Projections of future wildfires impacts on air pollutants and air toxics in a changing climate over the western United States

Cheng-En Yanga, Joshua S. Fua,b,*, Yongqiang Liuc, Xinyi Donga,1, Yang Liud

a Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, 37996, USA
b Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
c Center for Forest Disturbance Science, USDA Forest Service, Athens, GA, 30602, USA
d Department of Environmental Health, Emory University, Atlanta, GA, 30322, USA

\textbf{ARTICLE INFO}

Keywords:
Wildfires
Particulate matter
Ozone
Air toxics
Fire emissions

\textbf{ABSTRACT}

Wildfires emit smoke particles and gaseous pollutants that greatly aggravate air quality and cause adverse health impacts in the western US (WUS). This study evaluates how wildfire impacts on air pollutants and air toxics evolve from the present climate to the future climate under a high anthropogenic emission scenario at regional and city scales. Through employing multiple climate and chemical transport models, small changes in domain-averaged air pollutant concentrations by wildfires are simulated over WUS. However, such changes significantly increase future city-scale pollutant concentrations by up to 53 ppb for benzene, 158 ppb for formaldehyde, 655 \(\mu\)g/m\(^3\) for fine particulate matter (PM\(_{2.5}\)), and 102 ppb for ozone, whereas that for the present climate are 104 ppb for benzene, 332 ppb for formaldehyde, 1,378 \(\mu\)g/m\(^3\) for PM\(_{2.5}\), and 140 ppb for ozone. Despite wildfires induce smaller changes in the future, the wildfire contribution ratios can increase by more than tenfold compared to the present climate, indicating wildfires become a more critical contributor to future air pollution in WUS. In addition, additional 6 exceedance days/year for formaldehyde and additional 3 exceedance days/year for ozone suggest increasing health impacts by wildfires in the future.

\textbf{1. Introduction}

Wildfires emit large amounts of particles and trace gases that can substantially influence air quality (Alves et al., 2011; Andreae and Merlet, 2001; Na and Cocker, 2008; Urbanski et al., 2008; Wiedinmyer et al., 2006). Wildfires contributed to 30% of total fine particulate matter (PM\(_{2.5}\)) emissions in the United States (U.S.) and carbon dioxide (CO\(_2\)) emitted from wildfires was equivalent to 4–6% of total anthropogenic emissions at the contiguous United States (CONUS) level and more than the annual emission from fossil fuel usage at the state level (Urbanski et al., 2011; Wiedinmyer and Neff, 2007). In California, U.S, 17% of the exceedances of maximum 8-h average ozone (O\(_3\)) concentrations of the U.S. public health standards were attributed to wildfires (Pfister et al., 2008). High concentrations of organic compounds after wildfires are also observed compared to that in typical urban air pollution (Alves et al., 2011; Na and Cocker, 2008). These compounds form PM\(_{2.5}\), O\(_3\), and air toxics such as benzene (BENZ) and formaldehyde (FORM) that degrade the air quality and induce adverse impacts on human health (Booze et al., 2004; Ford et al., 2018; Jaffe and Wigder, 2012; Liu et al., 2015; Reisen et al., 2015; Stowell et al., 2019).

The wildfire impacts on air pollution likely become more severe due to climate change. An increasing trend of wildfire activities in the western United States (WUS) has been observed in recent decades (Litte11 et al., 2009; Liu et al., 2013, 2021; Marlon et al., 2012; Wiedinmyer et al., 2006). This trend is projected to continue in the future due to more frequent fire weather conditions (e.g., reduced precipitation and soil moisture) as a result of rising global temperature (Cayan et al., 2010; Chylek et al., 2017; Gao et al., 2014; IPCC et al., 2021, 2014), leading to higher wildfire emissions. Studies have shown wildfires would enhance summertime organic carbon aerosol concentrations by 30–70% and elemental carbon concentrations by 19–27% over WUS (Spracklen et al., 2009; Yue et al., 2013), PM\(_{2.5}\) by about 160%, and maximum PM\(_{2.5}\) level by more than four times by the middle of the twenty-first century (Liu et al., 2016), and wildfire-related PM\(_{2.5}\) in CONUS by 190% by the end

☆ This paper has been recommended for acceptance by Prof. Pavlos Kassomenos.
* Corresponding author. Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, 37996, USA.
1 Present address: The School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu Province, 210023, China.

https://doi.org/10.1016/j.envpol.2022.119213
Received 11 February 2022; Received in revised form 19 March 2022; Accepted 23 March 2022
Available online 27 March 2022
0269-7491/© 2022 Elsevier Ltd. All rights reserved.
The impacts of future wildfire emissions on air pollutant concentrations under changing climate can be better understood through improving air quality modeling and fire emission projections. Previous wildfire-related PM$_{2.5}$ and O$_3$ projections were based on fixed chemical lateral boundary conditions (Nolte et al., 2018), and the spatial and temporal resolutions of the air quality models were too coarse (Liu et al., 2016; Spracklen et al., 2009; Yue et al., 2013) for localized air quality management and health impact assessment purposes. One limitation with such modeling is that the air quality models often provide useful projections at regional but not city scales. In addition, BENZ and FORM, which have high health risk potentials (World Health Organization, 2010), are the most abundant non-methane volatile organic compounds (NMVOCs) emitted by fires. The lack of the projections of BENZ and FORM changes caused by wildfires can be critical to implementing air quality plans, assessing human health impacts, and improving wildfire fire management strategies. Moreover, fire emissions are currently an important factor yet with the biggest uncertainty for evaluating the air quality impacts of wildfires. This problem is likely to become more crucial for evaluating future wildfire impacts since the uncertainty is expected to grow as projections of fire emissions vary dramatically with fire and fuel models (Knoe et al., 2017; Spracklen et al., 2009; Veira et al., 2016; Yue et al., 2013). The RCP8.5 emission scenario has been widely used in Earth system models for predicting climate change under an extreme anthropogenic emission scenario. This emission dataset is derived based on demographic and economic trends, technological change assumptions, and environmental legislations (Riahi et al., 2011). Although it provides gridded global pollutant emission projections (sulfur dioxide, nitrogen oxide, carbon monoxide, volatile organic compounds (VOCs), black and organic carbon aerosols), additional information is required to derive the emission of particulate matters and the grid resolution may be too coarse for city-scale air quality management purposes.

To improve the representations of fire emissions with a finer grid resolution that helps refine the projections of air quality at city scales, process-based fire models are designed to simulate the occurrence and spread of fire, fuel loading, consumption rate, and fire emissions (Liu et al., 2014a, 2021). A process-based fire model is often a part of a dynamical global vegetation model that predicts the state and change of fuel loading. It consists of several mechanistic fire behavior functions embedded in a structure that provides two-way interactions with the biogeography and biogeochemistry modules. The rates of fire spread and fireline intensity are the model estimates of fire behavior used to simulate fire occurrence. The occurrence of a fire event is triggered by thresholds of fire spread, fine fuel flammability, and coarse woody fuel moisture. Fire emissions projected by process-based fire models are also influenced by climate status expressed as varied boundary conditions of both atmospheric CO$_2$ and meteorological conditions such as solar radiation, temperature, humidity, and precipitation. Since fire emissions are projected on a different basis between process-based fire models and the RCP8.5 scenario, it is essential to evaluate how fire emission impacts future air pollutant concentration changes for management and decision-making on wildfires.

Through controlling the wildfire emissions, a series of regional climate and chemistry transport model simulations were conducted at high spatial and temporal resolution during the present and the future RCP8.5 climate scenarios, enabling this study to address the issues of (1) understudied BENZ and FORM projections due to wildfires, (2) the evolution of wildfire impacts on BENZ, FORM, PM$_{2.5}$, and O$_3$ from the past to the future at regional and city scales, and (3) uncertainty of air quality projections caused by fire emissions in WUS.
were mapped to the CMAQ CB05e51 species (Table S1) with an updated species mapping table of four VOCs due to CMAQ chemical mechanism version changes (Table S2) (Appel et al., 2017; Gao et al., 2013; Pye and Pouliot, 2012; Tai et al., 2008). Conversions of secondary organic aerosols from CAM-Chem to CMAQ were determined by the ratios between organic aerosol species in CMAQ simulations driven by the clean ICBC (Carlton et al., 2010).

Other chemistry and physics configurations in CMAQ included the aqueous-phase chemistry module for the clouds and aqueous-phase chemistry (Fahey et al., 2017), the vertical diffusion scheme from the updated Asymmetric Convective Method (Pleim, 2007), the horizontal advection scheme (Colette and Woodward, 1984), inline photoysis rate calculations (Binkowski et al., 2007), inline lightning induced nitrogen oxides (Allen et al., 2010, 2012), and inline plume-rise modules for emissions (UNC Institute for the Environment, 2009).

2.2. Emissions

2.2.1. Present years emissions

The emissions of air pollutants are critical CMAQ inputs to assess how their concentrations vary with wildfires under climate change. The present emissions obtained from the U.S. Environmental Protection Agency (USEPA) were derived from the National Emission Inventory data (Xing et al., 2013). These emissions include point, mobile, and area emission sources during 2001–2010 over the CONUS domain (Fig. S1). The point sources comprise anthropogenic emissions from electric generating units, non-electric generating units, and other point sources outside CONUS (i.e., Canada, Mexico, and near-coast oceans). The mobile sources include on-road and non-road vehicle emissions. The area sources consist of anthropogenic emission sectors (e.g., industrial processes, solvent, and agricultural production) and biogenic emissions at the surface at 36-km horizontal resolution. We processed the area emissions by regridding it to the 12-km horizontal resolution based on the 2000–2010 U.S. population data at the county level (https://www.census.gov/data/tables/time-series/demo/popest/intercensal-2000-2010-counties.html).

The present fire emissions were prepared utilizing two fire emission products—Fire INventory version 1.5 from National Center for Atmospheric Research (FINN) (Wiedinmyer et al., 2011) and Global Fire Emissions Database version 4.1 with small fires (GFED4.1s) (Giglio et al., 2013)—to reconstruct the fire emissions that were aggregated into the USEPA area source emissions (Fig. S2). FINN data contains 40 daily fire-induced species emissions from satellite retrievals at about 1-km horizontal resolution using the MOZART4 chemical mechanism. Chemical species in FINN were mapped to the CB05e51 species accordingly (Tables S1 and S2). The GFED4.1s dataset provides the fire activity information every three hours at 0.25° horizontal resolution starting from 2003. We applied the nearest neighbor method to reallocate the daily FINN emissions with the three-hourly GFED4.1s temporal profiles for generating the hourly FINN emissions. Note that the FINN emission rate of a species in a grid cell was assumed the same within three hours. We further distributed hourly FINN fire emissions vertically with the hourly meteorological conditions from WRF. The GFED4.1s burned area sizes according to the injection height of biomass burning emission (Fu et al., 2012), along with the hourly buoyant efficiency and the fire size class look up tables (Tables S3 and S4) (Air Sciences Inc, 2005). The resulting three-dimensional hourly FINN emissions (FINN3D) were used for the 2003–2010 simulations due to the GFED4.1s data availability limitation. We adjusted the area emissions by subtracting the surface layer data in FINN3D from the USEPA area source data and zeroed out the grid cells with negative values.

2.2.2. Future emissions

Future emissions under the RCP8.5 scenario were prepared with the data from the International Institute for Applied Systems Analysis (IIASA) database (available at https://tntcat.iiasa.ac.at/RcpDb). This database provides twelve sectoral emissions at 0.5° horizontal resolution on a monthly basis in 2000, 2005, and every decade from 2010 to 2100. To obtain 2051–2059 emissions, we firstly interpolated the emissions between 2050 and 2060 linearly and mapped the twelve IIASA emission sectors to the five emission source types used in the present years emissions (Table S5). The eight species of IIASA emissions were also mapped to the CB05e51 species (Table S6). We then computed the monthly ratios of all species at each grid cell in each IIASA emission source between 2050s and 2005s, and these ratios were applied to the corresponding 2005 USEPA emission source types and the 2005 FINN3D fire emissions, yielding the projected 2050–2059 hourly emissions for wildfires (FINN3D_RCP85) and all the other sectors. Note that we chose 2005 as the base year to project future emissions because the historical period ended in 2005 for the climate model simulations in the fifth phase of the Coupled Model Intercomparison Project (Taylor et al., 2012). In addition, the same ratio of a species at a grid cell in monthly IIASA emissions was applied to the 2005 hourly USEPA emission data of that species within a month, i.e., a species would have the same spatial and temporal emission distribution at a grid cell as it had in 2005 but with a different magnitude within a month. Furthermore, we assumed the future biogenic emissions would have the same emission ratios derived from the IIASA anthropogenic emissions because both emissions were already merged into the USEPA area source emissions.

2.2.3. Future fire emissions from a process-based fire model

The FINN3D_RCP85 fire dataset was derived from the spatial and temporal profiles of FINN3D with the magnitudes from the 2050s to 2005 IIASA emission ratios. Since the global IIASA emissions have a coarser grid resolution, we used a process-based empirical fire model (EFM) to project fire emissions with a finer grid resolution for CMAQ simulations. In this study, we compared the simulated air pollutant concentrations between FINN3D_RCP85 and EFM to evaluate how fire emissions impact the air pollution in WUS.

EFM is a fire model based on the extreme value theory and fuel projection of a dynamic global vegetation model (Liu et al., 2014b, 2021). It requires fire danger meteorological variables (daily maximum temperature and precipitation, annual mean precipitation, and humidity), which can be obtained from observations or from climate and weather modeling results, as the inputs to predict the average fire number over different fire size ranges and various levels of a normalized drought index (Liu et al., 2021). The ratio of the projected fire numbers to that in the present years for each fire size category is applied to the burned area from observations at the present years to estimate the future burned area for the category. The fire projection information, along with the fuel loading predicted by the Dynamical Land Ecosystem Model (Tian et al., 2010) and the fuel moisture calculated by the empirical algorithms from the National Fire Danger Rating System (Cohen and Deeming, 1985), can be used to project future PM$_{2.5}$ emissions from wildfires (Liu et al., 2021). In this study, we estimated future EFM emissions at the locations where large fires (at least 1,000 acres burned) occurred during 2003–2010 and the PM$_{2.5}$ emissions from large fires in WUS were projected to increase during 2050–2059 (Fig. S3). The major contributor is the increasing number of large fires, which would lead to an increase of total PM$_{2.5}$ emissions by about 50% by the middle of the twenty first century; changes in fuel loading would also contribute to the increase in PM$_{2.5}$ emissions, but with large spatial variability (Liu et al., 2021). We prepared the EFM emissions through aggregating the PM$_{2.5}$ emission located within a 12-km grid cell in WUS, and we applied the emission factor ratios based on Urbanski et al., 2014 for each species to PM$_{2.5}$ (Table S7) to derive the emissions of other species from wildfires.

2.3. Experimental design and analytical metrics

Two sets of hourly CMAQ simulations with five different emission scenarios were conducted to investigate the wildfire impacts on the air pollutants from the present to the future climate (Table S8). The first
simulation set includes two present climate experiments of EXP1 (without fire emissions) and EXP2 (with FINN3D emissions) during 2003–2010 under the same meteorological conditions and ICBC values. The second simulation set includes three experiments under the RCP8.5 scenario. Three experiments share the same future year WRF inputs, ICBC inputs, and sectoral emissions except for wildfires. EXP3 was conducted excluding wildfire emissions, EXP4 with the FINN3D_RCP85 emissions, and EXP5 with the EFM emissions.

In this study, we evaluate the wildfire impacts on four air pollutants (BENZ, FORM, PM2.5, and O3) each fire month, with the daily averages of PM2.5 and the hourly values of the other pollutants. The analytical metrics include the grid-cell level (or “city-scale”) values and the domain averages of all grid-cell values, the differences of the grid-cell level values and the domain averages between with and without wildfire emission experiments, and the wildfire contribution ratios at the grid-cell level (R_{grid}) and the domain averages (R_{avg}):

\[
R_{grid} = \frac{(Exp_{fire} - Exp_{nofire})_{grid}}{Exp_{nofire}_{grid}},
\]

\[
R_{avg} = \frac{(Exp_{fire} - Exp_{nofire})_{avg}}{(Exp_{nofire})_{avg}},
\]

where \(Exp_{fire}\) is EXP2 for the present climate and EXP4 or EXP5 for the future climate, \(Exp_{nofire}\) is EXP1 for the present climate and EXP3 for the future climate. A recent study has shown that long-term exposure to air pollutants induces adverse health effects even at low concentration levels (Dominici et al., 2022). Hence, compared to the fire contribution percentages used in previous studies (e.g., Liu et al., 2016; Wilkins et al., 2018), \(R_{grid}\) and \(R_{avg}\) can better illustrate how wildfires aggravate air quality on top of an environment without wildfires, especially at lower pollutant concentration levels. In addition, we calculate the number of exceedance days at the grid-cell level according to the National Ambient Air Quality Standards and the reference exposure levels (REL) (OEHHA, 2008) to investigate the wildfire impacts on air quality. We define an exceedance day of a species as the daily averaged value reaches or exceeds its threshold (for PM2.5 only) or any hourly value within a day reaches or exceeds its threshold (for O3, BENZ, and FORM). In this study, we adopt the threshold values of 35 \(\mu g/m^3\) for daily PM2.5 and 70 ppb for hourly O3 (National Primary and Secondary Ambient Air Quality Standards, 2021), and the acute REL values of 27 \(\mu g/m^3\) (or 8.5 ppb) for hourly BENZ and 55 \(\mu g/m^3\) (or 45 ppb) for hourly FORM (OEHHA, 2008).

The CMAQ performance was assessed retrospectively during the present climate through pairing modeled outputs and observations in time and in space. We used the mean fractional bias and the mean fractional error metrics (Boylan and Russell, 2006) to evaluate the simulated daily PM2.5 and hourly O3 concentrations in WUS. We retrieved monitoring station data from the Interagency Monitoring of Protected Visual Environments database (available at http://vista.cira.colostate.edu/improve/improve-data) and the Air Quality System (available at https://aqs.epa.gov/aqweb/airdata/download_files.html) in WUS during the 2003–2010 fire months. All data from monitoring sites within a model grid cell was averaged and compared to the modeled values. We verified that the EXP2 results meet the performance criteria for daily PM2.5 (Table S9), validating the feasibility of our CMAQ configurations and inputs for projecting wildfire impacts on air pollutant concentrations in WUS.

3. Results and discussion

3.1. Wildfire impacts on air toxics in WUS

The monthly domain-averaged BENZ concentrations without wildfire emissions decrease from 0.014 to 0.039 ppb in EXP1 during the present climate to 0.009–0.023 ppb in EXP3 under the RCP8.5 scenario (Fig. 1(a)). With the consideration of wildfire emissions, such values change to 0.016–0.050 ppb for EXP2, 0.012–0.045 ppb for EXP4, and 0.009–0.023 ppb for EXP5, respectively. The yielding differences caused by wildfires are 0.001–0.025 ppb during the present climate and enhance to 0.002–0.027 ppb in the 2050s with the FINN3D_RCP85 emissions. Compared to EXP3, the domain-averaged BENZ concentrations in EXP5 show small changes with the EFM emissions in the 2050s. Contrary to the small changes of domain-averaged concentrations, the monthly maximum BENZ levels and the enhancement of BENZ concentrations by wildfires are simulated much higher at the grid-cell level (Fig. 1(b)). The monthly maximum BENZ concentrations at the grid-cell level are 3–8 ppb in EXP1 and 5–10 ppb in EXP2, with the differences ranging 5–104 ppb in the present climate. During the 2050s, the maximum BENZ concentrations at the grid-cell level are projected 2–7 ppb in EXP3, 7–53 ppb in EXP4, and 0.001–30 ppb in EXP5. The future BENZ increases by wildfires are simulated up to 53 ppb with the FINN3D_RCP85 emissions and up to 30 ppb with the EFM emissions. Our results indicate that fire emissions can substantially worsen the air quality at cities in WUS despite the insignificant contributions to the entire WUS domain. Note that our simulated BENZ concentrations with wildfire emissions in the present climate are higher than previous measured 3–4 ppb in WUS (Reinhardt and Ottmar, 2004), primarily attributed to larger burned areas under climate change such as summertime precipitation declines and exacerbated vapor pressure deficits (Dennison et al., 2014; Higuera and Abatzoglou, 2021; Holden et al., 2018; Short, 2013).

The monthly domain-averaged FORM concentrations are 0.33–0.87 ppb in EXP1 and 0.33–0.92 ppb in EXP2 during the present climate. Relatively lower FORM concentrations are projected under the RCP8.5 scenario, with 0.27–0.73 ppb in EXP3 excluding wildfire emissions, 0.28–0.75 ppb in EXP4 with the FINN3D_RCP85 emissions, and 0.27–0.73 ppb in EXP5 with the EFM emissions, respectively (Fig. 2(a)). Wildfire enhances FORM concentrations by 0.003–0.048 ppb during the present climate and 0.006–0.040 ppb in the 2050s with the FINN3D_RCP85 emissions. Similar to BENZ, EXP5 with the EFM emissions exhibits no substantial FORM concentration changes compared to EXP3 at the regional scale (Fig. 2(a)). On the contrary, the maximum differences of FORM concentrations at the grid-cell level can be as high as 82 ppb (Fig. 2(b)), which is nearly doubled than the suggested REL.

Fig. 1. Monthly (a) domain-averaged and (b) grid maximum benzene concentrations (cross marks, unit: ppb) in WUS. The definitions of experiments are described in the main texts. Each box-whisker plot includes the information of the minimum (lower end), the first quartile (lower bound of the box), the median (line inside the box), the third quartile (upper bound of the box), and the maximum (upper end). Mean values are shown in filled circles. Note the ordinate is in log-scale in panel (b).
the maximum R_{grid} values are found 2×10^7 for BENZ in May 2009 and 1×10^7 for FORM in November 2003. For the FINN3D_RCP8.5 emissions under the RCP8.5 scenario, wildfires enhance BENZ by up to 53 ppb in August 2053 and up to 158 ppb for FORM in August 2051, with the maximum R_{grid} values of 5×10^7 for BENZ in April 2050 and 1×10^7 for FORM in November 2052. It is noteworthy that the highest domain-averaged values and grid-cell maximum values of BENZ and FORM are simulated in different months between the present climate and the future climate. This result elucidates the importance of climate change to the evolution of wildfire impacts on the air toxics in WUS, which is crucial to the decision-making strategies for fire and environmental management since high air toxics levels are not only simulated in summertime but also during the spring and autumn seasons in the future (Figs. S5–57).

The high R_{grid} values simulated under the RCP8.5 scenario suggest that cities in WUS will experience substantial BENZ and FORM increases when wildfires take place, in spite of reduced concentrations and contribution percentages, which may impose threat to the sensitive groups. To better illustrate the air quality changes and health impacts by wildfires, we evaluate the annual exceedance days across the WUS domain. The exceedance days for BENZ rise by 41% (100 days/year) due to wildfires during the present climate while that during the 2050s are 39% (95 days/year) for EXP4 (Table 1). Nevertheless, the exceedance days for FORM increase from 34% (84 days/year) to 44% (108 days/year) in the present climate while that for EXP4 surges by 12% (30 days/year) to 19% (47 days/year). Fewer exceedance days for EXP4 than EXP2 but with greater changes when compared to no wildfire emission scenarios suggest that wildfires become much more important regarding air quality in the future. The exceedance days for both BENZ and FORM in EXP5 only increase by 1 day/year (Table 1), which are fewer than EXP4 because the EF M emissions only consider large wildfires while the FINN3D_RCP85 emissions take both large and small wildfires into account.

3.2. Wildfire impacts on PM$_{2.5}$ and O$_3$

Wildfires elevate the monthly domain-averaged PM$_{2.5}$ from 2.56 to 8.04 μg/m3 to 2.63–9.30 μg/m3 in WUS during the present climate (Fig. 3(a)), causing 0.05–1.26 μg/m3 increases in PM$_{2.5}$. The maximum change is simulated in August 2007, the largest R_{avg} of 0.20 in September 2006, and the highest contribution percentage of 9% in July 2008 (Fig. 8). Our results are slightly lower than previous studies that estimated wildfires-induced PM$_{2.5}$ increases of 1.48 μg/m3 with a contribution ratio of 11% at the Intermountain West region in June–September during 2008–2012 (Wilkins et al., 2018), and on an average 12% of total daily PM$_{2.5}$ at 561 counties in WUS during 2004–2009 (Liu et al., 2016). A longer fire season (April to November) and a broader domain with more states included in our analysis are

Table 1

<table>
<thead>
<tr>
<th>Time period</th>
<th>Experiment</th>
<th>Pollutants</th>
<th>BENZ</th>
<th>FORM</th>
<th>PM$_{2.5}$</th>
<th>O$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present</td>
<td>EXP1</td>
<td>0 (0%)</td>
<td>84 (34%)</td>
<td>39 (11%)</td>
<td>39 (85%)</td>
<td></td>
</tr>
<tr>
<td>(2003–2010)</td>
<td>EXP2</td>
<td>100 (41%)</td>
<td>158 (44%)</td>
<td>182 (75%)</td>
<td>182 (86%)</td>
<td></td>
</tr>
<tr>
<td>Future RCP8.5</td>
<td>EXP3</td>
<td>0 (0%)</td>
<td>17 (7%)</td>
<td>52 (21%)</td>
<td>194 (80%)</td>
<td></td>
</tr>
<tr>
<td>(2050–2059)</td>
<td>EXP4</td>
<td>95 (39%)</td>
<td>174 (19%)</td>
<td>199 (82%)</td>
<td>199 (82%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EXP5</td>
<td>1 (0%)</td>
<td>18 (7%)</td>
<td>55 (23%)</td>
<td>194 (80%)</td>
<td></td>
</tr>
</tbody>
</table>
suggested to cause the lower wildfire impacts on PM$_{2.5}$ in this study. In addition, our results demonstrate that wildfires slightly enhance PM$_{2.5}$ concentrations more in the autumn seasons (0.17–0.93 μg/m3, R_{avg} = 0.05–0.20, contribution percentages = 3–8%) with an average of 0.36 μg/m3 than in the summer seasons (0.05–1.26 μg/m3, R_{avg} = 0.01–0.18, contribution percentages = 1–9%) with an average of 0.34 μg/m3 during the present climate (Fig. S8). While studies have shown large wildfire impacts on summertime PM$_{2.5}$ concentrations in WUS (Jaffe et al., 2008; O’Dell et al., 2019), the shift of higher wildfire impacts on PM$_{2.5}$ from summer to autumn seasons simulated in this study is associated with the enhanced wildfire activities under climate change, driven by the heightened fire vulnerability as a result of altered temperature, wind, and precipitation patterns in WUS (Goss et al., 2020; Williams et al., 2019). At city scales, the maximum wildfire-induced PM$_{2.5}$ change is found 1,378 μg/m3 in September 2006, which is 767 times higher than the PM$_{2.5}$ level if there were no wildfires (Fig. S9). During 2003–2010, wildfires increase 47–1,378 μg/m3 at city scales, resulting in 21–767 for R_{grid} and 95–100% for the wildfire contribution percentages. The autumn seasons are influenced by wildfires (194–1,378 μg/m3, R_{grid} = 69–797) much greater than the summer seasons (76–948 μg/m3, R_{grid} = 29–302) (Fig. S9).

The domain-averaged PM$_{2.5}$ projections under the RCP8.5 scenario range 2.08–6.32 μg/m3 in EXP3, 2.16–6.64 μg/m3 in EXP4, and 2.08–6.33 μg/m3 in EXP5, whereas PM$_{2.5}$ levels at city scales are simulated 17.4–38.1 μg/m3 in EXP3, 91.0–260.6 μg/m3 in EXP4, and 17.4–38.1 μg/m3 in EXP5 (Fig. 3(a)). The resulting domain-averaged PM$_{2.5}$ changes by wildfires are 0.06–0.70 μg/m3 (R_{avg} = 0.03–0.20, contribution percentages = 2–9%) with the FINN3D_RCP85 emissions and up to 0.03 μg/m3 (R_{avg} = 0.01, contribution percentages = 0.5%) with the EFM emissions (Fig. S8); the grid-cell level maximum PM$_{2.5}$ changes are 67–655 μg/m3 (R_{grid} = 34–271, contribution percentages = 97.1–99.6%) with the FINN3D_RCP85 emissions and 0.1–265 μg/m3 (R_{grid} = 0.03–90.4, contribution percentages = 2.7–98.9%) with the EFM emissions (Fig. S9). The projections of domain-averaged and grid-cell level PM$_{2.5}$ concentrations in the 2050s are smaller than the present climate (Fig. 3), consistent with the projected BENZ and FORM results, caused by anthropogenic emission reductions with improved technologies in the future (Ford et al., 2018; Riahi et al., 2011; Val Martin et al., 2015). Although the changes are smaller in the future, the slightly higher R_{avg} values indicate an increasing importance role of wildfires in future PM$_{2.5}$ across the WUS domain as suggested by previous studies (Ford et al., 2018; Liu et al., 2016). The large R_{grid} values in both simulations with the FINN3D_RCP85 emissions and the EFM emissions also suggest substantial wildfire contributions on local PM$_{2.5}$ that can induce health concerns. Our simulations show that the PM$_{2.5}$ exceedance days caused by wildfires are 143 days/year (59%) in the present climate and 122 days/year (50%) with the FINN3D_RCP85 emissions and 3 days/year (2%) with the EFM emissions under the RCP8.5 scenario (Table 1).

The monthly domain-averaged O$_3$ levels between EXP1 and EXP2 are close each other during the present climate (Fig. 4(a)). The differences caused by wildfires are simulated 0.03–0.62 ppb (R_{avg} = 0.001–0.012, contribution percentages = 0.06–1.14%) (Fig. S10), which are comparable to the previously reported value of 0.17 ppb or 0.4% for maximum 8-h average O$_3$ increases across the CONUS domain during the 2008–2012 fire seasons (Wilkins et al., 2018). The city-scale maximum O$_3$ changes are projected 9.8–139.6 ppb (R_{grid} = 0.2–3.4, contribution percentages = 20–78%) with the largest values simulated in June 2008 (Fig. S11). Compared to the higher impacts during the autumn seasons for PM$_{2.5}$, summertime wildfires influence O$_3$ changes the most in WUS for both the domain-averaged (0.08–0.62 ppb, R_{avg} = 0.002–0.012, contribution percentages = 0.16–1.14%) and city-scale maximum O$_3$ values (23.8–139.6 ppb, R_{grid} = 0.5–3.4, contribution percentages = 34–78%).

Future monthly domain-averaged and city-scale maximum O$_3$ concentrations are simulated higher under the RCP8.5 climate than that of the present climate (Fig. 4). The domain-averaged values are 46.5–54.9 ppb in EXP3, 46.6–54.9 ppb in EXP4, and 46.5–54.9 ppb in EXP5. The O$_3$ increases induced by wildfires are up to 0.24 ppb (R_{avg} = 0.005, contribution percentage = 0.5%) with the FINN3D_RCP85 emissions and up to 0.01 ppb (R_{avg} = 1 × 10$^{-4}$, contribution percentages = 0.01%) with the EFM emissions (Fig. S10). Summer remains the most influential season for O$_3$ increases by wildfires in WUS during the 2050s, consistent with previous studies, as a result of enhanced fire activities and increased biogenic emissions under a warmer climate condition (e.g., Jaffe and Zhang, 2017; Nolte et al., 2018). The maximum O$_3$ values at the grid-cell level increase by wildfires are 6.2–102.5 ppb (R_{grid} = 0.1–2.3, contribution percentages = 13–70%) for all fire months and 19.3–102.5 ppb (R_{grid} = 0.4–2.3, contribution percentages = 29–70%) during the summer seasons with the FINN3D_RCP85 emissions. Simulations with the EFM emissions show 0.01–42.3 ppb (R_{grid} = 3 × 10$^{-4}$–1.03, contribution percentages = 0.03–50.6%) for all fire months and 0.1–42.3 ppb (R_{grid} = 0.002–1.03, contribution percentages =
0.2–50.6%) during the summer seasons regarding the maximum O₃ values at the grid-cell level (Fig. S11). The slight increases of O₃ concentrations in a warmer future climate result in a few more exceedance days compared to the present climate. The simulated exceedance days by O₃ change from 2 days/year to 5 days/year with the FINN3D_RCP85 emissions, even though the total exceedance days decrease from 208 days/year in EXP1 and 210 days/year in EXP2 to 194 days/year in EXP3 and 199 days/year in EXP4 (Table 1). Unaccounted small wildfire contributions to the O₃ concentrations by the EFM emissions are suggested to cause unchanged exceedance days simulated in EXP5 with respect to EXP3.

3.3. Uncertainty of air quality projections due to wildfire emissions

Results from EXP4 and EXP5 exhibit large variations in projecting future air pollutant concentrations. Such variations are attributed to the projections of the wildfire emissions since all climate, ICBC, and sectoral emission inputs excluding wildfires are identical between the two experiments. Here we select four grid cells (Fig. S12) to investigate how FINN3D_RCP85 and EFM wildfire emissions influence the city-scale PM₂.₅ levels in WUS. We find that daily PM₂.₅ concentrations vary substantially between the two wildfire emissions during June 2051 (Fig. S13). While PM₂.₅ variations in EXP4 and EXP5 generally agree with each other at the southern California location (Fig. 13(b)), high episodic PM₂.₅ increases with the FINN3D_RCP85 emissions are projected at the northern California location on June 5, 2051 (61 μg/m³, Rₕᵢₜ = 24, and 96% for the contribution ratio) and during June 24–26, 2051 (2–17 μg/m³, Rₕᵢₜ = 1–7, and 38–87% for the contribution ratios) whereas the EFM emissions induce negligible PM₂.₅ changes at this location (Fig. 13(a)). On the contrary, large wildfires observed at the Colorado and Arizona locations during June 2001 lead to high EFM wildfire emission projections in June 2051, causing the largest PM₂.₅ increase of 54 μg/m³ (Rₕᵢₜ = 28 and 97% for the contribution ratio) on June 5, 2051 (Fig. 13(c)) at the Colorado location and 124 μg/m³ (Rₕᵢₜ = 32 and 97% for the contribution ratio) at the Arizona location on June 1, 2051 (Fig. 13(d)). These results demonstrate how different wildfire emission predictions considerably influence the simulated air pollutant concentrations in the future. In this study, the FINN3D_RCP85 emissions include both small and large wildfires but they are projected according to the 2005 USEPA emission profiles. The lack of the temporal changes between years can cause biases in air pollutant estimates. On the other hand, the EFM emissions are a high-resolution emission dataset projected at the locations where large fires occur in the present climate. Nevertheless, an important caveat of the EFM emissions lies in the missing small wildfires, which can contribute to the total fire emissions as much as large wildfires when the burning period becomes longer. Future simulations are suggested to consider both large and small wildfire events with varying annual wildfire temporal profiles to improve the estimates of wildfire impacts on air quality either at city or regional scales.

4. Conclusion

This study combines observations and model simulation results to investigate the evolution of wildfire impacts on air pollutants in WUS from the present climate to the future climate. To our knowledge, this is the first study to evaluate future wildfire impacts on air toxics that have high health risk potentials in this region. We find that smaller pollutant concentration changes but higher contribution ratios by wildfires are projected under the RCP8.5 scenario compared to that during the present climate. This suggests an increasing role of wildfires in altering the pollutant concentrations, which in turn affect human health as more annual exceedance days are projected. In addition, our simulations with high spatial and temporal resolutions enable the evaluations of wildfire impacts on air pollutants at both regional and city levels. While small wildfire impacts on regional (domain-averaged) air pollutant concentrations are simulated, the city-scale pollutant concentrations rise substantially by wildfires. Since human activities expand rapidly from urban to rural areas in recent years, wildfire impacts at the wildland-urban interface (Radeloff et al., 2005) become an emerging concern. Inappropriate coarse grid-resolution simulations or analyses with domain-averaged values may induce large biases in understimating wildfire impacts on air quality at the wildland-urban interface. We therefore suggest that future wildfire studies should consider conducting simulations at city or appropriate regional scales, which are crucial for decision-making processes on air quality, public health, and wildfire management.

Author statement

Cheng-En Yang: Investigation, Methodology, Data curation, Formal analysis, Software, Visualization, Writing – original draft preparation. Joshua Fu: Conceptualization, Supervision, Project administration, Writing – review & editing, Funding acquisition; Yang Liu: Conceptualization, Supervision, Project administration, Writing – review & editing, Funding acquisition. Xinyi Dong: Investigation, Data curation, Software, Writing – review & editing. Tongjiang Liu: Investigation, Methodology, Data curation, Formal analysis, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This study was supported by the U.S. EPA Science to Achieve Results (STAR) Grant R835869. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.envpol.2022.119213.

References

Air Sciences Inc. 2005. 2002 Fire Emission Inventory for the WRAP Region – Phase II, Prepared for the Western Governors Association/Western Regional Air Partnership (Denver, CO, USA.

