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Abstract
Determining when a disturbance has occurred, its severity, and when the system recovered, is important to

numerous questions in the aquatic sciences. This problem can be conceptualized as the timing and degree of
perturbation from a typical state, and when the system returns to that typical state. We present an algorithm for
detecting disturbance and recovery designed for high-frequency time series, e.g., data produced by automated
sampling devices in instrumented buoys and flux towers. The algorithm quantifies differences in the empirical
cumulative distribution functions of moving windows over reference and evaluation periods, and is sensitive to
changes in the mean, variance, and higher statistical moments. Tests on simulated data show it accurately iden-
tifies disturbance and recovery. Three case studies illustrate the application of our algorithm in different empiri-
cal settings. A case study on dissolved oxygen in a Florida, USA estuary following a hurricane identified the
disturbance and recovery 73 d later. A case study on air temperature and net ecosystem exchange in the Florida
everglades identified cold snaps coinciding with periods of reduced carbon uptake. A case study on rotifer abun-
dance following zebra mussel invasion in the Hudson River, NY showed rotifer collapse following invasion and
recovery over a decade later. Methods such as ours can improve understanding response to disturbance and
facilitate comparative and synthetic study of disturbance impacts across ecosystems.

Understanding patterns of disturbance and recovery, which
can be thought of in terms of a system being perturbed from,
and returning to, a typical state, is central to basic and applied
analysis of aquatic systems (Rykiel 1985; Pickett et al. 1989;
Lake 2000; Yannarell et al. 2007). Fundamental to this
research is determining when a disturbance occurred, its sever-
ity, and when the system recovered (Weathers et al. 2016).
Major disturbances, such as severe storms like hurricanes and
major ocean–atmosphere oscillations like the El Niño South-
ern Oscillation, can be easy to identify because they are dis-
crete, drive extreme changes in ecosystem state variables, and
have obvious manifestations in the appearance of the system.
Yet moderate disturbances can still exert substantial controls

on ecosystems. For example, the erosion of coastal saltmarshes
is driven mainly by wave action outside of major storm events
(Wiberg et al. 2019). Quantification of changes in ecosystem
state variables can improve detection of subtler effects that
may not be readily apparent as a qualitative shift in ecosystem
state. However, moderate disturbances are more difficult to
characterize (Atkins et al. 2020), requiring adequate data and
statistical procedures to detect.

Even for major disturbances, determining when a system
has recovered is difficult. Aquatic systems are complex, with
components that may respond to perturbation in different
ways or over different timescales (Engstrom et al. 1985; Pickett
et al. 1989; Wolin and Stoermer 2005; Yannarell et al. 2007).
Furthermore, it can sometimes be difficult to distinguish natu-
ral modes of variability, including seasonal and diurnal pat-
terns, from disturbance. In addition, disturbance can have
multifaceted effects on ecosystem state variables, not only
impacting the mean but also the variance and higher statisti-
cal moments (Scheffer and Carpenter 2003). To take one
hypothetical example, following disturbance the mean pro-
ductivity of a system might return to predisturbance values,
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but if the system has lost resilience, the variance in productiv-
ity might remain elevated because the system responds more
strongly to minor perturbations than before the disturbance
occurred (Scheffer and Carpenter 2003; Scheffer et al. 2015).

Modern sampling technologies have reduced barriers to
detecting disturbance and recovery in ecological systems. Most
germane to this study, high-frequency data, such as from
automated sampling buoys (Hanson et al. 2016; Meinson
et al. 2016; Pace et al. 2017), aquatic autonomous vehicles
(de Lima et al. 2020), or eddy covariance towers (Novick
et al. 2018), which capture detailed records of disturbance/
recovery and natural variation, are increasing in availability
and time series length. However, statistical methods that lever-
age these detailed data and apply systematic quantitative
criteria to detect disturbance and recovery are needed. System-
atic quantitative definitions of disturbance and recovery
strengthen individual investigations by reducing ambiguity
and subjectivity in the timing of events and in metrics of dis-
turbance severity, which is especially important for low- and
moderate-intensity disturbances that do not produce unam-
biguous qualitative changes in ecosystem state. Systematic
quantitative definitions of disturbance and recovery also
strengthen synthesis and meta-analysis, e.g., to compare how
different ecosystems or ecosystem components respond to
disturbance.

A variety of statistical approaches have been used to quan-
tify ecological disturbance and/or recovery, or the related
more general problem of detecting anomalous periods in time
series (Pace et al. 2010; Jones and Lennon 2015; Hobday
et al. 2016; Zwart 2017; Thayne et al. 2021). However, those
of which we are aware tend to have one or more of the follow-
ing shortcomings when applied to the problem of detecting
disturbance and recovery in high-frequency time series of eco-
system variables. One inferential strategy not specific to a par-
ticular statistical method uses statistics post hoc to support
that an ecosystem state variable was affected by a known
event and possibly later recovered (e.g., Pace et al. 2010).
Although useful, different approaches are needed when distur-
bance and recovery may be ambiguous, as can be case for
weak or moderate disturbances, and when the causal event is
not known a priori. Tools like changepoint detection (Killick
and Eckley 2014), autoencoders (Li et al. 2020), and interven-
tion analysis (Carpenter et al. 1989) can be used, without a
priori knowledge of an event, to detect disturbances but may
not be well-suited to identifying recovery, especially when
recovery is gradual, and may be confounded by time series
with complex patterns of natural variability. The latter is par-
ticularly important to our case since the short sampling inter-
val of high frequency data means that the time series will
reflect diurnal and seasonal patterns, and possibly other influ-
ences such as tides and periodic climate oscillations. In data
with somewhat coarser temporal resolution (e.g., daily to
weekly), events can be identified as periods of anomalously
low or high values outside the typical range of variability

(Verbesselt et al. 2012; Hobday et al. 2016), but a more holistic
picture of disturbance could also include periods, e.g., with
suppressed variance and these would be undetected.

Here, we present an algorithm for quantifying disturbance
and recovery in high-frequency time series exhibiting strong
natural variation. We evaluate its performance on simulated
time series, focusing on (1) its accuracy at detecting distur-
bances and how accuracy depends on disturbance severity and
duration; (2) the frequency of false positives; and (3) the error
in estimated recovery dates. In addition, we illustrate the
application of the algorithm in empirical settings by pre-
senting three case studies in which we apply the algorithm to
time series from different ecosystems, focal variables, and sam-
pling technologies.

Procedures
To give an overview, our algorithm identifies disturbance

and recovery by quantifying the difference between the empiri-
cal distribution of a time series variable observed within moving
windows and a reference distribution representing the typical
state of the system. It then quantifies how atypical these differ-
ences are by benchmarking them against the distribution of dif-
ferences observed in moving windows of the same width during
the reference period. An increase in the difference from the ref-
erence state past a specified threshold defines the onset of dis-
turbance, as detected in our algorithm, and a return toward the
reference state, past another (possibly different) threshold,
defines recovery. In addition, we optionally filter detections by
specifying a minimum duration for an excursion from (return
toward) the reference state to be considered a disturbance
(recovery). A general outline of our algorithm is given in
Table 1. Software implementing this algorithm is available in
the “disturbhf” package for the R environment for statistical
computing (R Core Team 2019) on GitHub <https://github.
com/jonathan-walter/disturbhf>. Installation instructions are
provided in Supporting Information Material S1.

More specifically, we define an evaluation time series, xeval
over which we test for disturbance through comparison to a
reference time series, xref. In temporal moving windows of

Table 1. Outline of procedures for implementing our algorithm.

Step

1. Define reference period, test period, and test window width

2. Get ECDF for reference period

3. Find mean and standard deviation of dw for test-width moving

windows in reference period

4. Quantify dw for moving windows in test period

5. Express dw during test period as a Z score benchmarked against

reference period

6. Assign disturbance and recovery based on thresholds of Z score

7. (optional) filter to remove, e.g., transient disturbances
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specified width, we compute the empirical cumulative distri-
bution function (ECDF) of observations within each moving
window, and compare it to the ECDF of the reference period
by evaluating it over a range spanning the joint minima and
maxima of xeval and xref and computing the difference statistic
dw. We provide two ways to compute dw. In the main text, we
consider dw as the maximum difference between the ECDFs:
dw = max(Xw � Xref). Here, Xw and Xref are the ECDFs for the
test window and the reference period, respectively, evaluated
over some common sequence of values spanning the joint
minima and maxima of xw and xref, with interval small relative
to the range. This is similar to the Kolmogorov–Smirnov test
(Kolmogorov 1933; Smirnov 1948). Figure 1 illustrates how dw
differs between a disturbed and undisturbed portion of a syn-
thetic time series. In Supporting Information Material S2 we
additionally consider dw as the integral of the absolute differ-
ence between Xw and Xref and provide parallel results showing
that both versions of dw perform similarly.

We provide two options for defining the reference period:
(1) using the reference period in its entirety, or (2) using a sea-
sonally adaptive reference period. In both cases, the user spec-
ifies a time series reflecting the typical state of the system over

some period of time. This might include, e.g., data from the site
in one or more prior years, or contemporary data from a similar
nearby undisturbed location. The evaluation and reference time
series can also be the same; note that this will identify anoma-
lous periods in the time series, but will have reduced sensitivity
to identify disturbances. The simplest way to use the reference
data is to consider its entirety, but this can be ineffective for dis-
turbances that are overlain on baselines with strong natural vari-
ation (e.g., diurnal or seasonal cycles). Consequently, we also
implemented an adaptive reference period, in which the refer-
ence time series Xref is determined by indexing the provided ref-
erence time series by day-of-year and subsetting a window
(of user-defined width) centered on the corresponding day-of-
year of Xtest. The reference window will typically be wider than
the test window by several times; see Supporting Information
Material S3 for a quantitative investigation of the effect of refer-
ence window width on algorithm performance. We refer to this
as the “seasonally adaptive” reference period given the cases
considered by this study, but the approach could generalize to
coarser or finer timescales given appropriate data.

We next quantify the magnitude of departure for moving
windows during the evaluation period from typical conditions

Fig. 1. Illustration of disturbance statistic using a synthetic time series. In (a) the reference period is shown to the left of the vertical gray line; the evalua-
tion period is to the right. The blue hatched area shows an undisturbed 5-d evaluation window and the red shows a 5-d evaluation window following dis-
turbance. Panels (b) and (c) illustrate how the difference statistic dw is computed from empirical cumulative distribution functions for the reference
period and evaluation window. As above, blue and red show windows without and with disturbance, respectively. Panel (d) shows the time series of
Z scores for dw over the test period, with dashed gray lines indicating the detected onset of disturbance and recovery.
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using a Z score. To do so, we apply the moving window analy-
sis over the reference time series to characterize the distribu-
tion of dw while the system is “normal” via its sample mean,
bμdref , and standard deviation, bσdref . We compute Z scores for all

dw during the test period as Zw ¼ dw�bμdref
� �

=bσdref . Recall that
the Z score for an observation quantifies in units of standard
deviations how far that observation is from the mean. Our sta-
tistic Zw is modified from a standard Z score in that the mean
and standard deviation are taken from the reference period,
not the full time series.

Finally, we apply a disturbance and recovery “alarm sys-
tem” that uses user-specified thresholds on Zw for disturbance
and recovery to assign whether excursions in dw during the
test period are sufficiently large and returned to normal to
qualify, respectively, as disturbances and recoveries. Addi-
tional requirements can be imposed, such as requiring the sys-
tem to remain under the recovery threshold for a period of
time, to add confidence that the system has recovered, not
merely passed quickly and transiently through a distribution
similar to the predisturbance state. We provide an example of
such an algorithm. Taking the alarm output, we filter it by first
merging together disturbances separated by short recoveries,
where short recoveries are those less than a user-specified min-
imum threshold. We then ignore disturbances shorter than a
second, possibly different, user-specified threshold.

The primary assumption made by this algorithm is that the
reference period effectively describes all important processes
driving variation in the focal variable, except for the distur-
bance. By benchmarking changes in the evaluation period
against data in the reference period, the algorithm avoids mak-
ing explicit assumptions about attributes of the data, such as
its distribution and autocorrelation structure, that are com-
mon to statistical tests for difference. The cost of avoiding
such assumptions is that relatively large amounts of data that
are temporally dense relative to the duration of the distur-
bance and relative to other important sources of variability,
such as diurnal, tidal, or seasonal cycles, are needed.

We also caution that changes in time series behavior that
violate this algorithm’s primary assumption, such as may be
due to long-term trends or that are unrelated to the distur-
bance of interest, can result in inaccurately defined distur-
bances or misattribution of disturbance effects. Environmental
time series often feature trends and nonstationarity, e.g., due
to climate change. Statistical pretreatment of the data time
series, such as removing long-term trends, should improve dis-
turbance detection where such phenomena are present. Since
many approaches to disturbance detection used in the envi-
ronmental sciences identify observations or patterns of obser-
vations that are outside norms for that system, uncertainty in
attributing specific mechanisms to anomalous observations is
a challenge common to many different approaches to this
problem, including the algorithm presented here. In some
cases, specific mechanisms of disturbance could have charac-
teristic patterns that machine learning algorithms could be

trained to detect given adequate training data (Kennedy
et al. 2015, Kong et al. 2018). Alternatively, more process-
based models of variation in an undisturbed system could bet-
ter represent changes in a nonstationary system that are
driven by nondisturbance processes. Disturbance detection
based on a process-based model can plausibly be implemented
on lower-volume data time series but requires greater a priori
knowledge of the system that must generally come from
previous studies and independent data.

Assessment
Simulation tests: Procedures

To test the performance of our methods for detecting dis-
turbance and recovery, we applied them to simulated time
series representing two idealized patterns of disturbance over-
lain on two idealized patterns of background natural variation.
We considered “wedge-shaped” disturbances, in which the dis-
turbance manifest as a sudden drop in the time series,
followed by a linear return to its normal state (Fig. S1). We
also considered “S-shaped” disturbances, in which the distur-
bance manifest as a continuous decline in the time series,
followed by an increase through the mean of the normal state,
before peaking and returning to its normal state (Fig. S1). An
example of a qualitatively S-shaped disturbance patterns is
estuary salinity during hurricanes: storm surge initially causes
salinity to increase above background levels, but later an
influx of freshwater from precipitation and flooding causes
salinity to decrease below background levels. We expected S-
shaped disturbances to be more challenging for the algorithm
to detect. The patterns of background variation we considered
were “flat,” in which observations fluctuated around a single
mean; and “seasonal” in which a sine wave with a 365-day
period was used to generally approximate seasonal variation
(Fig. S1). All cases used hourly time steps and included diurnal
variation, simulated as a sine wave with a 24-h cycle, and
Gaussian noise. We considered disturbances in both the posi-
tive and negative direction.

For our simulation tests, we considered time series where
the seasonal component (if present) had an amplitude of 0.5,
the diurnal component had an amplitude of 1, and the Gauss-
ian noise had mean = 0 and standard deviation = 0.5. We var-
ied the severity and duration of disturbances by drawing them
randomly and independently from uniform distributions.
Severity ranged from 0 to 5 times the standard deviation of
the time series before the disturbance was applied. Duration
ranged from 3 to 60 d. For each of 16 scenarios [2 background
variation types (flat and seasonal) � 4 disturbance types (nega-
tive wedge, negative S, positive wedge, positive S) � 2 refer-
ence period types (regular and seasonally adaptive)] we
conducted 5000 simulations in which severity and duration
were selected independently, randomly, and uniformly on the
intervals stated above. Simulated time series for algorithm
tests contained 2 years of hourly data, with the disturbance
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occurring in the second year. The first simulated year was used
as the reference time series. The width of the evaluation win-
dow was 5 d and the width of the adaptive reference window
was 60 d. The disturbance and recovery thresholds were
Zw = 2 and Zw = 0.5, respectively. These values were chosen
because they ensure that detected disturbances are rare events
with substantial changes from typical conditions and that
detected recoveries represent a substantial shift back toward
typical conditions. Exploration of the method on simulated
and empirical data suggest that these values generally bal-
anced errors associated with false positives and false negatives.
In some cases, increasing or decreasing these values will be
appropriate.

To evaluate the performance of our method at detecting
disturbances in simulated data, we focused on the true detec-
tion rate and the false detection rate, and how these depend
on the severity and intensity of disturbance. We considered
the true detection rate to be the proportion of simulations in
which the algorithm produced an alarm during the true dis-
turbance, with a tolerance equal to the width of the moving
window for the test period. We considered the false detection
rate to be the number of alarms per simulation that were not
during a true disturbance, inclusive of the tolerance window,
divided by the number of moving windows that were evalu-
ated. In addition, we considered the degree of error in reported
disturbance and recovery dates.

In addition to the tests shown in the main text of the man-
uscript, we conducted simulation experiments to compare two
ways of computing dw (Supporting Information Material S2),
to evaluate the importance of the seasonally adaptive refer-
ence window width (Supporting Information Material S3), and
to compare the performance of our algorithm to a disturbance
and recovery detection procedure based on the CUSUM
method (Page 1954; Supporting Information Material S4).
These supplements describe methodological details and
results.

Simulation tests: Results
The rate of true disturbance detections was high, overall,

averaging 80–98%, but depended on disturbance severity and
duration (Fig. 2). Across disturbance types, the lowest true
detection rates were experienced with short-duration and low-
severity disturbances, and were as low as 7–71% depending on
simulation scenario and whether the adaptive reference win-
dow was used. When simulated time series featured sinusoidal
seasonal variation, using the adaptive reference window
improved performance by as much as 84%, particularly for
detection of short, low-severity disturbances (Fig. 2). However,
increases in the true detection rate using the adaptive refer-
ence window came at the cost of a higher rate of false posi-
tives. Although the false positive rate did not depend on
disturbance severity or duration (Fig. S2), using the adaptive
reference window the number of false positives was as
much as 20 times greater. The recovery date was generally

well-estimated, as across simulation sets the great majority of
estimated recovery dates were within 5 d (the width of the test
window) of the true recovery date (Fig. 3). However, recovery
for long, low-severity disturbances was often estimated before
true recovery (Fig. 3). Filtering the disturbance detections by
combining detected disturbances separated by short transient
detected recoveries (<3 d), and by omitting very short detected
disturbances (<3 d), tended to reduce the false positive rate
(Fig. S3) and to modestly reduce error in the estimated recov-
ery date (Fig. S5) at the expense of modest decreases in the
true detection rate (Fig. S4).

As expected, results were identical (to within sampling vari-
ation) regardless of the direction of change associated with dis-
turbance, so only results for disturbances in the negative
direction are shown in the main text; parallel results for posi-
tive disturbances are shown in Supporting Information Mate-
rial Figs. S6, S7.

Case studies: Procedures
We present three case studies illustrating how our algo-

rithm can be applied to empirical data. These case studies were
selected because they represent different kinds of focal vari-
ables, ecosystems, and data types.

Our first case study examines the impact of a major hurri-
cane on patterns of dissolved oxygen (DO) dynamics in Apa-
lachicola Bay, Florida, USA. Water quality in Apalachicola Bay
is monitored by the National Estuarine Research Reserve Sys-
tem’s System-Wide Monitoring Program (NOAA National Estu-
arine Research Reserve System [NERRS] 2020), which collects
high-frequency (15 min) data on several variables, including
DO saturation. We focused on DO because it is a broad indica-
tor of biological activity that had low missingness during a
>2-year period from December 2016 to February 2019, includ-
ing in the days following a major hurricane that knocked out
some other sensors. Hurricane Michael made landfall on the
Gulf coast of Florida as a Category 5 hurricane on October
10, 2018. We applied our algorithm using January 1, 2018 to
separate the time series into reference and test periods, a test
window width of 5 d, and an adaptive reference window
width of 60 d. The threshold for disturbance was a Zw = 3 and
the threshold for recovery was a Zw = 0.5. Here, we used a
higher disturbance threshold, Zw = 3, because we were a priori
interested in a very large disturbance event and wanted to
limit the number of detected disturbances not associated with
Hurricane Michael.

Our second case study investigates the co-occurrence of
cold snaps with net ecosystem exchange (NEE) anomalies
using AmeriFlux eddy covariance data from a mangrove forest
at Shark River Slough in the everglades of Florida, USA (Barr
et al. 2010; Fuentes 2016). The site is exposed to semi-diurnal
tidal inundation, hence aquatic productivity and respiration
along with forest metabolism, contribute to observed NEE pat-
terns. This case study also supports our objective of evaluating
our method on a variety of data types. Previously, Kominoski
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et al. (2020) showed effects of extreme cold snaps in winter
2009–2010 had substantial impacts on this ecosystem. We
used half-hourly air temperature and NEE data from January
1, 2006 to June 30, 2010, using observations prior to July
1, 2009 as the reference data and tested for disturbances in the
subsequent observations. We applied the disturbance algo-
rithm independently to each variable, asking whether periods
of particularly low temperature coincided with periods with

atypical NEE. For both variables, the threshold for disturbance
was Zw = 2 and for recovery, Zw = 0.5.

Our third case study investigates changes in the abundance
of rotifers in the Hudson River, New York, USA following inva-
sion by zebra mussels. The first two case studies illustrate typi-
cal applications of our method, while this third case study
illustrates one way it can be extended for application to data
that are not conventionally high frequency, but for which the

Fig. 2. Rates of true positives for “negative” disturbance simulations, in which disturbance reduced the value of the variable in question.
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time series is long and the sampling interval is dense relative
to the temporal scale of a significant change in the system.
Zebra mussels were first observed in the Hudson River in 1991
and became dominant by fall 1992 (Strayer et al. 2020), caus-
ing a crash in microzooplankton abundance; rotifer abun-
dance later recovered following changes in zebra mussel size
structure (Pace et al. 2010). We applied our algorithm to a

1987–2015 time series of rotifer abundance (number/L) col-
lected using methods described in Pace et al. (2010). Samples
were taken approximately every 2 weeks during the ice-free
season, typically April–November. The data are publicly avail-
able (Cary Institute of Ecosystem Studies and Strayer 2016).
Observations spanning 1987–1991were used as the reference
period, the width of test window was 18 months, and no

Fig. 3. Error (number of days) in estimated recovery date in simulated disturbance time series, in which disturbance reduced the value of the variable in
question. Positive values indicate that recovery was detected by the algorithm before the true date.
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adaptive reference window was used in this case. The thresh-
old for disturbance was Zw = 2 and for recovery, Zw = 0.5.

Case studies: Results
Our case study examples illustrate that the method can be

applied to a range of data types, systems, and study questions,
including some beyond the ideal use case of high frequency
sensor data, provided that the timescale of a phenomenon of
interest is long relative to the sampling frequency.

In the case study of hurricane Michael’s impact on DO in
Apalachicola Bay, FL, the algorithm signaled a disturbance
immediately after landfall (landfall on October 10, 2018; dis-
turbance detected on October 11, 2018), an interval much
smaller than the test window width of 5 d (Fig. 4). Recovery
was detected approximately 73 d later, on December 23, and
visual inspection suggests that at this time both the mean and
variance had returned to qualitatively similar values to the
same time the previous year (Fig. 4). Our algorithm also
detected four other periods of anomalous DO values, three of
which were periods of low DO. The causes of these drops in
DO are not known, but could include other storm events, as
named tropical storms Alberto and Gordon also impacted the
Gulf Coast of Florida earlier that season. The maximum Zw

(4.42) during the disturbance corresponding to Hurricane
Michael was the greatest of these events, corroborating that
this was the most severe disturbance during the evaluation
period.

In the case study concerning coincidence of cold snaps and
anomalous NEE in Shark River Slough, FL, notable cold
periods in January and February–March 2010 coincided with
periods of distinctly low carbon uptake (Fig. 5). We also
detected a third, less extreme cold snap in late March 2010,
that was not associated with a change in NEE. There were also

two detected periods of elevated carbon uptake in August and
September 2009. Although the drivers of these changes are
not known, detecting disturbances associated with both
increases and decreases in NEE is consistent with our simula-
tion studies that showed no difference in detections between
positive and negative disturbances. In addition, this example
highlights how our method can detect disturbances man-
ifesting as distributional changes that do not move the mean
outside the system’s historical range of variability (Fig. 5).

In the case study of rotifer abundance in the Hudson River
following zebra mussel invasion, we found that shortly after
zebra mussels became dominant in fall 1992, a disturbance
was detected associated with a decline in rotifer abundance
that persisted through the mid-2000s (Fig. 6). In August 2006,
we detected a recovery of rotifer abundance, similar to an ear-
lier finding by Pace et al. (2010). Despite the lower frequency
of these data, our algorithm recovered a disturbance–recovery
pattern consistent with known changes in the system.

Discussion
Our algorithm for detecting disturbance and recovery in

high-frequency time series data had substantial skill, identify-
ing disturbances and recoveries across a range of simulated
and empirical cases. Although admittedly lacking some com-
plexities of empirical time series data, our simulation tests
evaluated algorithm performance while directly manipulating
patterns of disturbance and background “natural” variability.
Disturbances and recoveries were identified with high accura-
cies, with errors increasing when disturbances had very low
severity or were shorter than the width of the evaluation win-
dow. In addition, uncertainty in recovery dates was generally
within the width of the moving window, but could increase

Fig. 4. Empirical case study of dissolved oxygen saturation in Apalachicola Bay, FL. Areas hatched in red indicate disturbances detected using our algo-
rithm; the blue vertical line indicates landfall of Hurricane Michael on October 10, 2018.
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for long disturbances in which the system slowly approached
baseline conditions. The case studies illustrate applications of
this method to different types of empirical data spanning eco-
system types. While data from high frequency sampling buoys
(e.g., the Apalachicola Bay case study) and flux towers
(e.g., the Shark River Slough case study) are envisioned as
major use cases for this method, we also demonstrated how
the method could be applied to data with lower sampling fre-
quency when the length of disturbance is also long relative to
the sampling frequency.

The approach has strengths and weaknesses. A notable
strength is that our method is simultaneously sensitive to any
aspect of statistical distributions, including changes in the
mean, variance, skewness, and kurtosis. Other change detec-
tion approaches often focus on only one, typically the mean,
but our method can detect subtler changes as illustrated in the
Shark River Slough case study (Fig. 5). However, this advan-
tage comes at the cost of high data requirements, which in
many cases can only be achieved with high-frequency data
from automated sensors. Although some applications in

particularly long time series are possible, as shown in the Hud-
son River rotifer case study, the density of observations rela-
tive to the temporal scale of the change we observed was still
quite high and the changes to the system were unambiguous.
There are also tradeoffs to benchmarking differences between
test and references periods in terms of ECDFs and standard
deviations. We used this approach to create a generally appli-
cable method that could be applied when exactly what values
or patterns in the focal variable constitute disturbance is
unclear, as is often this case. However, there will tend to be
false positives, simply because any distribution contains values
that are extremes relative to the rest of that distribution. We
observed that these false positives tended to be short-lived
excursions away from reference conditions, and these can be
reduced by increasing the threshold for disturbance, defining
a minimum duration for disturbances of interest, or identified
through post hoc interpretation.

Our investigations of this disturbance detection method
yield some practical recommendations for investigators. The
method performed poorly when the duration of disturbance

Fig. 5. Empirical case study of coincidence of cold snaps and NEE anomalies at Shark River Slough, FL. The black time series gives values of air tempera-
ture and NEE during the test period; gray shading indicates the 0.25–0.75 quantiles of hourly temperatures across the reference time series. Areas
hatched in red indicate disturbances detected by our algorithm. January and March 2010 cold snaps coincide with reduced carbon uptake. Negative
values of NEE represent carbon uptake.

Fig. 6. Empirical case study of effects of zebra mussel invasion on rotifer abundance in the Hudson River, NY. The red hatched area indicates the distur-
bance detected by our algorithm; the blue vertical line is placed at October 1, 1992 as zebra mussels became dominant in the Hudson river by fall 1992.
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was less than the width of the test window, but there must be
enough observations in the test window to effectively define
the ECDF, and the test window should generally be wide
enough to encompass repeated iterations of natural cycles
with short periods, such as days or tides. Exactly how wide the
test window should be depends on the sampling frequency,
the complexity of natural underlying variation in the data,
and of the complexity of ecosystem response to disturbance
the investigator seeks to detect. In the examples presented
here, the number of observations in the test window ranged
from 24 (Hudson River rotifers) to 480 (NERRS data). The sim-
ulation studies featured 120 observations per test window, and
were wide enough to contain multiples of the major short-
timescale (diurnal) “natural” variations that were unrelated to
disturbance, and so not of interest, but represented an impor-
tant pattern of variation in these simulated cases. Making the
test window wider than diurnal variation ensured that the
algorithm did not see diurnal patterns as a source of difference
in the time series. Since more observations are required to
accurately characterize higher statistical moments than the
mean, we infer that the Hudson River rotifer case study, while
recovering a result that makes sense in context, was based
largely on changes in the mean and is at the lower limit of
data necessary to use our method. However, this suggests
promise for applying our approach, or an adaptation thereof,
to aquatic ecosystem time series derived from satellite remote
sensing (e.g., Khandelwal et al. 2020).

Real-world applications sometimes have missing data,
e.g., Figs. 4–6. The algorithm is designed to bypass time win-
dows with insufficient nonmissing observations and can
detect disturbance immediately following a period of missing
data. For relatively short periods with missing data, it may be
appropriate to widen the test window so that the missing
period is smaller relative to the width of the test window, but
we caution that the probability of a false negative increases
when the width of the test window is greater than the period
between disturbance and recovery.

We also found that use of the adaptive reference window
was important for detecting shorter and lower-severity distur-
bances in time series with a seasonal pattern, but its use came
with an increased false positive rate. Many ecosystem variables
feature at least subtle seasonal patterns, and particularly where
seasonality is strong this trade-off is likely worth it. Seasons
are expressed differently in different climates (e.g., temperate
vs. Mediterranean climates), and the width of the adaptive ref-
erence window can be tailored to this. The width of the refer-
ence window should be greater than that of the test window,
typically by several times, up to the length of a season
(Supporting Information Material S3).

Systematic quantitative tools for detecting disturbance and
recovery are needed to better understand responses, and to
facilitate quantitative syntheses across datasets or studies of
marine and inland waters. Even though aspects of disturbance
regime are well-quantified for major discrete events like inland

floods, reef bleaching, and coastal hurricanes (Paerl
et al. 2006; Baker et al. 2008), other perturbations are often
more subtle, and even when the disturbance event is unam-
biguous, responses can be complex. Quantitative synthesis has
proven powerful for answering questions about how pattern
and process differ across space, time, and system or variable of
interest, thereby leading to new understandings (Carpenter
et al. 2009). Tools such as the one presented here have poten-
tial to facilitate a synthetic analysis of disturbance and recov-
ery, of potentially great importance in the context of
increasing severe weather and natural disasters related to cli-
mate change.

Data and availability statement
All data used in this study are already publicly available via

the referenced sources. Data files, simulation, and analysis
code used in this study are publicly available on Zenodo
(doi: 10.5281/zenodo.6472554) https://github.com/jonathan-
walter/disturbhf-test-ms, and an R package implementing our
algorithm is available at https://github.com/jonathan-walter/
disturbhf. The version of the R package used to produce this man-
uscript is archived on Zenodo (doi: 10.5281/zenodo.6472546).
https://github.com/jonathan-walter/disturbhf
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