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National Forest Inventories (NFI) are designed to produce unbiased estimates of forest parameters at a variety of
scales. These parameters include means and totals of current forest area and volume, as well as components of
change such as means and totals of growth and harvest removals. Over the last several decades, there has been
a steadily increasing demand for estimates for smaller geographic areas and/or for finer temporal resolutions.
However, the current sampling intensities of many NFI and the reliance on design-based estimators often leads
to inadequate precision of estimates at these scales. This research focuses on improving the precision of forest
removal estimates both in terms of spatial and temporal resolution through the use of small area estimation
techniques (SAE). In this application, a Landsat-derived tree cover loss product and the information from mill
surveys were used as auxiliary data for area-level SAE. Results from the southeastern US suggest improvements
in precision can be realized when using NFI data to make estimates at relatively fine spatial and temporal
scales. Specifically, the estimated precision of removal volume estimates by species group and size class was
improved when SAE methods were employed over post-stratified, design-based estimates alone. The findings of
this research have broad implications for NFI analysts or users interested in providing estimates with increased
precision at finer scales than those generally supported by post-stratified estimators.

Introduction
National Forest Inventories (NFI) are designed with sample
sizes sufficient to estimate forest parameters with designated
precision at strategic scales. For example, the United States
Department of Agriculture (USDA) Forest Inventory and Analysis
(FIA) programme strives to provide annual estimates of forest
removals with 5 per cent sampling error per 28.3 million m3 of
annual removals in the eastern US (USDA Forest Service 1970).
Similar precision guidelines are also specified for forest area,
forest volume and forest growth. However, many of today’s
tactical and strategic planning questions require estimates at
finer spatial and temporal precision than are achievable given
the current FIA sampling intensity (one field inventory plot per
2403 ha of land area, with remeasurement every ∼5–10 years
(10 years in the west)) and post-stratified estimators (Bechtold
and Patterson 2005). For example, a majority of forest inventory
shifts in the southeastern US occur because of timber harvesting,
and increased spatial and temporal precision of forest removal
estimates are often needed to understand current wood supplies
at relevant scales. Thus, the goal of this research is to increase

the precision of removal estimates by employing small area
estimation (SAE) techniques.

The term ‘small area’ refers to any domain of interest where
post-stratified estimates cannot be made with a sufficient level
of precision (Rao and Molina 2015). In this sense, SAE techniques
may be applicable not only in situations where the geographic or
temporal extent of a domain of interest (d) is small and hence
has a small sample size but also in situations where increased
estimate precision is required over any d. The terms ‘sufficient’
and ‘small’ are intended to be application-specific. Small area
models borrow strength from areas outside the domain of inter-
est and from auxiliary information, to increase the precision
of parameter estimates (Lehtonen et al. 2003). There are two
types of SAE models: unit-level and area-level. Unit-level models
refer to estimators constructed at the level of sample units
(e.g. field inventory plots in NFI), where auxiliary information is
tied directly to sample units (Rao and Molina 2015). Area-level
models refer to estimators constructed at the level of areas of
interest (AOI), where an AOI is represented by multiple sample
units (inventory plots) within a geographic or other domain.
SAE applications in forestry have recently gained attention, but
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many applications to-date have focused on unit-level models.
For example, Breidenbach and Astrup (2012) examined the use
of photogrammetric canopy heights to improve the precision of
mean canopy height estimates using a unit-level approach, while
Mauro et al. (2017) used LiDAR-based auxiliary information, and
Georndt et al. (2013) used 16 Landsat variables, land cover, tree
cover and elevation as auxiliary information. McRoberts (2012)
used unit-level approaches to improve the precision of volume
per acre estimates using Landsat Thematic Mapper imagery as
auxiliary data.

In contrast, Goerndt et al. (2011), Mauro et al. (2017) and Mag-
nussen et al. (2017) provided examples of area-level applications.
Georndt et al. (2011) and Mauro et al. (2017) used SAE area-
level approaches to improve the precision of density, volume,
basal area, quadratic mean diameter and average height esti-
mates at the stand and management unit-levels, respectively.
Magnussen et al. (2017) examined area-level SAE approaches to
estimate volume based on auxiliary canopy height information
derived from airborne laser scanning and aerial photography at
various scales ranging from management units to municipalities.
Even though most of the research towards SAE applications in
forestry has focused on unit-level applications, Magnussen et al.
(2017) identified several situations when area-level models may
be more suitable than unit-level models when applied to forest
inventories. One reason was that auxiliary data may not be
available at the plot-level (unit-level). Another reason, in the case
of field plots as sample units, is that low precision of global posi-
tioning system plot locations may degrade correlations between
observed variables and auxiliary information (Green et al. 2019).
Gopalakrishnan et al. (2015) noted some potential issues with
registration error between FIA sample plots and auxiliary data.
Additionally, the confidentiality of plot locations due to privacy
concerns may make unit-level models impractical in some cases.
Area-level approaches may also be more appropriate when an
attribute of interest involves rare or infrequent occurrences, with
forest harvesting as an example. At the unit-level, when an
attribute of interest (Y) is rarely observed to be nonzero, observa-
tions become zero-inflated, which can be problematic for com-
mon model types (e.g. linear mixed models). One commonality
among forest inventory applications of SAE techniques to-date is
their focus on increasing the precision of static estimates at a sin-
gle point in time. Little research has been aimed at understanding
the utility of adopting SAE to increase precision in estimates of
components of change (e.g. growth, removals, mortality).

Forests of the southeastern US produce >15 per cent of global
wood products, with 89 per cent of removals occurring on pri-
vately owned forests, while simultaneously experiencing a range
of other disturbances (Coulston et al. 2015). Because of the
importance of southeastern US forests in a regional to global
timber supply context, forest removal estimates of sufficient
precision, both spatially and temporally, are needed to support
strategic and tactical decisions by forest managers, policymakers
and forest industry firms. In some situations, the precision targets
noted earlier (5 per cent sampling error per 28.3 million m3

harvested) are unobtainable or inadequate for highly relevant
questions.

The FIA rotating panel design limits the temporal precision
of change estimates. For example, under a five-panel system,
the full set of panels is measured completely only after 5 years.

Considering that components of change require remeasured pan-
els, removal estimates in a five-panel design are compiled by
constructing average annual estimates over a 10 year period.
Many important forecasting efforts, such as those by Wear and
Greis (2013), USDA Forest Service (2012) and Abt et al. (2000), are
informed by removal estimates, but average annual removal esti-
mates over a 10 year period are unlikely to provide the temporal
resolution needed for informed decision making. As such, there is
a need to increase the temporal precision of removal estimates
using techniques like SAE to better inform decision-makers.

The overall goal of this research is to provide demonstrated
improvement over post-stratified estimates in both the spatial
and temporal domains of forest harvest removals estimates for
the southeastern US. To achieve this goal, we evaluate the per-
formance of area-level Fay-Herriot (FH) models (Fay and Herriot,
1979) including spatial models (Petrucci and Salvati 2006), to
increase the precision of total removals estimates, removals by
species group, and removals by species group and merchantabil-
ity class. We focus on the following questions:

1. To what degree can the precision of the FIA survey unit scale
(aggregates of counties ∼2–4 million ha in area) and county-
scale (∼ 6700–410 000 ha) removal estimates be improved?

2. How does incorporating spatial correlation among domain
means influence the results?

3. What are the magnitudes and directions of changes in esti-
mates?

4. Given that the precision of survey unit post-stratified esti-
mates based on full sets of panels are generally considered
adequate, can we achieve similar precision at finer spatial
scales (county estimates) and finer temporal scales (single-
panel estimates)?

Methods
Study area and FIA data
The study area for this research was a seven-state region in
the southeastern US (Figure 1). Each of the states in the study
area was further divided into 3–7 survey units (our first spatial
scale of interest). The survey units generally follow physiographic
region boundaries (e.g. Coastal Plain, Piedmont, mountains) in
the southeast (Coulston et al. 2014, Burrill et al. 2018). Counties
(the second spatial scale of study) are political and administrative
divisions within states. Because survey units followed county
boundaries, in this case, each county also belonged to exactly
one survey unit. There were 35 individual survey units and 687
counties. The study area contained 35 447 permanent plots (for-
est and non-forest). The average survey unit contained roughly
1000 permanent plots and the average county contained roughly
50 permanent plots across all land uses.

The FIA programme uses a rotating panel design with fixed
sample locations. The design is assumed to produce an equal
probability sample (McRoberts et al. 2006) for each panel and
across panels. The number of panels (P) is either P = 5 or P =
7 in the southeastern US. The remeasurement period between
successive plot visits is ≈ P years. Typically, the FIA programme
uses P panels to construct point-in-time estimates. Change esti-
mates are based on the remeasurement of P panels requiring
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Figure 1 Survey unit and county spatial domains in the study area—
seven states in the southeastern US: state boundaries are denoted by
thick solid lines; county boundaries within states are denoted by narrow
dashed lines, and survey units are distinguished by degrees of shading
within each state.

2P years to obtain a full set of remeasurements. This prac-
tice is referred to as the temporally indifferent approach by
Bechtold and Patterson (2005).

When constructing estimates of removals, the removal is
assumed to occur at the midpoint of the remeasurement period
(calculated on a plot basis). See Table 1 for a five-panel example
where Panel 1 was measured in 2001 and 2006, and removals
from this panel of measurements were assumed to occur ∼
2004. Likewise, Panel 2 was measured in 2002 and 2007 with an
assumed removal year of ∼2005. When panels are combined to
a set of P = 5 panels, there are five different assumed removal
years. For example, consider Panels 1 through 5 at the top half of
Table 1. The assumed removal years for these single panels are ∼
2004–2008. The first measurement (time 1) contributing to the
change estimate occurred in 2001, and the last measurement
(time 2) contributing to the estimate occurred in 2010. The
midpoint of this full set of panel remeasurements was 2006.
Survey unit and county full panel estimates of removals were
constructed for 2007 and 2009. We constructed survey unit and
county single panel estimates for 2007, 2009, 2011 and 2013. On
average, there were 184 permanent plots used for single-panel
survey unit estimates and nine permanent plots used for single-
panel county estimates.

In this research, the parameters of interest were total
removals (m3 ha−1 yr−1), hardwood removals (m3 ha−1 yr−1),
softwood removals (m3 ha−1 yr−1), hardwood removals of
pulpwood-sized trees 12.7 cm—31.75 cm dbh, (m3 ha−1 yr−1),
hardwood removals of sawtimber-sized trees >31.75 cm dbh,
(m3 ha−1 yr−1), softwood removal of pulpwood-sized trees
12.7 cm—21.59 cm (m3 ha−1 yr−1) and softwood removals of
sawtimber-sized trees >21.59 cm dbh (m3 ha−1 yr−1). Publicly
available data were downloaded from the FIA programme
(https://apps.fs.usda.gov/fia/datamart/datamart.html) and used
to construct PS estimates of the parameters of interest for
both single panels and full panels for both survey units and
counties in the study area (Figure 1). For all analyses, we

considered the midpoint of the measurements as the year for
which the removal estimate corresponded with and all removal
estimates were put on a per-annum basis as suggested by
Bechtold and Patterson (2005).

Auxiliary data
We used timber products output (TPO) and tree cover loss
(TCL) data as auxiliary data for SAE. The TPO programme is
a constituent programme of the FIA programme (Coulston
et al. 2018) where roundwood-receiving facilities are canvassed
every 2 years in the southern US (Bentley and Johnson, 2011).
Each of these facilities receives a questionnaire and reports
the amount of roundwood volume by timber products (e.g.
sawlogs, pulpwood, poles), species group and source location
(roundwood county of origin). Roundwood volumes by timber
product and species across all facilities are aggregated by
the county of origin to quantify county-level removals for
products. We summarized county-level TPO data into total
(TPOtotal), hardwood (TPOhw) and softwood (TPOsw) removals
based on TPO species group. Species group removals were
also aggregated into product classes for hardwood pulpwood
(TPOhwpulp), hardwood solidwood (TPOhwsolid), softwood pulpwood
(TPOswpulp) and softwood solidwood (TPOswsolid). County-level TPO
summaries were used for county-level FH and SFH models. The
county-level TPO summaries were aggregated to the survey
unit for survey unit-level FH and SFH models. Table 1 illustrates
how TPO summaries were temporally aligned with FIA removal
estimates.

TCL data were downloaded from Global Forest Watch (http://
data.globalforestwatch.org/). These data were developed based
on methodology from Hansen et al. (2013). The TCL data are
Landsat-based, where each 30 m by 30 m pixel determined to
have tree cover in 2000 is then tracked over time. If a disturbance
causes greater than 50 per cent TCL in a pixel, then the year
of the TCL is recorded. The total number of pixels with TCL
was calculated for each county and survey unit for each year.
The total number of such pixels was then divided by the total
number of pixels for each county and survey unit by year, yielding
proportion TCL by county, survey unit and year (Table 1).

Estimators
To conduct our analysis, we compare the estimated precision of
the FIA post-stratified estimator (PS) for several removal parame-
ters to the estimated precision of two area-level SAE models: the
area-level FH model and the area-level spatial Fay Herriot. Each
of these is described below.

Post-stratified estimator
The FIA programme uses a post-stratified estimator to construct
estimates of means and totals and the variance of these parame-
ter estimates. The post-stratification is typically performed using
land cover maps derived from satellite imagery (Patterson et al.
2012). Based on Bechtold and Patterson (2005), the estimated
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Table 1 FIA and auxiliary data: example of FIA measurement years, assumed FIA removal years, TCL year and TPO year

Gray shading identifies how single panels are grouped for full set of panel estimates. The bold-italicized years denote the FIA data and auxiliary data
used in this analysis.

population mean is.

Y =
∑H

h
WhYh (1)

where,

Yh = 1
nh

∑nh
i=1

yih (2)

and Wh is the proportion of the population in stratum h, nh is
the number of plots in stratum h and yih is the ith plot-level
observation (per unit area basis) in stratum h. The total is Ŷ = EY
where E is the total areal extent of the population. The estimated
variance of Yh is,

v
(

Yh

)
=

∑nh
i=1 y2

ih − nhY
2
h

nh (nh − 1)
(3)

and the estimated variance of Y is,

v
(

Y
)

= 1
n

[∑H

h
Whnhv

(
Yh

)
+

∑H

h
(1 − Wh)

nh

n
v

(
Yh

)]
(4)

The estimated variance of the total is,

v
(

Ŷ
)

= E2v
(

Y
)

. (5)

For the purpose of using the FH model, Yd
PS = Y and v(Yd)

PS =
v(Y) for a spatially defined domain (d). Equations (1) and (5)
are population estimators but are also directly applicable to any
domain (d) provided that E is known for the domain of interest
(i.e. Ed). Our focus is on county-level and survey unit domains
and hence Ed is known. For the purpose of using the FH models,

Yd
PS = Y (equations (1)) and v(Yd)

PS = v(Y) for each individually
estimated d.

Area-level FH model
The area-level FH model (Fay and Herriot, 1979) is motivated
by a two-stage model based on d = 1, . . . ,D mutually exclusive
and exhaustive domains. As described by Molina and Marhuenda
(2015), in the first stage.

Yd
PS = Yd + ed (6)

where ed ∼ indN(0, v(Yd)
PS

), and Yd is the true, but unobserved,
value of the parameter. Model (6) is the sampling model because
Yd is unobserved but estimated by Yd

PS
which is assumed to be

unbiased. In the second stage, Yd is linearly related to m–1
auxiliary variables and an intercept (xd):

Yd = xT
dβ + ud (7)

where ud ∼ indN(0, A) (with A being the variance of the random
effect) and β is the vector of regression coefficients conditioned
on the spatial and temporal frame of survey domain, post-
stratified estimates in xd. Models (6) and (7) are then combined:

Yd
PS = xT

dβ + ud + ed (8)

where ud is assumed to be independent of ed.
The empirical best linear unbiased prediction (EBLUP) of (8) is.

Yd
EBLUP = γ̂dYd

PS + (
1 − γ̂d

)
xT

dβ̂ (9)
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where β̂ is a set of estimated regression coefficients and the
shrinkage γ̂d is defined as.

γ̂d = Â/

(
Â + v

(
Yd

)PS
)

(10)

When v(Yd)
PS

is small compared to the variance of the random
effect (Â) the EBLUP tends towards the PS estimate and when the
PS variance is large compared to the estimated variance of the
random effect Â the EBLUP tends towards the synthetic estimate
xT

dβ̂.Rao and Molina (2015) describe the mean square error (MSE)
of (9) as a combination of three components when Â is estimated
using restricted maximum likelihood (REML):

MSE
(

Yd
EBLUP) = gd1

(
Â
)

+ gd2

(
Â
)

+ 2gd3

(
Â
)

. (11)

In the R sae package (Molina and Marhuenda 2015), the
components are calculated:

gd1

(
Â
)

= γ̂d v
(

Yd

)PS
(12)

gd2

(
Â
)

= (
1 − γ̂d

)2xT
d

((
γ̂

Â
X
)T

X
)−1

xd (13)

gd3

(
Â
)

= (
1 − γ̂d

)2 2∑ (
γ̂

Â

)2

(
Â + v

(
Yd

)PS
)−1

(14)

where X is a D x m matrix of xT
d for each domain and γ̂ is a D x 1

vector of γ̂d for each domain.

Area-level spatial FH model
Petrucci and Salvati (2006) combined the FH (8) with a simulta-
neously autoregressive model that incorporates spatial depen-
dence (SFH) where u in the FH model is assumed to follow a first-
order simultaneous autoregressive process (equation (15)).

u=ρ1Wu + ε, (15)

ε∼N
(
0D, σ2

1ID
)

where 0D is a column vector of zeros, and I is the identity matrix.
The model requires a D x D matrix of spatial weights (W) that

in this case denotes the weights arising from adjacent domains.
For example, if a specific domain had four adjacent domains,
then each of those four adjacent domains would have a weight
of 0.25 (i.e W is row-standardized). In the approach of Petrucci
and Salvati (2006), both the variance of the random effects
(A) and the spatial correlation coefficient (ρ) are estimated.
In the R sae package (Molina and Marhuenda 2015), the
EBLUP is:

YEBLUP = Xβ̂ + GV−1(YPS − Xβ̂ (16)

)where YEBLUP
is a vector of d=1 . . . D estimates where,G =

Â[(I − ρ̂W)(I − ρ̂WT)]−1, I = D x D identity matrix and V =
diag(v(Y)

PS
) + G.

In equation (16), (YPS − Xβ̂) is the vector of residuals, G is
the model error covariance matrix, and V is the combined PS
and model error covariance matrix. GV−1 is analogous to the
shrinkage factor in equation (9), except that for each domain
the shrinkage is a linear combination that takes into account the
relative error spatial covariance among domains and all residuals
for each domain.

Molina and Marhuenda (2015) implemented the analytical
formula derived by Singh et al. (2005) for approximating the MSE
of the SFH EBLUP (15). The MSE approximation assumes D is large
and ignores all o(D−1) terms, i.e. terms ultimately smaller than
D−1 (Molina et al. 2009). In this sense, MSE estimates from the R
sae package are second-order unbiased or ‘nearly’ unbiased and
tend to improve with increasing D, asymptotically approaching
unbiasedness as D → ∞ (Li and Lahiri 2010). Although slightly
different formulations are used to achieve the desired statistical
properties, the package is able to calculate MSEs for SFH EBLUPs
estimated by either maximum likelihood or REML.

Generalized variance function
It is common practice to use a generalized variance function (gvf)
to smooth the sampling variances (Rao and Molina 2015). The
need for a gvf arises due to the instability of v(Yd)

PS
when the

domain of interest is small and hence may have too few obser-
vations to be reliably estimated. Westfall et al. (2011) suggested
that the PS estimator can produce biased estimated variances
when there are fewer than 10 observations per stratum and a
total sample size <75 observations. In our analysis, v(Yd)

PS
was

used for all survey unit-level SAE applications while a gvf was
developed for county-level SAE applications. The gvf distributes
the regionwide variance of each estimate at the regional level
to each county. The variance of the estimated total for each
parameter for the region was:

v
(

Ŷregion

)PS =
∑D

d
v
(

Ŷdsurvey unit

)PS
(17)

The gvf for county d for each parameter (E is the total areal
extent of the population) was then:

gvfd = v
(

Ŷ
)PS ndcounty∑

ndcounty
E−2

dcounty
(18)

where Ed is the total areal extent of the county-level domain.
In this manner we sum the variance of the total across the
study area, distribute the total variance to county d based on the
proportion of total plots (across all counties) in county d, and then
convert the variance of the total back to the variance of the mean
per domain.
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Table 2 Description of models used for both the FH and SFH approaches

Model Yd X variables

TPOtotal TPOsw TPOswpulp TPOswsolid TPOhw TPOhwpulp TPOhwsolid TCL Interaction

1 Total removals x x x
2 Total softwood

removals
x x x

3 Softwood removals
(dbh 12.7–21.6 cm)

x

4 Softwood removals
(dbh > 21.6 cm)

x

5 Total hardwood
removals

x x x

6 Hardwood removals
(dbh 12.7–31.8 cm)

x

7 Hardwood removals
(dbh > 31.8 cm)

x

Models and Parameters of Interest
We considered seven Y variables (Table 2) for testing the FH
and SFH models. These models were used to estimate removal
volumes in total, by species group, and by species group and
merchantability class (pulp or solid wood). The X variables arising
from the TPO data reflect only the portion of forest removals
going to timber products and hence should be less than removals
from the forest. Conversely, the TCL variable accounts for TCL
caused by both removals and mortality both within and outside
of forest land uses. Hence, the TCL should account for more
than just volume removals on forest land uses. When the TCL
variable was included in a model, a multiplicative interaction
term with the TPO variable was also included. Model forms were
constructed with auxiliary data that were meaningfully related
to the parameter of interest. For example, it would be expected
that the total removals estimated from the TPO data and the
removals estimated from the TCL data are both meaningful
relationships. Certain auxiliary data; however, are not expected to
be meaningfully related to all parameters of interest. For exam-
ple, in predominately pine growing regions, hardwood pulpwood
removals estimated using TCL data alone are not necessarily
meaningful relationships despite what fit statistics may indicate.
In addition to constructing models with logical relationships,
initial testing suggested that simple models had fewer con-
vergence problems; therefore, four of the seven models were
based on a single explanatory variable and the remaining three
were based on two explanatory variables and their interaction
(Table 2). The models in Table 2 were parameterized using both
the FH and SFH approaches with both counties and survey units
as the domains, based on the full sets of panels for 2007 and
2009 removal years and for single panels having removal years
in 2007, 2009, 2011 and 2013. The combinations of model-
dependent variables (7), modelling approaches (2), measure-
ment panel time frames (6) and spatial domains (2) made a
total of 168 distinct model parameterizations developed in the
test application.

Evaluating results
Evaluation of sampling and estimation approaches requires a
known population so that MSE and bias can be quantified; how-
ever, a known population is rarely at hand. To overcome this issue,
Goerndt et al. (2011, 2013) treated the full set of sampled plots as
the population, then subsampled from that population at varying
intensities to evaluate the efficacy of various SAE techniques.
Magnussen et al. (2017) used a more traditional approach, where
the MSE (Ȳ)EBLUP and v(Ȳ)PS were reported for each modelling type
and the ratio MSE(Ȳ)EBLUP/var(Ȳ)PS was calculated for each domain
and then averaged across domains to evaluate the reduction
in variance for different SAE techniques. Here we took a similar
approach to Magnussen et al. (2017).

For simplicity, we refer to results under the post-stratified
estimator as ‘PS’, the Fay-Herriot as FH, and the spatial Fay-
Herriot as SFH. We focused on the standard error,

SE
(

Ȳ
)PS =

[
v
(

Ȳ
)PS

]0.5

(21)

of the PS estimates and the root mean squared error,

RMSE
(

Ȳ
)EBLUP =

[
MSE

(
Ȳ
)EBLUP

]0.5

(22)

of the FH and SFH rather than the variance and MSE because
the errors expressed in the same measurement units as the
parameter of interest are more directly interpretable. To address
our objective questions 1 and 2 (Q1—Can precision of survey unit
and county-based removal estimates be improved?; Q2—How
does incorporating spatial correlation influence the results?), we
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examined the distribution of the standard error ratio (SER),

SER = RMSE
(

Y
)EBLUP

/SE
(

Y
)PS

(23)

where a value <1 indicated increased precision of the EBLUP
estimate.

We also used the likelihood ratio test (LRT) to compare the
FH models to the SFH models to address question 2. When
making these comparisons the ratio was assumed to follow a
chi-squared distribution with 1 degree of freedom. The degrees
of freedom were based on the difference in the number of esti-
mated parameters between the two models. The SFH models
only had one addition parameter arising from the estimation of
spatial correlation coefficient (ρ̂).

To address question 3 (What are the magnitudes and
directions of changes in estimates?), we graphically examined
the relationships between ȲEBLUP and ȲPS. We further examine
whether county-scale SFH estimates summed within survey
units were similar to PS survey unit estimates. By definition∑

c∈suEcY
PS
c = EsuY

PS
su where Ec= is the areal extent of county c

and Esu= the areal extent of survey unit su and hence one would
expect

�
Y

EBLUP

=
∑

c∈su EcY
EBLUP
c∑

c∈su Ec
∼ Y

PS
su. (24)

We graphically examined the relationship expressed in equa-

tion (24) and further examined whether
�
Y

EBLUP

was within 1
standard error of Y

PS
su. While we do compare estimates, it is impor-

tant to note that comparing the PS estimates to the FH or SFH
estimates does not quantify bias. To address question 4 (Given
that the precision of survey unit PS estimates based on a full set
of panels is generally considered adequate can we achieve similar
precision at finer spatial scales (counties) and finer temporal
scales (single panel estimates)?), several approaches were used.
First, we assumed that the precision (standard error of the mean)
of full panel PS estimates at the survey unit scale were sufficient
to serve as benchmarks. The precision of survey unit removal
estimates based on single panels was then compared graphically
to precisions estimated from full panel PS estimates from 2007
and 2009. The precision of the county removals based on full
and single panels was compared to the maximum SE and the
third quartile of the survey-unit PS estimates based on full sets
of panels. This comparison was based on the notion that full-
set-of-panel estimates at the survey unit-level are of adequate
precision. Comparing county-level estimates to the upper quartile
of the distribution for ‘adequately’ precise estimates indicates the
degree to which county-level estimates’ precision approached
that of the full panel, survey unit estimates.

Results
Question 1: to what degree can the precision of FIA
survey unit scale (aggregates of counties ∼ 2–4 million
ha in area) and county-scale (∼ 6700–410 000 ha)
removal estimates be improved?
The first question focused on whether the precision of county
and survey unit estimates of removals could be increased. Our
results suggest that the FH estimates consistently increased the
precision of removal estimates at both the county and survey unit
scales for each Y parameter examined (Figure 2). With one excep-
tion, the SER was <1 for the county and unit-level estimates con-
structed with single and full sets of panels. FH estimates at the
survey unit scale based on a full sets of panels led to median SERs
between 0.40–0.93 with estimates of total softwood removals
having the lowest median SER. Survey unit FH estimates based
on a single panel (Figure 2; column 4) had a median SER ranging
from 0.33–0.59, with softwood removals for pulpwood (dbh 12.7–
21.6 cm) exhibiting the lowest median SER. Additionally, other
estimates such as survey unit total removals, total softwood
removals, and softwood removals for pulpwood FH estimates
based on single panels showed improvement over their corre-
sponding PS estimates, with the SER interquartile ranges (IQR)
of 0.24–0.53, 0.21–0.62, and 0.21–0.75, respectively (Figure 2).
County-scale results were similar to survey unit scale results,
where FH estimates were more precise than corresponding PS
estimates. For example, the median SER for total removals was
0.46 for full panel estimates and 0.44 for single panel esti-
mates. In general, the FH estimates displayed the largest gains
in precision when the PS estimate was less precise. This finding
was expected because of the shrinkage factor as described in
equation 10. Though expected, the finding does highlight the
opportunity to increase the precision of parameter estimates
when the domain of interest has a relatively large variance of the
PS estimate.

Question 2: how does incorporating spatial correlation
among domain means to influence the results?
Our second question focused on examining the effect of incorpo-
rating spatial correlations. Based on the LRT, the SFH model was
significantly better than the FH model (P<0.001) in all cases. The
critical value for P<0.001 was 10.83 and the minimum LTR for
models across the survey unit scale was LRT=11.35 (P=0.00076).
The maximum LRT for the survey unit scale was 148.5. At the
county level scale, the LRT ranged from LRT=399.1 to LRT=2692.3.

Our analysis of SER offered further insights into the effect
of incorporating spatial correlations. In general, the SFH esti-
mates behaved similarly to the FH estimates in that they showed
improved precision over PS estimates in nearly all combinations
tested (Figure 2). Survey unit-level SFH precision results were in
most cases similar to FH results, regardless of whether they were
based on single panels or full panel datasets (Figure 2; columns
3 and 4). Similarity here refers to the pattern of overlapping
IQRs observed between SFH and FH results for a combination
of species group, size-class, panel set, and spatial domain. The
same pattern of similar precision improvements for SFH or FH
based methods was noted for county-level results when single
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Figure 2 Violin plots displaying the distribution of SERs for the FH estimates and the SFH estimates for each Y parameter at the county and survey-unit
scales based on a single panel and a full set of panels. The full panel estimates are pooled for 2007 and 2009. The single panel estimates are pooled
for 2007, 2009, 2011 and 2013. Values on the X-axis below 1 indicate an improvement in estimate precision compared to the PS estimate.

panel data were used (Figure 2, column 2). A somewhat dis-
tinct pattern of non-overlapping IQRs emerged for total soft-
woods, softwoods (dbh > 21.8 cm), and total hardwood removals

calculated from full panel sets based on county-level domains.
For these parameters, SFH precision was notably higher than the
precision of corresponding FH model results (Figure 2; column 1,
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rows 2, 4, and 5). A maximum SER value (1.62) was noted in
SFH estimates for total removals based on a single data panel
(Figure 2; column 4, row 1) indicating that in some cases, the SFH
model was difficult to fit at the survey unit scale where there were
relatively few domains. The maximum SFH SER values (1.0) were
noted in 6 of 7 parameters when single panel survey unit-level
data were used, and in 3 of 7 parameters when full panel set
data were used (Figure 2, Columns 3 & 4).

Question 3: what are the magnitudes and directions
of changes in estimates?
The third question focused on magnitudes and directions of
changes in estimates for different populations and parameters.
Because the true population values are unknown, we cannot
address bias of the FH and SFH estimates. Here we focus only
on FH results to simplify the presentation, noting that FH and
SFH removal estimates were similar throughout. Generally, the
larger the support sample (larger nd) the better the alignment
between PS and FH estimates (e.g. 2009 estimates as shown in
Figure 3). Here we use the term align to reflect a tendency for the
estimates to fall on the 1:1 relationship, where poor alignment
does not necessarily reflect bias. For example, estimates across
Y parameters at the survey unit scale based on full sets of panels
exhibited the best alignment. The relationship between ȲEBLUP

and ȲPS was more variable across Y parameters at the survey
unit scale based on a single panel. For survey unit scale total
hardwood removals, hardwood removals (dbh 12.7–31.75 cm),
and hardwood removals (dbh > 31.75 cm) based on a single
panel there was a departure from the 1:1 line as ȲPS increased. At
the county-scale, there was also a departure from the 1:1 rela-
tionships. At small values of ȲPS the ȲEBLUP was typically greater
than ȲPS. At large values of ȲPS the ȲEBLUP was typically less than
ȲPS. This pattern was more pronounced for single panel estimates
as comparted to full panel estimates.

To gain additional insight into potential systematic county-

level estimation issues we compared the FH and SFH
�
Y

EBLUP

(equation 24) to ȲPS across survey units and noted that lack
of alignment evident in individual county estimates (Figure 3)
was reduced when county-level estimates were aggregated

to the survey unit-level (Figure 4). Notably, SFH
�
Y

EBLUP

for total
removals based on a full sets of panels were largely aligned
with corresponding survey-level ȲPS across the full range of PS

estimates. Roughly 79 per cent of the SFH
�
Y

EBLUP

estimates for
total removals (full sets of panels) were within one standard error
(SE(ȲPS), full sets of panels) of ȲPS. Examination of single panel SFH
�
Y

EBLUP

for total removals showed that a comparatively modest 46
per cent of the estimates were within one standard error of ȲPS.

When viewed across all Y parameters combined,
�
Y

EBLUP

values for
the full set of panel estimates were within 1 standard error of the
PS estimate 68 per cent of the time. For single panel estimates

SFH
�
Y

EBLUP

was within one standard error of the PS estimates
35 per cent of the time, raising some concerns of systematic
estimation issues for county-level SFH estimates based on single

panels of data. Results for the FH model (not shown here) were
similar in terms of graphical alignment to the SFH results but
�
Y

EBLUP

was within 1 standard error of the PS estimate 56 per cent
and 36 per cent of the time for full-set-of-panel and single panel
estimates, respectively.

Question 4: given that the precision of survey unit
post-stratified direct estimates based on full sets
of panels is generally considered adequate, can we
achieve similar precision at finer spatial scales
(county estimates) and finer temporal scales
(single-panel estimates)?
Our final question focused on whether county removals esti-
mates (based on full sets of panels, and single panel) and sur-
vey unit removal estimates (based on a single panel) could be
constructed with the same precision as PS estimates from a full
set of panels. At the survey unit scale, we found that single-
panel estimates of Y parameters based on the FH model typically
had an estimated precision comparable to that of PS estimates
based on a full set of panels. For example, 2009 PS single panel
estimates of total removals based on the FH model had smaller
standard errors than 2009 PS estimate standard errors based
on full panels in 60 per cent of survey units (Figure 5). Typically,
RMSE(ȲEBLUP) was larger than SE(ȲPS) when SE(ȲPS) was relatively
small. For example, some survey-unit single panel RMSE(ȲEBLUP)
FH 2009 estimates for total hardwood removals were larger than
the SE of full panel PS 2009 estimates when the removal volume
was <0.13 m3 ha−1.

We compared the precision of the county-level FH and SFH
estimates to the precision of the corresponding maximum and
3rd quartile of survey-unit full panel estimates for each param-
eter. Because of the results from question 1, we focused on
the precision of estimates from the SFH model to examine the
county-level precision for single panels and full sets of panels
as compared to survey unit full panel estimates. This analysis
assumed that survey-unit full panel estimates generally provide
adequate precision for removals. For county-level, single panel
estimates mean RMSE(ȲEBLUP) across counties was larger than the
maximum corresponding SE(ȲPS) from the survey-unit full panel
estimates for all seven removal parameters examined except
for hardwood pulpwood removals (Table 3). At the county-scale
based on full sets of panels, the mean SFH RMSE(ȲEBLUP) was less
than the maximum SE(ȲPS) in corresponding estimates for, total
softwood removals, total hardwood removals, and hardwood
pulpwood removals (dbh 12.7–31.8 cm). In all three of these
comparisons 99.5 per cent or more counties had a RMSE(ȲEBLUP)
that was less than or equal to the maximum SE(ȲPS) for corre-
sponding estimates. In contrast only one parameter, total soft-
wood removals, produced estimates based on full sets of panels
with greater than 50 per cent of counties having RMSE(ȲEBLUP)
values < 3rd quartile of observed survey-unit SE(ȲPS).

Generalized variance function
We used a gvf for direct county-level estimates. This was done
for two reasons. First, the gvf was used to adjust for potential
unstable direct variance estimates. Second, removals were a rare
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Figure 3 The Year 2009 estimates of each Y parameter based on the PS estimate (ȲPS) and the FH estimate (ȲEblup) at the survey-unit and county-scale
based on a single panel and a full set of panels. This solid gray line denotes the 1:1 line.

event (often < 2 per cent of an area). This created a situation
when using county-level domains where one may have nd =
10, for example, but no removals were observed and yet the
auxiliary data suggested there were unobserved removals in the

domain. In this case, the direct estimate and the variance of the
estimate were zero. Based on equation (9), the direct estimate
was retained because of its apparent precision (i.e. zero variance).
We used a gvf to overcome both of these issues.
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Figure 4 Full set of panels and single panel county-level SFH estimates summarized to the survey unit-level (
�
Y

EBLUP

) versus survey unit-level PS
estimates based on a full set of panels (ȲPS). Estimates are for 2007 and 2009. The gray diagonal line is the 1:1 line. The horizontal black lines are
SE(ȲPS).

Our gvf followed expectation with respect to decreasing stan-
dard error with increasing n (Figure 6). For example, we examined
the standard error of the estimate of total removals for 2009
single panel estimates and found that when n=25 the average
standard error of the estimate was 1.26 m3 ha−1 yr−1. When
n=100 the standard error of the estimate was 0.64 m3 ha−1 yr−1.
This result suggests that a sample of four times as many plots
resulted in half the standard error which conforms to the notion
that a 4x sampling intensification decreases the standard error
by half (Burkhart, et al. 2019).

Discussion
The objective of this research was to answer four questions.
We found (1) that in nearly all cases, the use of FH and SFH
models increased the precision of both county and survey unit
estimates for the seven-volume removal parameters examined.
(2) While the incorporation of spatial correlation through the SFH
model in most cases improved model fits, it generally did not
increase the practical significance of the precision of estimates
of removal parameters compared to the FH model. Exceptions
were noted mainly in county-level full panel parameters for which
SFH estimates showed modest improvements in precision over
non-spatial, full panel FH estimates. (3) Estimates across removal
parameters were influenced to varying degrees using the SAE
approaches. At the survey-unit scale based on a full set of pan-
els, PS estimates generally aligned with those using FH and
SFH model approaches. Relationships became more variable as
the number of observations decreased in domains being com-
pared. Because removal parameters are not known for the spatial
and temporal scales involved here, bias could not be addressed
directly; however, systematic differences between PS estimates
of removals and SAE results were noted for individual counties

when single panel data were used. (4) We found that survey
unit, single panel estimates of Y parameters could generally be
estimated with precision similar to that of survey unit, full panel
estimates. In contrast, county level, full panel estimates of Y
parameters could be estimated with precision at or below the
maximum observed standard errors for PS estimates based on
survey unit full panel datasets about 65 per cent of the time (on
average).

While we focused on removal estimates rather than point-
in-time status estimates (e.g. growing stock), our results agree
with other investigations into the performance of area-level SAE
models (e.g. Mauro et al. 2017, Magnussen et al. 2017). Within the
context of the FIA programme, our results suggest that survey
unit estimates of removal volumes can be constructed with
similar precision using a single panel of remeasurements (i.e. ∼
20 per cent of the total number of remeasurements) using either
the FH or SFH approach compared with the full panel, PS estimate.
This is important because it allows for more current estimates of
removals to be constructed, increasing the temporal resolution
of removal estimates. Also, the precision of county-level removal
estimates based on full sets of panels, while not as precise as
survey-unit full-panel-set estimates, was increased when the
auxiliary information examined was used to form EBLUPs with FIA
data. This approach provides an opportunity to perform analyses
at spatial resolutions finer than what FIA PS estimators currently
support. Although the exact limits of spatial resolutions that may
support various types of strategic planning information needs
were not identified here, results indicate that spatial resolu-
tions intermediate between county and survey unit-levels (e.g.
woodshed analysis and strategic forest management planning)
may be adequate for a wider range of analysis needs than are
currently thought to be supported.

Our results regarding spatial models differed somewhat from
Magnussen et al. (2017) who found the methods of Chandra
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Figure 5 The Year 2009 survey unit scale single panel RMSE(ȲEBLUP) vs 2009 survey unit scale full set of panels SE(ȲPS) for the FH estimates. The solid
curves were developed using locally estimated scatterplot smoothing and are only intended to guide interpretation. The dashed line is the 1:1 line.

et al. (2012) that account for spatial autocorrelation to provide
further increases in precision over basic area-level FH models.
Using the Petrucci and Salvati (2006) approach as implemented
by Molina and Marhuenda (2015), we only observed consistent
increases in precision at the county-scale based on a full set of
panels when incorporating spatial correlation. This matched our
expectation that county-level full panel estimates based on SFH
were more likely to provide increases in precision than survey-
unit-level estimates. There were only 35 survey units, and spatial
correlation among adjacent survey units failed to explain much of
the error structure leading to minimal improvements compared
to non-spatial removal estimates.

Many of the comparisons and tests we examined to identify
potential gains of SFH versus non-spatial FH estimators depended
on MSEs estimated using analytical approximations which
have been the subject of considerable interest in SAE research

(Molina et al. 2015). As noted by Molina et al. (2015), second-
order unbiased approximations for FH EBLUP MSEs were devel-
oped first by Prasad and Rao (1990), and furthered by others
including Datta and Lahiri (2000) and Das et al. (2004). Second-
order unbiased approximations for SFH EBLUP MSEs have
garnered ongoing attention as well (Petrucci and Salvati 2006,
Torabi and Jiang 2020). The FH and SFH MSE approximations
implemented in the sae package are second-order unbiased
and have been tested in simulation studies and compared to
parametric and nonparametric bootstrap estimates (Molina et al.
2009, Marhuenda et al. 2013). Other tests and properties related
to FH and SFH variance estimates are subjects of ongoing interest
including significance tests and interval coverage rates for area
random effects (Datta et al. 2011, Molina et al. 2015). While these
were not directly pursued here, they remain topics of interest for
ongoing research.
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Table 3 Comparison of RMSE(ȲEBLUP) for county-level SFH small area estimates to SE(ȲPS) for survey unit full panel estimates for 2007 and 2009

Y Survey unit full set of
panels Count SE (Ydirect)

County full set of panels RMSE (YEBLUP) County single panel RMSE (YEBLUP)

3rd
quartile

Maximum Mean P3q Pmax Mean P3q Pmax

(m3 ha−1) (m3 ha−1) (m3 ha−1) % % (m3 ha−1) % %

Total removals 0.24 0.36 0.49 0.0 48.2 1.10 0.0 0.0
Total softwood removals 0.19 0.29 0.18 52.7 99.5 0.83 0.0 0.0
Softwood removals (dbh
12.7–21.6 cm)

0.06 0.11 0.17 0.0 13.0 0.27 0.0 0.0

Softwood removals (dbh >

21.6 cm)
0.12 0.19 0.22 26.9 49.7 0.81 0.0 0.0

Total hardwood removals 0.14 0.31 0.19 15.0 99.9 0.61 0.0 0.0
Hardwood removals (dbh
12.7–31.8 cm)

0.05 0.12 0.09 0.0 99.9 0.23 0.0 23.8

Hardwood removals (dbh
> 31.8 cm)

0.10 0.20 0.21 0.0 44.0 0.51 0.0 0.0

P3q and Pmax are the proportions of county-level RMSE EBLUP values smaller than the survey unit full panel SE(ȲPS) 3rd quartiles and maxima,
respectively. County-level estimates were based on the SFH model.

Figure 6 The standard error of total annual removals for 2009 using
the gvf.

As part of this research, we attempted to understand how
employing the FH and SFH approaches would affect removal
estimates. The survey unit results based on a full set of panels
exhibited the expected behaviour, i.e. minor random offsets from
the 1:1 line and only in survey units with the largest PS estimates.
However, the results at the county-scale (full sets of panels and
single panels) were more difficult to interpret. At first glance, the
county-scale results presented in Figure 3 may seem problematic
in that the FH and SFH estimates tended to be larger than the PS

estimate when the PS estimate was small, while the FH and SFH
estimates tended to be smaller when the PS estimate was larger.
The pattern suggests a smoothing effect. However, removals
are relatively rare events (typically <2 per cent yr−1). Given the
sample size at the county level (50 plots on average for a county
using a full set of panels and 9 plots on average using a single
panel), we would expect county-level PS estimates to deviate
farther from actual removals than survey unit-level estimates
would. In many cases there were no removals recorded in a
county according to the plot-level observations, yet the auxiliary
data suggested otherwise. For example, in the average county
with nine plots measured in a single panel and a 5 per cent
removal rate (unknown in reality), it is expected that a removal
would be observed on less than one plot. The PS estimates, in this
case, would underestimate removal volume if no removals were
observed and overestimate removals if a removal was observed.
Our use of the gvf appears to have led to a greater reliance on
the model and hence the synthetic estimate. It seems improper
to conclude that FH and SFH estimates are biased given the
analyses performed here. There was some indication that the
county-level single panel parameter estimates based on the
FH and SFH approaches systematically either overestimated or
underestimated the parameters of interest, but bias could not
be addressed as part of this research. Bias can only be assessed
when the true population parameters are known. Additional
research into this question is warranted.

Being linear models, the FH and SFH require auxiliary data that
are linearly related to the variable of interest. In this research,
we used TPO data and TCL data as auxiliary data. These two
auxiliary data sources had a moderate to strong linear correlation
with observed inventory removals. For example, the TCL data
had correlations with total inventory removals ranging from r =
0.93 at the survey-unit scale based on a full set of panels to
r = 0.58 at the county-scale based on a single panel. The TPO
data had correlations with total inventory removals ranging from

13

D
ow

nloaded from
 https://academ

ic.oup.com
/forestry/advance-article/doi/10.1093/forestry/cpaa045/6056296 by guest on 04 January 2021



Forestry

r = 0.94 at the survey-unit scale based on a full set of panels
to r = 0.74 at the county-scale based on single panels. Given
the potential for gains shown here and elsewhere for the SAE
approach in general, other datasets, particularly from a remote
sensing perspective, should be examined. One example arises
from Moisen et al. (2016). Their work relies on the time series
of Landsat imagery, where forest disturbances are identified and
attributed by causal agents (e.g. harvest, fire). The use of these
data streams in small area applications may prove fruitful. We
acknowledge that the TCL data record TCL regardless of land
use or driver of the change. Testing remotely sensed datasets
with enhanced thematic resolution (e.g. Sentinel 2 and image-
derived point clouds (Mura et al. 2018, Hawryło and Wężyk 2018))
could improve precision under SAE applications for components
of change estimation. This is particularly important in other parts
of the US where multiple disturbances occur in AOI. However,
when considering developing estimation tools for the FIA user
community, it is important to have relatively stable auxiliary data
(in terms of availability and contemporaneity).

Our focus was on the FH and SFH approaches; however, there
are extensions of these methods that should also be examined.
The FIA programme is a continuous inventory, and new data
are available each year. As the FIA time series grows in length
over time, models that also include temporal correlation (Rao
and Molina 2015) should be examined. Further, the research
presented here considers a collection of univariate Y parameters,
but there is an expectation on the part of the practitioner that the
corresponding estimates are additive. For example, hardwood
removals of trees 12.7–31.75 cm dbh and hardwood removals of
trees >31.75 cm dbh should sum to total hardwood removal esti-
mates. Likewise, softwood removal of trees 12.7–21.59 cm and
softwood removals of trees >21.59 cm dbh should sum to total
softwood removals. Total hardwood removals and total softwood
removals should sum to total removals. Under a univariate Y
approach, additivity is not guaranteed. Multivariate extensions to
the FH and SFH models that will allow for the estimation of more
than one Y parameter using SAE techniques (Rao and Molina
2015) should be considered.

Conclusions
Precise estimates of forest inventory parameters are important
for making informed decisions and conducting meaningful anal-
yses. The applied research presented here is the first example of
SAE techniques for components or change estimation and fur-
ther, the analysis is performed across a broad region which makes
the results informative to broad-scale inventory programmes
interested in expanding their estimation approaches. Our results
suggest that area-level, SAE techniques can leverage auxiliary
information to improve estimate precision at finer spatial and
temporal scales. Specifically, survey-unit scale FH estimates of
removals based on a single panel of remeasurements exhibited
sufficient precision indicating that the temporal resolution of
estimates at the survey unit scale can be meaningfully increased.
Additionally, county-scale SFH estimates of removals based on a
full set of panel remeasurements generally exhibited sufficient
precision indicating that the spatial resolution of removal esti-
mates can be meaningfully increased.
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