depen-

dence in the data and is capable to capture strong
upper tail dependence and weak lower tail depen-
dence. For those variables with strong correlations at
high values but weak correlations at low values,
Gumbel copula is a good choice. The bivariate Gum-
bel copula can be defined as (Gumbel 1960):

Cgumbel u1,u2, θð Þ ¼ exp � �logu1ð Þθ þ �logu2ð Þθ
h i1=θ� �

,

(5)

with θ at the interval of [1, ∞). If θ approaches 1, the
marginal distributions are independent, and if θ goes
to infinity, the Gumbel copula approaches the
Fréchet–Hoeffding upper bound. Analogous to the
Clayton copula, the Gumbel copula cannot be used to
approximate the negative dependence.

The correlation between Kendall’s τ and Gumbel
copula parameter θ for measuring the dependence of
random variables is given by the following equation:

τ ¼ 1� θ�1: (6)

The Normal (or Gaussian) copula belongs to the
elliptical copulas family and is derived from the mul-
tivariate Gaussian or Normal distribution (Renard
and Lang 2007) as:

CGaussian u1, . . .,unð Þ ¼ Φn ϕ�1 u1ð Þ, . . .,ϕ�1 unð Þ� 	
,

(7)

where Φ is the cumulative distribution function (cdf)
of a multivariate normal distribution with zero mean

and covariance matrix, and ϕ is the cdf of the stan-
dard normal distribution at θ (0, 1). In practice, Nor-
mal copula is popular because it allows modeling
dependence in arbitrarily high dimensions with only
one parameter, governing the strength of dependence.
The correlation between Kendall’s τ and Normal cop-
ula for measuring the dependence of random vari-
ables is given by:

τ ¼ 2

π
arcsinθ: (8)

Study Site and Data Acquisition

The long-term measured discharge and precipita-
tion data from 1900 to 2018 in forest watersheds of the
lower Mississippi River Alluvial Valley (LMRAV) were
used in this study (Figure 1). The LMRAV is situated
in the floodplain of the Mississippi River (MR) begin-
ning from the north at Illinois, continuing through
Missouri, Kentucky, Arkansas, Tennessee, and Missis-
sippi, and ending at the Gulf of Mexico (GOM) in South
Louisiana. Clearcuttings of bottomland hardwood for-
ests, conversions from forests to agricultural lands

FIGURE 1. Location map for the three study sites used in this
study.
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with intensive crop production, and intensified and
extreme precipitations are the major factors affect
river flooding, wetland loss, and water quality degra-
dation in the MR and the adjacent GOM (Munoz and
Dee 2017; Ouyang et al. 2013, 2018, 2020).

Three NOAA (National Oceanic and Atmospheric
Administration) weather stations, namely the
USC00226177 in Natchez, Mississippi; USC00113580
in Grand Chain Dam 53, Illinois; and USC035691 in
Williams Junction, Arkansas, were selected to down-
load the daily precipitation data (Figure 1). These
NOAA weather stations (https://www.ncdc.noaa.gov/
cdo-web/datasets#GHCND) are located near the head-
water areas of the forest lands in the LMRAV and
have more than 100 years of data records. Mean-
while, three USGS (United States Geological Survey)
gauge stations, namely the #07291000 in Homochitto;
MS; #03621000 in Forman, Illinois; and #07362100 in
Smackover, Arkansas, were selected to download the
daily discharge data. These USGS gauge stations are
located at the same or nearby their corresponding
NOAA weather stations in each state and have daily
stream discharges data for the periods of records ran-
ged from 60 to 90 years. These NOAA weather and
USGS gauge stations were selected partially because
they have long-term data records and partially
because the forest watersheds in the area have less
land-use disturbances, which provide a better condi-
tion for analyzing how the future climate change
affects the stream discharges.

The future daily precipitation data for the three
study sites were downloaded from the Hydrologic and
Water Quality System (HAWQS) model (https://
hawqs.tamu.edu/#/). More specifically, the daily
future precipitation data for the USGS #07291000,
USGS #03621000, and USGS #07362100 were down-
loaded from HAWQS, respectively, using the HUC 8
(hydrologic unit code 8) numbers of 08060205,
05140206, and 08040201 from the CCSM4 (Commu-
nity Climate System Model 4) with the RCP45 (Rep-
resentative Concentration Pathway 45) scenario.
HAWQS is a national watershed and water quality
assessment tool distributed by the United States
Environmental Protection Agency, which is a cus-
tomized version of the SWAT model.

Method Development

The detailed steps used to develop the method are
given below for readers’ convenience. The copula
analysis (Figure 2) was performed with an R script
that was modified from https://www.r-bloggers.com/
how-to-fit-a-copula-model-in-r-heavily-revised-part-2-
fitting-the-copula/. Steps 1–5 (below) are similar to
those reported at https://www.r-bloggers.com/how-to-

fit-a-copula-model-in-r-heavily-revised-part-2-fitting-
the-copula/, whereas Steps 6 and 7 were developed in
this study.

1. Dataset plot. The first step is to visually inspect
the correlation between the measured discharges
and the precipitations (Figure 3). It is apparent
from the figure that very poor or no correlations
exist between the two variables for all the three
study sites used in this study. Therefore, the cop-
ula method was employed to determine their
dependences or correlations.

2. Histogram plot. A histogram plot can provide a
good estimate on the marginal distributions of
the two variables, which can help select the suit-
able copula marginal function for discharges and
precipitations. Comparisons of the histograms
between the field measured and Gamma simu-
lated precipitations and discharges for the three
study sites are given in Figure 4. These his-
tograms showed a Gamma type of distribution.
Therefore, the Gamma distribution was used as
the marginal distribution function when building
the bivariate distribution from the selected cop-
ula model. In this study, the bivariate distribu-
tion tells the probability that a certain event will
occur for each possible choice of the two vari-
ables, that is, the discharge and precipitation.

3. Dependence of discharge on precipitation. As
shown in Figure 3, no dependence of the

FIGURE 2. Steps used in copula analysis.
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measured discharges on the measured precipita-
tions existed for the three study sites since the
R2 values were too low. In the copula analysis,
the correlation (or dependence) of two or more
variables is normally measured (or estimated) by
the Kendall’s τ and Spearman’s Rho methods. In
this study, the Kendall’s τ values were used to
measure the correlations (or dependences)
between the discharges and the precipitations
(Table 1). It should also be noted that the mea-
sured discharges were not used for copula analy-
sis if the measured precipitations were zero or
near zero. If either the precipitation or discharge
data were missing on certain dates, the data for
those were not used for copula analysis either.

4. Goodness-of-fit. After the copula models have
been fitted, the “gofCopula ( )” function from the
Vine Copula package in the R platform was
applied to test the goodness-of-fit for each copula
model, which was measured by the p value

(Table 1). The best copula model was then
selected for further study.

5. Comparison of copula generations (or predic-
tions) and field measurements. After the copula
model was selected, the copula bivariate distribu-
tion function was used to randomly generate the
paired discharges and precipitations. These gen-
erated data were then compared with the mea-
sured data using the Kendall’s τ values
(Figure 5). It should be caution that the copula-
generated discharges and precipitations are not
the time series data, that is, they do not tell
when (e.g., the date) an event occurs; whereas
the measured discharges and precipitations are
the time series data.

6. Development of the time series computational
algorithm. As stated in Step 5, the copula bivari-
ate distribution function can randomly generate
the paired discharge and precipitation data. This
data, however, cannot be directly used because it
does not have the time concept on when the dis-
charges and precipitations occur. In this study, we
need to predict the future time series stream dis-
charges when the future precipitations at given
dates are known. Therefore, a time series compu-
tational algorithm was developed to circumvent
the obstacle. It is assumed that the copula-
generated discharge and precipitation dataset is
proportional to the predicted discharge and pre-
cipitation dataset, which can be characterized as:

Rc

Dc
¼ Rm

Dp
, (9)

or

Dp ¼ DcRm

Rc
: (10)

where Dp is the predicted discharge (m3/s), Dc is the
copula-generated discharge (m3/s), Rm (>0) is the
measured or known precipitation (mm), and Rc (> 0)
is the copula-generated precipitation (mm). Equa-
tion (10) is used to predict the stream discharges
based on both the measured (or known) precipita-
tions as well as the copula-generated discharges and
precipitations. Figure 6 shows the following proce-
dures on how to implement Equation (10) in Micro-
soft Excel for including time sereis process: (a) sort
the copula-generated discharge and precipitation
data (Figure 6a) from smallest to largest based on
the precipitation data; (b) sort the future date and
precipitation data (Figure 6b) from smallest to lar-
gest also based on the precipitation data; (c) add the
two sorted datasets together side-by-side (Fig-
ure 6c); and (d) sort the data in Figure 6c based on

FIGURE 3. Correlations between the measured precipitations and
discharges for the three study sites.

JAWRA JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION476

OUYANG



date in chronological order and then predict the
future discharge using Equation (10) (Figure 6d).
The reason for sorting the copula-generated and
future precipitation datasets from smallest to lar-
gest was to make them into the same rank order
when adding them together. The reason for sorting
the final dataset based on dates was for chronologi-
cal display of the predicted future discharge (Fig-
ure 6d). The predicted discharges from
Equation (10) were verified against the copula-
generated discharges to see if these two datasets are
proportional to each other (i.e, a linear correlation)
using the statistical measures such as coefficient of
determination (R2) and normalized root mean
square error (nRMSE) (Figure 7).

7. Application of the method. The method was then
applied to predict the future stream discharge for
given watersheds based on the future precipitation

FIGURE 4. Histogram plots of the precipitations and discharges for the three study sites.

TABLE 1. Statistical measures of the copula functions for
identifying the dependence structures between discharges and

precipitations at the three study sites used in this study.

Copula function
Copula fit Goodness of fit

t p-value

USGS03621000-USC113580 in Illinois
Clayton copula 0.44 0.0098
Frank copula 0.16 0.0098
Gumbel copula 0.17 0.0098
Normal copula 0.33 0.0098
USGS07291000-USC226177 in Mississippi
Clayton copula 0.43 0.0098
Frank copula 0.16 0.0098
Gumbel copula 0.17 0.0098
Normal copula 0.33 0.0098
USGS07362100-USC035691 in Arkansas
Clayton copula 0.42 0.0290
Frank copula 0.17 0.3235
Gumbel copula 0.16 0.0098
Normal copula 0.33 0.0098
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data with an assumption that the future geophysi-
cal settings such as river channels and land uses
for the watersheds of interest remain unchanged.

RESULTS AND DISCUSSIONS

Copula Model Selection

The dependence measures (τ values) of the dis-
charges on the precipitations from the Clayton,
Frank, Gumbel, and Normal copulas for the three
study sites are given in Table 1. Compared with the
Frank, Gumbel and Normal copulas, the Clayton cop-
ula was selected for the three study sites because of
its highest τ values (Table 1). In Kendall statistic, the
value τ ranges from −1 to 1 and is a measure of

relationships between variables, where 0 is no rela-
tionship and 1 (or −1) is a perfect relationship (with
positive τ for increasing trend and negative τ for
decreasing trend) (Mangiafico 2016). In other words,
the Clayton copula was the best in generating a good
relationship between the discharges and the precipi-
tations for the three study sites.

The goodness-of-fit of the Clayton copula was fur-
ther investigated by comparing the copula-generated
and the field-measured discharges and precipitations.
In the goodness-of-fit analysis, the p value was used
to measure a trend. If the p value was ≤0.05, there
was a monotonic trend (Mangiafico 2016). With the
low p values (Table 1), we confirmed that the Clayton
copula model is suitable for the purpose of this study.
It should be noted that the p value of the Clayton
(0.029) copula was larger than those of the Gumbel
(<0.01) and Normal (<0.01) copulas for the study site
in Arkansas, but this p value was acceptable
(0.029 < 0.05). Since the τ value of the Clayton (0.42)
copula was larger than those of the Gumbel (0.16)
and Normal (0.33) copulas for the study site in
Arkansas (Table 1), the Clayton copula was selected.

Plots of the discharges against the precipitations
between the copula predictions (or generations) and
the field measurements for the three study sites are
shown in Figure 5. The copula predictions were gen-
erated from the Clayton copula bivariate distribution
function. Overall, the copula predictions matched the
field measurements reasonably well for the three
study sites because the τ values were >0.3 (Man-
giafico 2016). Mangiafico (2016) stated that a τ value
between 0.1 and 0.3 indicates a small impact and a τ
value >0.3 denotes a significant trend. In particular,
the copula predictions for the study site in Illinois
were slightly better than that in Arkansas, and the
study site in Mississippi was in between based on the
τ values (Figure 5).

Computational Algorithm Verification

As stated in Step 6 of Method Development sec-
tion, the Clayton copula-generated discharges and
precipitations did not have the chronological times
(e.g., dates) on when the discharges and precipita-
tions occurred. In other words, the Clayton copula
bivariate function can only provide a possible stream
discharge for each possible precipitation event
regardless of the time course. In practices, water
resource managers and researchers normally want to
predict the stream discharges based on the given pre-
cipitations at given times (e.g., dates and years). To
circumvent the obstacle, a computational algorithm
was developed (Equation 10 and Step 6) and verified
in this study.

FIGURE 5. Comparison of the measured and copula-generated
precipitations and discharges for the three study sites.
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Comparisons of the Clayton copula-generated dis-
charges with the Equation (10) calculated discharges for
the three study sites are shown in Figure 7. The values
of R2 and nRMSE were, respectively, 0.838 and 2.22 for
the study site in Illinois; 0.662 and 2.194 in Mississippi;
and 0.704 and 2.283 in Arkansas. These statistical mea-
sures confirmed the assumption that the Clayton
copula-generated discharges were proportion to the
Equation (10) calculated discharges. Therefore, Equa-
tion (10) is feasible to predict the time series discharges
from the given (or measured) precipitations along with
the copula-generated discharges and precipitations.

Method Application

The predicted future daily discharges in response to
future daily precipitations for the three study sites
over the 50-year simulation period from 2026 to 2074
are shown in Figure 8. The future daily precipitation
data were obtained from the climate change scenario
as described in Study Site and Data Acquisition sec-
tion, whereas the future daily discharges were calcu-
lated by Equation (10) with the data generated from
the Clayton copula bivariate distribution function. In
general, the future daily discharges varied with years

FIGURE 6. Procedures in developing the time series predictive algorithm. (a) sort the copula-generated discharge and
precipitation data from smallest to largest based on the precipitation data, (b) sort the future date and precipitation data from smallest to
largest also based on the precipitation data, (c) add the two sorted datasets together side-by-side, and (d) sort the data in (c) based on date

in chronological order and then predict the future discharge using Equation (10).
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and locations, and they did not correspond well to the
future daily precipitations. For example, the maxi-
mum daily discharge was 179.58 m3/s on January 10,
2055 for the study site in Illinois (Figure 8a) but the
amount of the daily precipitation was only 0.22 mm on
the same date at the same location (Figure 8b). The
similar results were also found for the other two study
sites (Figure 8). These occurred because the daily dis-
charges had a very poor relationship with those of the
daily precipitations as the daily discharges depended
not only on the precipitation rates but also on the
watershed hydrogeological conditions as well as the
time-lag in stream discharges after precipitations.
Such poor relationships were also confirmed by the
field-measured data (Figure 3). Overall, the steeper
slope, narrower stream channel, larger drainage area,
and lesser tree and grass covered land would result in
the higher stream discharges (Ouyang et al. 2019). In

addition, the antecedent stream flow conditions (i.e.,
wet or dry) also play an important role.

Comparisons of the past and future daily dis-
charges for the three study sites are shown in
Figure 9. The past discharges were obtained from
the field measurements, while the future discharges
were predicted with the method developed in this
study. In general, the future daily discharges were
lower than those of the past daily discharges for the
three study sites, especially for the study site in
Arkansas (Figure 9c). For instance, the past average
daily discharge was 11.82 m3/s but the future aver-
age daily discharge was 3.94 m3/s for the study sites
in Arkansas. I attributed this discrepancy to the dif-
ference in average daily precipitation between the
past and the future. The past average daily precipi-
tation was 11.9 mm but the future average daily pre-
cipitation was 2.25 mm at the study site in
Arkansas. A 5.3-fold decrease in the future average
daily precipitation decreased the future average
daily discharge by about three times. It should be
caution that the future average daily precipitations
obtained from the RCP45 scenario for the three
study sites were three to five times lower than those
of the past measured daily precipitations. These sce-
nario datasets may underestimate the future precipi-
tation conditions although it is beyond the scope of
this study.

Variations in future annual discharges for the
three study sites over the 50-year period are shown
in Figure 10a–c. Analogous to the case of the future
daily discharges, the future annual discharges also
varied with years and locations, which occurred
because of the different biological, geological, and
hydrological watershed conditions. Compared to the
future average annual precipitation, the variations in
the future average annual discharge with locations
were dramatic. For example, the future average
annual precipitations for the study sites in Arkansas
and Mississippi were, respectively, 822.36 and
847.43 mm, whereas the future average annual dis-
charges for the same locations were, respectively,
354.14 and 1226.77 m3/s. The difference between the
two sites was about 3% for the future average annual
precipitation but was about 246% for the future aver-
age annual discharge. Results further confirmed that
although the precipitation was a major source of
water for stream discharges, the rate of stream dis-
charge depended on a wide range of watershed and
social conditions.

Finally, it is worth mentioning that the method
developed in this study can also be used to quantify
the relationships of other variables if their copula
dependence structures follow. For many variables,
such dependence structures or relationships may

FIGURE 7. Correlations of the predicted and copula-generated
discharges.
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exist although it may not be possible to identify them
using the traditional methods.

CONCLUSIONS

A time-savings, cost-effective, and novel method
was developed to predict steam discharges using pre-
cipitation data, which is otherwise very difficult (if
not impossible) by using the traditional methods.

This copula-based method was validated using the
long-term (>60 years) field-measured data from three
USGS stream gage stations and three NOAA weather

monitoring stations based on the Kendall’s τ and p
value. A novel computational algorithm (Equation 10)
was formulated to calculate the time series dis-
charges in conjunction with copula-generated dis-
charges and precipitations, which was verified using
R2 and nRMSE. Based on the very good statistical
measures, the method developed here is capable to
predict the stream discharges using the precipitation
data.

The method was applied to project the future
50 years stream discharges at the three study sites
using the future precipitations obtained from the
climate change scenario with very promising predic-
tions. It should also be noted that no future dis-
charge data are available to valid the copula

FIGURE 8. Future daily discharges and precipitations for the three study sites.
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dependence structure of future precipitation and
discharge. It was assumed that the watershed prop-
erties such as land use and topography will not be
changed in the future and the only changes are dis-
charge and precipitation for watersheds of interest
in this study. It was further assumed that the
future precipitation and discharge have a similar

relationship as that of the past precipitation and
discharge.

There is a very good potential to employ the
method for quantifying the relationships of other
variables if their copula dependence structures exist.
Further study is therefore warranted to investigate
the issue.

FIGURE 9. Comparison of the past measured and the future predicted daily discharges.
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