
Forest Ecology and Management 482 (2021) 118869

Available online 28 December 2020
0378-1127/Published by Elsevier B.V.

Long-term effects of alternative partial harvesting methods on the woody 
regeneration layer in high-elevation Quercus rubra forests of the southern 
Appalachian Mountains, USA 

Tara L. Keyser a,*, David L. Loftis b 

a USDA Forest Service, Southern Research Station, Upland Hardwood Ecology and Management Research Work Unit, 1577 Brevard Rd., Asheville, NC 28806, USA 
b USDA Forest Service, Southern Research Station, Upland Hardwood Ecology and Management Research Work Unit (Retired), 1577 Brevard Rd., Asheville, NC 28806, 
USA   

A R T I C L E  I N F O   

Keywords: 
Quercus 
Biodiversity 
High-elevation ecosystems 
Partial harvesting 
Restoration 

A B S T R A C T   

High-elevation Quercus rubra forests in the Appalachian Mountains represent a transition zone between 
temperate mixed-Quercus forests that dominate lower elevations (<1350 m) and Picea-Abies forests at high 
(>1530 m) elevations. Little information exists specific to the response to disturbance, including timber har
vesting, in these forests. In this study, we examined the long-term (22 years) effects of alternative regeneration 
methods – group selection harvests (GSH) and shelterwood with high (SWH; 9.0 m2/ha) and low (SWL; 5.0 m2/ 
ha) residual basal area, and undisturbed control (CON) – on the development of the regeneration layer in high- 
elevation Q. rubra forests in the Appalachian Mountains. Treatments affected the density of the regeneration 
layer (stems ha− 1; SPH), but results varied by species group. Density of Q. rubra saplings (stems ≥ 3.8 cm dbh and 
<10.9 cm dbh) was significantly greater in GSH (250 SPH), SWH (85 SPH), and SWL (121 SPH) than CON (0 
SPH). For shade-tolerant species, density averaged 1095 SPH in SWH and SWL and was significantly greater than 
in CON. Shade-tolerant Acer rubrum was the most abundant species in the sapling layer 22 years post-harvest. 
Survival of individuals tagged and followed over time was unaffected by treatment, however, height of Quer
cus seedlings was greatest in treatments with lower residual basal area (GSH and SWL). At Y22, the relatively low 
density of successfully regenerated Quercus stems in the regenerated stands suggests that additional treatments, 
including crown-touch release and/or prescribed burning, may be necessary to secure the continued recruitment 
of Quercus in these high-elevation Q. rubra forests.   

1. Introduction 

In the northern hemisphere, the ecological importance of the Quercus 
L. genus is unparalleled. Containing over 400 species on five continents, 
Quercus dominates myriad ecological habitats, including upland, ripar
ian, bottomland, and coastal environments in temperate, subtropical, 
and tropical forest systems (Nixon, 2006; Cavender-Bares, 2019). In the 
eastern United States, Quercus forests comprise approximately 75.5 
million ha of forestland (Dey, 2014). One of the more unique Quercus 
ecosystems in the eastern United States, high-elevation Quercus rubra L. 
forests in the southern and central Appalachian Mountains, represent a 
transition zone between temperate mixed-Quercus forests that dominate 
lower elevations (<1350 m) and remnant Picea – Abies (Picea rubens 
Sarg-Abies fraseri (Pursh) Poir) forests located at high (>1530 m) 

elevations (Cogbill and White, 1991). Along with northern hardwood 
and Picea – Abies forests, high-elevation Q. rubra forests, which occupy 
approximately 70,110 ha in the southeastern US (from Georgia to Vir
ginia) are one of three principle high-elevation cover types in the 
southern Appalachians. The juxtaposition of high-elevation Q. rubra 
forests with other high-elevation forest types means these forests often 
provide and maintain critical wildlife habitat for a variety of bird and 
mammal species that are reliant on other higher elevation habitats, such 
as the Glaucomys sabrinus Sjaw. Furthermore, similar to lower-elevation 
mixed-Quercus forests, hard mast production in high-elevation Q. rubra 
forests is a critical wildlife food resource for myriad of wildlife species, 
including Meleagris gallopavo Linnaeus, Ursus americanus Pallas, and 
Odocoileus virginianus Zimmermann (McShea et al., 2007). 

The maintenance of Quercus-dominated forests across spatial and 
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temporal scales is reliant on frequent disturbance, as Quercus species are 
mid-tolerant of shade and preferentially store carbohydrates below- 
rather than above-ground (Brose and Rebbeck, 2016). Disturbances 
commonplace during the time period when most present-day Quercus 
forests regenerated (late 1880s – early 1900s), including high-elevation 
Q. rubra forests, included frequent anthropogenic burning, grazing, and 
repeated, often exploitive timber harvesting (Dey 2014; McEwan et al., 
2011). Co-occurring with these anthropogenic disturbances was the loss 
of a foundational species, Castanea dentata (Marshall) Borkh.), from the 
landscape as a result of the introduced fungal pathogen, Cryphonectria 
parasitica (Murrill) Barr, which further promoted successful regenera
tion and recruitment of Quercus in both low- (Elliott and Swank, 2008; 
Woods and Shanks, 1959) and high-elevation (van de Gevel et al., 2012) 
deciduous broadleaved forest types. This multi-decadal period of 
frequent, moderate to high-intensity disturbance was followed by land 
abandonment and a concomitant period of reduced, often non-existent 
anthropogenic disturbance that exists through present day (Buchanan 
and Hart, 2012; Hart and Grissino-Mayer, 2008). Natural disturbances 
that influence forest structure and function are common and consist of 
those typical of southern Appalachian forests, including wind-throw, 
drought, and, given the elevation, frequent and often severe ice storms 
(Clinton and Boring, 1993; Clinton and Baker, 2000; Lafon, 2006; 
Greenberg et al., 2011a; van de Gevel et al., 2012). 

The pattern of land-uses that facilitated successful Quercus regener
ation and recruitment has homogenized forest structure across Quercus 
and non-Quercus forests that comprise the eastern United States (Han
berry et al., 2012; Schulte et al., 2007). In the Appalachian Mountains of 
western North Carolina, for example, 94% of high-elevation Q. rubra 
forests are in a structurally closed-canopied condition (Ponder, 2014). In 
comparison, models that focus on the historical range of variability of 
structure suggest the majority of high-elevation Q. rubra forests existed 
in conditions that were more open-canopied (57%) than close-canopied 
(43%), with open conditions represented by early seral (5%), open mid- 
(7%), open late- (6%), and open old-growth (39%) seral conditions 
(Kelly, 2013). Close-canopied conditions at landscape-levels can nega
tively affect habitat for a variety of species whose populations in the 
region are in decline or are of particular management concern, including 
Bonasa umbellus Linnaeus (Jones et al., 2008) and Vermivora chrysoptera 
Linnaeus (Klaus and Buehler, 2001). 

Deficits in open and young forest conditions are easily ameliorated 
through active forest management that includes a variety of silvicultural 
tools, such as timber harvesting via thinning and/or regeneration har
vests and repeated prescribed burning. Little information exists specific 
to the regeneration response to disturbance, including silvicultural 
regeneration harvests, in high-elevation Q. rubra forests. Of particular 
importance is how well regeneration methods promote and maintain the 
Quercus component of these forested system, as the maintenance of 
Quercus across the landscape is vital to the sustained production of a 
wide array of ecosystem goods and services. For example, decreased 
acorn production associated with aging Quercus forests (Goodrum et al., 
1971) may negatively affect population dynamics of both game and non- 
game wildlife species (McShea et al., 2007). Similarly, as Quercus fails to 
regenerate and mesophytic species increase in abundance and impor
tance, annual water yield decreases (Caldwell et al., 2016). In fact, 
successful regeneration, recruitment, and maintenance of Quercus is tied 
to overall biodiversity and ecosystem functioning at the stand- and 
landscape-levels in a variety of mixed-Quercus forest types that dominate 
much of the eastern United States (Alexander and Arthur, 2014; Kreye 
et al., 2018; Rodewald and Abrams, 2002; Sierzega and Eichholz, 2019). 

When pressure from native browsers (e.g., O. virginianus) is low 
(Thomas-Van Gundy et al. 2014), successful regeneration of Quercus 
following regeneration harvests conducted at lower elevations in the 
Appalachian Mountains is dependent on the size of advance reproduc
tion (i.e., seedlings present prior to harvest) prior to disturbance (Loftis, 
1990a), as small Quercus advance reproduction is outcompeted by co- 
occurring mesic species, including Acer rubrum L., Betula lenta L., and 

Liriodendron tulipifera L. (Beck and Hooper, 1986; Miller et al., 2006; 
Swaim et al., 2018). L. tulipifera, which is one of the primary competitors 
with Quercus on lower-elevation sites in the southern Appalachians 
(Brashears et al., 2004; Loftis, 1983), is less abundant (and often absent) 
and less competitive at higher elevations (Beck and Della-Bianca, 1981). 
The lack of competition from L. tulipifera following disturbance in these 
higher-elevation forests may alleviate many of the issues that make 
successful regeneration and recruitment of Quercus difficult in lower- 
elevation forests throughout the Appalachian region. 

In this study, we examined the effects of alternative regeneration 
methods, conducted primarily to create structural diversity and improve 
wildlife habitat and regenerate and recruit a new Quercus cohort, on the 
development of the woody regeneration layer in high-elevation Q. rubra 
forests in the southern Appalachian Mountains. Specifically, in an effort 
to understand the response of these under-studied, but ecologically 
important forest systems to managed disturbance, we quantified the 
effects of three partial harvest regeneration methods – group selection, 
shelterwood with reserves with low level of retention, and shelterwood 
with reserves with high level of retention on (1) the regeneration and 
recruitment of Q. rubra and other, co-occurring species up through 22 
years post-harvest, and (2) the survival and growth of individual 
Q. rubra seedlings 22 years post-harvest. Results from this study will 
provide some of the only quantitative information regarding the 
response of these unique and relatively rare high-elevation forest sys
tems to silvicultural disturbance and will help guide restoration and 
sustainable management of these systems for a variety of ecosystem 
services into the future. 

2. Methods 

2.1. Study area 

This study was conducted on the Wayah Ranger District on the 
Nantahala National Forest in western North Carolina, USA (35◦81′N, 
83◦35′W) (Fig. 1). The study area, which was located within the Wine 
Spring Creek watershed, lies within the Southern Blue Ridge Mountains 
Subsection of the broader Central Appalachian Broadleaf Forest- 
Coniferous Forest Province (Cleland et al., 2007). Soils within the 
study are mesic Typic Dystrudepts (Edneyville and Chestnut soil series), 
mesic Typic Humudepts (Callasaja and Tuckasegee soil series), rigid 
Tyipc Humudepts (Burton soil series), and frigid Lithic Humudepts 
(Craggey soil series) (Soil Survey Staff, Soil Web Survey). Soils in these 
high-elevation Quercus rubra L. forest types are thin, low in organic 
matter, and nutrient-poor (Simon et al., 2011). Annual precipitation 
averages 176 cm, with January and July temperature averaging 3.3 and 
22.2 ◦C, respectively (McNab and Browning, 1992). Vegetation is 
described as dry, high-elevation Q. rubra based on the classification 
system developed by McNab and Browning (1992). 

2.2. Experimental design and data collection 

In 1994 (prior to treatment), 11 stands (i.e., experimental units) that 
ranged in size between 3.9 and 7.6 ha were located throughout the Wine 
Spring Creek watershed. Average slope of the stands varied between 35 
and 46%, with aspect predominantly west to south-west facing. Average 
elevation of each stand ranged between 1333 and 1508 m and stand age 
at the time the study was initiated averaged 86 years. 

Treatments that included group selection harvest (GSH), shelter
wood with a high level of residual basal area (SWH), shelterwood with a 
low level of residual basal area (SWL), and control (CON) were 
randomly assigned to each stand. Each treatment was replicated in three 
stands, with the exception of GSH, which was replicated in two stands. It 
should be noted that the GSH treatment was initially assigned to three 
replicate stands while the CON treatment was initially assigned to two 
replicate stands. However, in the third GSH replicate stand, no sampling 
plots were located within actual gaps; instead all plots were located at 
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least two tree lengths (60 m) away from any silviculturally-created gap 
and displayed no evidence of harvest-related disturbance (no cut trees, 
no skid trail or road construction). Therefore, we considered the third 
replicate of the GSH treatment to be a CON, decreasing the sample size 
of GSH from three to two replicates and increasing the sample size of 
CON from two to three replicates. 

The SWH treatment consisted of a harvest that left, on average, 9.0 
m2/ha of residual basal area while the SWL consisted of a harvest that 
left, on average, 5.0 m2/ha of residual basal area (Elliott and Knoepp, 
2005). In both the SWL and SWH treatments, Q. rubra was the preferred 
leave tree. In the GSH treatment, 25% of the stand area was harvested in 
group openings between 0.10 and 0.20 ha in size (Elliott and Knoepp, 
2005), with no residual basal area retained in the openings. 

Prior to treatment, we randomly established up to 13 subplots in 
each stand, with subplot centers permanently marked for re- 
measurement. The number of subplots established within each repli
cate was proportional to stand size, with between six and 13 subplots 
located in each replicate stand of the CON, SWL, and SWH treatments. 
Although prior to treatment, we established six subplots in one GSH 
replicate and nine subplots in the other GSH replicate, only two subplots 
in each of the GSH replicates were measured post-harvest, as these were 
the only subplots of the original six that fell within harvested gaps. At 
each subplot, we conducted a pre-treatment inventory of arborescent 
vegetation ≥10.9 cm dbh using a 2.3 m2 ha− 1 factor prism to describe 
pretreatment structure and composition. For each sample tree, we 
recorded species and diameter at breast height (dbh; cm). 

At each subplot, we used a 0.004 ha regeneration subplot to quantify 
and describe the woody regeneration layer prior to treatment (Y0) and 
again 4 (Y4; 2001) and 22 years post-treatment (Y22; 2019). In each 
regeneration subplot, we enumerated arborescent stems by species into 

one of four size classes: small seedlings (stems < 0.6 m); medium 
seedlings (stems ≥ 0.6 m and <1.2 m), large seedlings (stems ≥ 1.2 m 
and <3.8 cm dbh), and saplings (stems ≥ 3.8 cm and <10.9 cm dbh). 

At each subplot, up to five seedlings were permanently tagged and 
stem-mapped to facilitate re-location. Status (live/dead) and height (m) 
of each seedling were recorded in Y0 and Y22. 

2.3. Data analysis 

Analysis of variance (ANOVA) (α = 0.05) under a completely random 
design with repeated measures was used to analyze the effects of 
treatment (CON, GSH, SWH, SWL), year (Y0, Y4, Y22 years post- 
treatment), and the interaction between treatment and year on stems 
ha− 1 (SPH) of five distinct species groups (Table 1) in the small seedling, 
medium seedling, large seedling, and sapling size classes. The five spe
cies groups were: (1) QURU (Q. rubra), QUCA (other Quercus and Carya 
species), INTO (shade-intolerant species), MIDT (species mid-tolerant of 
shade), and TOLE (shade-tolerant species). A similar analysis was con
ducted on the relative abundance of each species group in the sapling 
layer, species richness (number of species at each subplot) of the sapling 
layer, and height of tagged Quercus seedlings and all other species 
combined (OTHER). Species were combined into these two broad cate
gories because sample sizes were insufficient to analyze the specific 
species groups utilized in this study (Table 1). Due to unequal sampling 
intervals, a spatial power covariance structure was used to account for 
the correlation among years. The effects of treatment on survival of 
tagged Q. rubra and OTHER seedlings between Y0 and Y22 was analyzed 
using a one-way ANOVA. When necessary, data were transformed in 
instances where residuals did not meet assumptions of normality and 
homogeneous variance. Treatment effects, when part of a significant 

Fig. 1. Location of the 11 experimental stands within the Wine Spring study area. CON = control, GSH = group selection harvest, SWH = shelterwood with high 
residual basal area, SWL = shelterwood with low residual basal area. 
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interaction (treatment × year), were examined using the SLICE option. 
Post-hoc comparisons were adjusted using a False Discovery Rate 
(Benajmini and Hockberg, 1995). Analyses were conducted using the 
MIXED procedure in SAS v. 9.4 (SAS Institute INC., Cary, NC, USA). 

3. Results 

3.1. Pre-treatment structure and composition 

Prior to harvest, basal area (BA) of the overstory (stems ≥ 10.9 cm 
dbh) averaged (standard deviation) 24.3 (2.8) m2 ha− 1. No significant 
differences in basal area prior to treatment were detected (p > 0.05). 
Overall, Q. rubra dominated the overstory (29.4% of BA), followed by 
species in the Acer genus (A. rubrum and A. saccharum) (24.5% of BA), 
and Q. montana (14.8% of BA). 

Across stands, SPH of the woody regeneration layer (stems < 10.9 cm 
dbh) decreased as size class increased prior to treatment. Regardless of 
size class, species in the TOLE group dominated the regeneration layer, 
comprising between 48 and 70% of overall SPH. In comparison, QURU 
comprised 19, 12, 14, and 7% of the small, medium, and large seedling, 
and sapling size classes, respectively. The QUCA group comprised 5, 3, 
13, and 6% of the small, medium, and large seedling, and sapling size 
classes, respectively. 

3.2. Posttreatment – small seedling layer 

We observed a significant main effect of year on SPH of small QURU 
(p = 0.0375) and TOLE (p = 0.0056) seedlings. For QURU, SPH in Y4 
(2635 ± 690) was significantly greater than Y0 (752 ± 138), but similar 
to Y22 (1360 ± 410). For the TOLE group, SPH in Y0 (1849 ± 365) was 
significantly lower than in Y4 (4124 ± 832), but similar to Y22 (1959 ±
281). For the MIDT, QUCA, and INTO species groups, neither treatment 
nor year had any significant effect on small seedling density, with 
density, across treatments and years, averaging 512 (71), 255 (49), and 
474 (106) SPH, respectively. 

Prior to treatment, Q. alba (56%), Sassafras albidum (51%), Magnolia 

acuminata (39%), and Acer pensylvanicum (36%) comprised the greatest 
proportion of the QUCA, INTO, MIDT, and TOLE groups in the small 
seedling layer, respectively. In Y22, Q. alba (49%), S. albidum (52%), 
M. acuminata (41%), and Amelanchier arborea (31%) comprised the 
greatest proportion of the QUCA, INTO, MIDT, and TOLE groups in the 
small seedling layer, respectively. 

3.3. Posttreatment – medium seedling layer 

The interaction between treatment and year significantly affected 
SPH of medium seedlings in the QURU (p = 0.0023), INTO (p = 0.0133), 
and TOLE (p = 0.0374) species groups, although significant treatment 
differences occurred only in Y4 (Table 2). The main effect of year 
significantly influenced SPH of MIDT species (p = 0.0115), while neither 
treatment, year, nor the interaction between treatment and year 
significantly influenced SPH of medium seedlings in the QUCA group. 

Prior to treatment, Q. alba (58%), S. albidum (57%), C. dentata (64%), 
and Fagus grandifolia (36%) comprised the greatest proportion of the 
QUCA, INTO, MIDT, and TOLE groups across treatments in the medium 
seedling layer, respectively. In Y22, Q. alba (55%), S. albidum (50%), 
C. dentata (64%), and F. grandifolia (25%) comprised the greatest pro
portion of the QUCA, INTO, MIDT, and TOLE groups in the medium 
seedling layer, respectively. 

3.4. Posttreatment – large seedling layer 

The interaction between treatment and year significantly affected 
SPH of large seedlings in the QUCA (p = 0.0106) and MIDT (p < 0.0001) 
species groups, although significant treatment differences occurred only 
in Y4 (Table 3). For the QURU (p = 0.0003) and INTO (p = 0.0005) 
groups, only the main effect of year significantly affected SPH of large 
seedlings. For the TOLE group, the main effects of treatment (p =
0.0020) and year (p < 0.0001) significantly influenced density, with 
CON having lower density of TOLE stems than both SWH and SWL. 

Prior to treatment, Q. alba (40%)/Q. montana (40%), B. lenta (27%)/ 
S. albidum (27%)/R. psuedoacacia (27%), C. dentata (74%), and 
F. grandifolia (38%) comprised the greatest proportion of the QUCA, 
INTO, MIDT, and TOLE groups in the large seedling layer, respectively. 

Table 1 
Species within the Quercus rubra (QURU), Quercus-Cayra (QUCA), shade- 
intolerant (INTO), mid-tolerant (MIDT), and tolerant (TOLE) species groups.  

QURU QUCA INTO MIDT TOLE 

Quercus 
rubra 
L. 

Carya Nutt. Betula lenta L. B. alleghaniensis 
Britton 

Acer 
pensylvanicum 
L.  

Q. alba L Liriodendron 
tulipifera L. 

Castanea dentata 
(Marshall) 
Borkh. 

A. rubrum L.  

Q. coccinea 
Münchh. 

Prunus serotina 
Ehrh. 

Fraxinus 
americana L. 

A. saccharum 
Marshall  

Q. montana 
Willd. 

P. pensylvanica 
L. f. 

Magnolia fraseri 
Walter 

Aesculus flava 
Aiton  

Q. velutina 
Lam. 

Robinia 
pseudoacacia L. 

M. acuminata (L.) 
L. 

Amelanchier 
spp.   

Sassafras 
albidum (Nutt.) 
Nees 

Pinus strobus L. Cornus spp.     

Fagus 
grandifolia 
Ehrh.     
Halesia 
tetraptera Ellis     
Oxydendrum 
arboretum (L.) 
DC.     
Tilia 
heterophylla 
(Vent.) Loudon     
Tsuga 
canadensis (L.) 
Carrière  

Table 2 
Stems ha− 1 of medium seedlings (stems ≥ 0.6 and <1.2 m) by species group 
prior to treatment (Y0) and 4 (Y4) and 22 (Y22) years posttreatment. Uppercase 
letters indicate significant differences among treatments within a given species 
group and year; lowercase letters indicate significant differences among years 
within a given treatment and species group. Values represent the mean (stan
dard error). Species groups defined in Table 1.   

CON GSH SWH SWL AVG 

Y0      
INTO 52 (22) 0 (0) 37 (37)a 0 (0)a 24 (12) 
MIDT 237 (73) 500 (500) 403 (88) 303 (90) 348 

(81)ab 

QURU 87 (43)a 125 (125) 78 (41)a 165 (81)a 113 (31) 
QUCA 38 (38) 0 (0) 56 (56) 31 (16) 34 (17) 
TOLE 101 (60) 1625 (1625) 267 (127) 306 (32)a 479 (281) 
Y4      
INTO 55 (19)A 375 (375)AB 427 (95)Bb 150 (49)ACb 241 (75) 
MIDT 727 (197) 375 (250) 575 (130) 514 (60) 564 (76)a 

QURU 185 
(30)Ab 

188 (188)AB 574 
(228)BCb 

901 (150)Cb 487 (117) 

QUCA 55 (41) 0 (0) 61 (11) 73 (39) 52 (16) 
TOLE 396 

(187)A 
1125 
(1125)AB 

1060 
(368)AB 

1899 
(388)Bb 

1120 
(267) 

Y22      
INTO 73 (73) 125 (0) 71 (20)a 16 (8)a 66 (21) 
MIDT 251 (79) 63 (63) 243 (26) 194 (32) 199 (31)b 

QURU 161 
(49)ab 

63 (63) 139 (15)ab 172 (45)a 140 (22) 

QUCA 40 (22) 0 (0) 28 (28) 6.4 (6.4) 20 (10) 
TOLE 321 (121) 0 (0) 509 (248) 338 (102)a 319 (87)  
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In Y22, Q. montana (50%), B. lenta (77%), C. dentata (58%), and 
F. grandifolia (52%) comprised the greatest proportion of the QUCA, 
INTO, MIDT, and TOLE groups in the large seedling layer, respectively. 

3.5. Posttreatment – Sapling layer 

The main effect of year significantly affected SPH of saplings in the 
QUCA (p = 0.0001), INTO (p = 0.0214), and MIDT (p = 0.0415) species 
groups (Fig. 2). A significant interaction between treatment and year 
was observed for QURU (p = 0.0204) and TOLE (p = 0.0105). In Y22, 
QURU saplings in CON averaged 0 SPH compared to an average of 250, 
85, and 121 SPH in the GSH, SWH, and SWL treatments, respectively 
(Fig. 2). In Y22, density of the TOLE group in the SWH and SWL aver
aged 1095 SPH and was significantly greater than in CON. 

Relative abundance of the INTO and TOLE groups in the sapling layer 
was unaffected by treatment or year, while we observed a significant 
interaction between treatment and year for the MIDT group (p =
0.0285) (Fig. 3). By Y22, relative abundance of MIDT was significantly 
lower in the SWH and SWL than in CON. The main effect of year 
significantly affected the relative abundance of QUCA (p = 0.0002) and 
QURU (p = 0.0078). 

Species richness of the sapling layer was affected by the interaction 
between treatment and year (p = 0.0097). Prior to treatment, richness 
did differ between CON and SWH, and richness in GSH and SWL did not 
differ from each other (Fig. 4). Richness within the GSH, SWH, and SWL 
treatments decreased in Y4. By Y22, however, richness returned to pre- 
treatment levels, with richness in all three active management treat
ments significantly greater than in CON. 

Prior to treatment, Q. montana (63%), R. pseudoacacia (41%), 
C. dentata (50%), and A. rubrum (42%) comprised the greatest propor
tion of the QUCA, INTO, MIDT, and TOLE species groups, respectively. 
In Y22, across all treatments, Q. montana (58%), R. pseudoacacia (33%), 
C. dentata (25%), and A. rubrum (39%) were the most prominent species 
within the QUCA, INTO, MIDT, and TOLE groups, respectively. 

3.6. Individual tagged seedling dynamics 

A total of 139 Quercus seedlings were tagged in Y0, of which 135 
were successfully relocated in Y22. Survival of Quercus seedlings be
tween Y0 and Y22 was not significantly affected by treatment, with 
survival averaging 31.0% (10.6), 53.3% (13.3), 18.2% (12.5), and 
20.3% (15.1) in the CON, GSH, SWH, and SWL treatments, respectively. 
A total of 234 OTHER seedlings were tagged in Y0, of which 234 were 
relocated in Y22. For OTHER, survival did not significantly differ among 
treatments, with survival averaging 75.8% (15.6), 25.0% (25.0), 40.6% 
(0.3%), and 48.9% (4.2) in the CON, GSH, SWH, and SWL treatments, 
respectively. 

Height of the tagged Quercus (p = 0.0021) and OTHER (p = 0.0005) 
seedlings was significantly affected by the interaction between treat
ment and year. No differences in Quercus seedling height among treat
ments were detected until Y22, at which time seedling height in GSH 
was significantly greater than in all other treatments (Fig. 5). No dif
ference in tagged Quercus seedling height between the SWH and SWL 
treatments was observed, but height in SWL was greater than CON. For 
OTHER tagged seedlings, significant differences in seedling height 
among treatments were limited to Y22 at which time, the average height 
of tagged OTHER seedlings was significantly greater in SWL than in CON 
and GSH. 

Table 3 
Stems ha− 1 of large seedlings (stems ≥ 1.2 m and <3.8 cm dbh) by species group 
prior to treatment (Y0) and 4 (Y4) and 22 (Y22) years posttreatment. Uppercase 
letters indicate significant differences among treatments within a given species 
group and year; lowercase letters indicate significant differences among years 
within a given treatment and species group. Values represent the mean (stan
dard error). Species groups defined in Table 1.   

CON GSH SWH SWL AVG 

Y0      
INTO 41 (12) 0 (0) 39 (9) 6 (6) 24 (7)a 

MIDT 444 (66)a 125 (125) 588 (48)a 543 (134)a 452 (66) 
QURU 83 (30) 250 (125) 141 (85) 149 (80) 147 (37)a 

QUCA 13 (13) 63 (63) 53 (43)a 25 (16) 36 (15) 
TOLE 165 (85) 938 (938) 460 (122) 1026 (418) 620 (198)a 

Y4      
INTO 142 (117) 813 (562) 847 (360) 640 (352) 592 (169)b 

MIDT 1185 
(62)Ab 

813 (813)AB 2549 
(159)Bb 

1318 
(243)Ab 

1526 
(243) 

QURU 205 (108) 938 (688) 587 (166) 879 (381) 626 (165)b 

QUCA 19 (19)A 63 (63)AC 492 (129)Bb 298 (178)BC 232 (80) 
TOLE 591 (143) 3000 

(2750) 
4565 
(1899) 

4772 (773) 3253 
(820)b 

Y22      
INTO 6 (6) 125 (125) 245 (16) 103 (76) 119 (37)a 

MIDT 408 (65)a 125 (125) 374 (86)c 284 (89)c 313 (49) 
QURU 20 (12) 125 (0) 117 (55) 182 (43) 110 (25)a 

QUCA 54 (37) 0 (0) 69 (40)a 6 (6) 35 (16) 
TOLE 236 (79) 688 (563) 840 (147) 1486 (841) 824 (260)a 

AVG      
INTO 63 (40) 312 (218) 377 (160) 250 (143) 245 (71) 
MIDT 679 (131) 354 (259) 1170 (350) 715 (177) 764 (127) 
QURU 103 (42) 438 (241) 282 (95) 403 (164) 294 (69) 
QUCA 29 (14) 42 (26) 204 (83) 110 (70) 101 (31) 
TOLE 330 (85)A 1542 

(894)AB 
1955 
(856)B 

2428 (686)B 1566 
(355)  

Fig. 2. Density (stems ha− 1) of sapling sized stems (stems ≥ 3.8 cm and <10.9 cm dbh) in the intolerant (INTO), mid-tolerant (MIDT), Quercus rubra (QURU), 
Quercus-Carya (QUCA), and tolerant (TOLE) species groups prior to treatment (Y0) and four (Y4) and 22 (Y22) years posttreatment. Uppercase letters above bars 
indicate significant differences among treatments within a given year. Lowercase letters above bars indicate significant differences among years within a given 
treatment. Lowercase letters along x-axis indicate significant differences among years averaged across treatments (i.e., significant main effect of year). Values and 
error bars represent the mean and standard error, respectively. 
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4. Discussion 

Forested ecosystems in the southern and central Appalachian 
Mountains contain some of the highest levels of biological diversity and 
endemism of both plant and animal species in the United States (Pick
ering et al., 2003; Stein et al., 2000). Once thought to be a landscape 
dominated by mature, closed-canopied forests sustained through gap- 
phase dynamics (Clebsch and Busing, 1989; Lorimer, 1980), there is 
now recognition of the role that exogenous disturbances, both anthro
pogenic (e.g., fire, timber harvesting/biomass extraction, grazing) and 
natural (e.g., wildfire, wind, ice, drought), have in the maintenance and 
conservation of biodiversity across trophic levels in temperate broad
leaved deciduous forests in the eastern United States, including those in 
the Appalachian Mountains (Aldinger et al., 2017; Greenberg et al., 
2011b; Hanson and Lorimer, 2007; McCord et al., 2014; Roberts and 
Milam, 2017; Swanson et al., 2011; Vander Yacht et al., 2016). As such, 
there is an increased focus on implementing forest management 

activities for purposes other than extraction of provisioning ecosystem 
services, such as timber and fiber. 

Active management in high-elevation Q. rubra forests has been 
limited relative to lower-elevation counterparts primarily because stems 
in high-elevation forests tend to be stunted, wind-swept, and of low 
quality due to frequent wind and ice storms associated with these high- 
elevation environments (Natural Heritage Program, 2020). Conse
quently, we know little about how these high-elevation Q. rubra stands 
respond to disturbance, including silvicultural regeneration harvests 
implemented to regenerate a new Quercus age cohort and promote and 
restore structural and ecological complexity within the community. 

Similar to lower-elevation, montane Quercus forests in the Appala
chian region (Hutchinson et al., 2016; Iverson et al., 2008; Keyser et al. 
2017), density of the woody regeneration layer in these mature, high- 
elevation Q. rubra forests prior to harvest decreased from the small 
seedling to sapling size classes, with the regeneration layer, regardless of 
size class, dominated by shade-tolerant species; particularly abundant 
were A. pensylvanicum (small seedling), F. grandifolia (medium and large 
seedling), and A. rubrum (sapling). The development of a dense and well- 
developed understory and midstory dominated by shade-tolerant spe
cies is commonplace in Quercus forests and is a contributing factor to 
widespread Quercus regeneration and recruitment problems in the 
eastern United States (Dey, 2014). Dense, shade-tolerant understories 
intercept light and limit development of Quercus seedlings (Grayson 
et al., 2012; Schweitzer and Dey, 2011) into large seedlings and saplings 
(stems > 1.2 m) capable of competing with existing seedling and sapling 
pool as well as shade-intolerant species, such as B. lenta and L. tulipifera 
(Miller et al., 2006), that become established shortly after disturbance. 

Long-term (22-year) results from this study revealed that, like their 
low-elevation counterparts, high-elevation, Quercus forests are readily 
regenerated through a variety of silviculture regeneration methods, 
including group selection and shelterwood methods, but that conserving 
pre-harvest species composition remains problematic due, in part, to the 
lack of large, competitive Quercus seedlings prior to harvest (Loftis, 
1983; Loftis, 1990a; Weigel and Parker, 1997). Unlike their lower- 
elevation counterparts in the southern Appalachians, however, these 
high-elevation Q. rubra forests were not dominated by shade-intolerant 
L. tulipifera or B. lenta following shelterwood and group selection har
vests (Beck and Hooper, 1986; Jenkins and Parker, 1998; Miller et al., 

Fig. 3. Relative abundance of intolerant (INTO), mid-tolerant (MIDT), Quercus 
rubra (QURU), Quercus-Carya (QUCA), and tolerant (TOLE) species groups in 
the sapling sized regeneration layer (stems ≥ 3.8 cm and <10.9 cm dbh) prior 
to treatment (Y0) and four (Y4) and 22 (Y22) years posttreatment in the CON, 
GSH, SWH, and SWL treatments. Uppercase letters indicate significant differ
ences among treatments within a given year. Lowercase letters indicate sig
nificant differences among years within a given treatment. 

Fig. 4. Species richness of sapling sized stems (stems ≥ 3.8 cm and <10.9 cm 
dbh) prior to treatment (Y0) and four (Y4) and 22 (Y22) years posttreatment. 
Uppercase letters indicate significant differences among treatments within a 
given year. Lowercase letters indicate significant differences among years 
within a given treatment. Values and error bars represent the mean and stan
dard error, respectively. 
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2006; Royo et al., 2019). Instead, after 22 years, these high-elevation 
Q. rubra forests subjected to partial harvesting were dominated by 
shade-tolerant species, primarily, A. rubrum and F. grandifolia, con
firming that shade-tolerant species present in the regeneration layer 
prior to harvest limit successful Quercus regeneration and recruitment 
following managed regeneration events (Hackworth et al., 2019; 
Schweitzer, 2019; Steiner et al., 2018; Thomas-Van Gundy et al., 2014). 

To secure future Quercus regeneration and recruitment, the shade- 
tolerant, often recalcitrant understory must be managed and 
controlled post-harvest via various cultural treatments that may include 
chemical, mechanical and/or fire. Although chemical treatments are 
highly effective in controlling competition, chemical and labor costs at 
larger, stand-level scales are costly (Kochenderfer et al., 2011; 
Schweitzer et al., 2020). Conversely, although prescribed fire is a cost- 
effective option, the ability of fire to control shade-tolerant competi
tion in the understory is inconsistent and requires repeated application 
(Alexander et al., 2008; Green et al., 2010; Keyser et al., 2017). An often 
overlooked treatment, mechanical soil scarification, can reduce 
competition from both shade-tolerant and shade-intolerant species and 
favor Quercus and other mid-tolerant species (Zaczek, 2002; Lhotka and 
Zacek, 2003; Felton et al., 2006; Shabaga et al., 2019), but efficacy and 
operability are likely limited in mountainous terrain with steep slopes 
(>30%) and rocky soils (USDA, 2012). 

Left undisturbed, small Quercus seedlings rarely develop into large 
seedlings or saplings (Crow, 1992). In these high-elevation Q. rubra 
forests, in CON, relative abundance of sapling-sized QURU seedlings 
dropped from ~24% in Y0 to 0% in Y22, while the relative abundance of 
QUCA saplings dropped from 16% to 2% between Y0 and Y22. Although 
the sapling layer of the partial harvesting treatments, which will likely 
form the dominant and co-dominant canopy layers over time, was 
dominated by shade-tolerant species, regardless of the regeneration 
method implemented, QURU and/or QUCA saplings were present in Y22 
at a greater abundance than in CON, affirming that canopy disturbance 
is critical to the survival and recruitment of understory Quercus over 
time (Buchanan and Hart, 2012; Hart et al., 2015). 

Interestingly, survival of tagged seedlings of neither Quercus nor 
competing species was influenced by treatment. These results, at least 
for Quercus species, contrast with research that suggests seedling sur
vival increases with decreasing overstory density (Crow, 1992; Loftis, 
1990b). Overstory density was completely removed in small patches in 
GSH, while density was reduced to 9.0 and 5.0 m2/ha in SWH and SWL, 

respectively. Although reduction in density did not affect survival of 
Quercus individuals, average height of tagged Q. rubra seedlings in both 
GSH and SWL treatments was significantly greater than in CON. 
Although there are relative differences in shade-tolerance within the 
Quercus genus, in general, Quercus species are categorized as mid- 
tolerant of shade; as such, residual basal area in the SWH treatment 
may have been high enough to inhibit the growth of Quercus seedlings 
(Miller et al., 2006) relative to more open conditions in GSH and SWL. 

4.1. Conclusions 

High-elevation Q. rubra forests of the southern and central Appala
chians are unique in structure and composition relative to the broad
leaved deciduous forests that dominate lower elevations. Although 
management, including harvesting is rarely conducted in efforts to 
manage for timber, lack of disturbance has led to a decrease in 
landscape-level structural diversity and young forest habitat required or 
preferred by a variety of wildlife species of importance and conservation 
concern. Regeneration harvests, including the partial regeneration 
harvests conducted in this study, have been shown to create the struc
tural heterogeneity and young forest habitat preferred by a variety of 
game and non-game wildlife species in the region (Jones et al., 2008; 
Klaus and Buehler, 2001; McDermott and Wood, 2009). However, 
regeneration harvests conducted without regard to Quercus ecology can 
decrease abundance and importance of Quercus across a variety of 
spatial scales (Fei et al., 2011; Swaim et al., 2018). Given the ecological 
significance of Quercus (e.g., McShea et al., 2007; Cavender-Bares, 2016; 
Kreye et al., 2018), it is, therefore, imperative that management activ
ities, including regeneration harvests facilitate the long-term regenera
tion and recruitment of Quercus dominant and co-dominant canopy 
positions. 

At Y22, the relatively low density of successfully regenerated (i.e., 
sapling-sized) QURU and QUCA stems in the partial harvest regenera
tion treatments coupled with the observation that the height of indi
vidually tagged Quercus seedlings was generally shorter than that of 
competing species suggests that additional cultural treatments, 
including intermediate treatments such as crown-touch release methods, 
may be necessary to secure the continued recruitment of Quercus in
dividuals in these high-elevation Q. rubra forests (Gottschalk et al., 
2014). It is apparent that, although regeneration harvests secured 
greater Q. rubra saplings than CON, at maturity, Q. rubra will represent a 

Fig. 5. Height (m) of individually tagged Quercus and OTHER seedlings prior to treatment (Y0) and four (Y4) and 22 (Y22) years posttreatment. Uppercase letters 
indicate significant differences among treatments within a given year. Lowercase letters indicate significant differences among years within a given treatment. Values 
and error bars represent the mean and standard error, respectively. 
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proportionally lower amount of overstory basal area than prior to har
vest. Although incidences of browse were not specifically recorded, 
O. virginianus density throughout the study area is low relative to other 
areas of the eastern United States (e.g., Pennsylvania, Wisconsin, 
Michigan, West Virginia) (Walters et al., 2016), where browse pressure 
by O. virginianus severely limits the success of Quercus regeneration 
(Nuttle et al., 2013; Thomas-Van Gundy et al., 2014; Granger et al., 
2018). Prescribed fire, although historically not as frequent as in lower 
elevation Quercus forests, could be used alone, or in combination with 
harvesting or chemical treatments, to reduce competition with shade- 
tolerant competitors (Brose, 2010; Keyser, 2019) and promote more 
open understory conditions that are more representative of more his
toric conditions (Kelly, 2013). 
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