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A B S T R A C T

How urbanization-associated land use/land cover change (LULCC) affects the ecohydrological cycle through
altering evapotranspiration (ET) processes is not clear for rice paddy dominated watersheds. The purpose of this
study was to understand long-term (2000–2013) spatial and temporal variations of ET over the Qinhuai River
Basin in a humid region, southern China. We revised the Soil and Water Assessment Tool (SWAT) by in-
corporating new algorithms describing hydrological processes of rice paddies. Using the improved SWAT model
driven by remote sensing-derived LULCC and local climatic data, we separated the effects of LULCC on ET from
climate at the watershed scale. We showed that the modified SWAT model significantly improved monthly
streamflow estimates. The Nash-Sutcliffe model efficiency (NSE) was 0.86 and coefficient of determination (R2)
was 0.88 for the calibration period (1990–1994) while the NSE was 0.65 and R2 was 0.71 for the validation
period (1995–1999). We also found good agreements between modelled daily ET and lysimeter-based mea-
surements for an experimental rice paddy field (R2 = 0.75, p less than 0.01). For areas with little land cover
change, ET rates increased over time due to the increase in potential ET (PET) during 2000–2013. However, the
contribution from rice paddy to the watershed-level ET decreased over time coincident with a period of rapid
urbanization and loss of rice paddy field. Dynamic attribution analysis indicated that the negative contribution
of LULCC to change in ET increased from 53% in 2000 to 61% in 2013 while the positive contribution of climate
variability decreased from 47% in 2000 to 39% in 2013. We concluded that factors affecting ET varied with
spatial scale. Conversion of rice paddy field to urban use directly resulted in significant ET reduction at the
watershed scale despite the rise in the air temperature and potential ET in the study region. The improved SWAT
model provides a better integrated method for understanding ET processes and assessing the impacts of en-
vironmental change on ecosystem services in a rapidly urbanizing region.

1. Introduction

Urbanization and associated land use and land cover change
(LULCC) has been widely recognized to have negative influences on
ecosystems by altering watershed hydrology (Paul and Meyer, 2011;
Sun and Lockaby, 2012). LULCC and associated anthropogenic activ-
ities cause losses of ecosystem functions (Fan et al., 2016) through al-
tering flood frequency (Brath et al., 2006; Crooks and Davies, 2001;
Gao and Sang, 2017) and seasonal streamflow patterns (Guo et al.,
2008), impairing water quality (Sun and Lockaby, 2012), and ag-
gravating Urban Heat Island (Hao et al., 2015a; Zhao et al., 2014) and

Urban Dry Island (Hao et al., 2018). Climate change is also becoming a
major threat to natural resources such as water supply and crop pro-
duction in many parts of the world (Piao et al., 2010; Kim et al., 2015;
Cao et al., 2011; Martin et al., 2017; Zhao et al., 2019a,b). For example,
the average air temperature in China has increased (Gao et al., 2002),
and precipitation significantly increased in southern China affecting
regional evaporation and transpiration rates (Merritt et al., 2006).
However, the regional hydrologic impacts of climate variability may be
completely different those from LULCC due to the contrasting under-
lying physical and biological processes (Martin et al., 2017; Sun et al.,
2019; Zhao et al., 2020a,b). Separating the individual effects of climate
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change and land-use/land-cover change is not only essential for inter-
preting ecohydrological change and its drivers (Eum et al., 2016), but
also for watershed management decision making.

Rice paddy field, a major land-use for agricultural food production
in southern China, provides similar ecosystem service benefits like
other wetlands, such as water quality improvement (Kang et al., 2006)
and climate moderation (Hao et al. 2015a; Hao et al., 2018). However,
growing rice consumes a large amount of water due to its irrigation
needs. Thus, converting rice paddy to urban uses in the process of ur-
banization is projected to have profound impacts on the watershed
hydrological cycle (Hao et al., 2015a). Our previous study (Hao et al.,
2015a) found that urbanization and climate warming (Qin et al., 2019)
in a rapidly urbanizing rice paddy-dominated watershed in eastern
China collectively elevated streamflow by 58% due to a decrease in ET
by 23% during 1986–2013. However, we know little about the effects of
individual and combined changes in LULCC and climate change on
watershed hydrological processes due to the complexity of rice paddy
management in watersheds with mixed land uses amid climate change
(Hao et al., 2015a).

Hydrological response to disturbances is scale dependent. A wa-
tershed modelling study in a rice paddy-dominated region in southern
China suggests that converting rice paddies to urban area reduces
overall water consumption (Tsai, 2002). The hydrological processes of
rice paddy-dominated watersheds are extremely complex due to the
mixed compositions of LULCC. For example, Xu et al. (2017) found that
simulated ET by the traditional Penman-Monteith model for rice paddy
overestimated or underestimated ET because of large daily variations in
net radiation, soil heat flux and soil moisture in Kunshan region of
China. The dominated controlling factors for ET vary across spatial
scales (Mauser and Schädlich, 1998; Xu and Yang, 2010; Cristiano
et al., 2015; Zhang et al., 2016). Amatya et al. (2014) suggest that soil,
plant type, and regional weather conditions, are important for ex-
plaining ET response to land management at a landscape scale while ET
is dominated by climatic conditions at a regional scale. Similarly, Zhou
et al. (2013) concludes that ET is controlled by water availability at a
plot scale but is sensitive to energy available as well as surface tem-
perature at a regional scale.

Process-based simulation models are useful tools to quantify the
influence of climate (e.g. precipitation, relative humidity, temperature
and radiation) and human activities (e.g., irrigation, urbanization, and
drainage operations) on watershed hydrology (Xie and Cui, 2011; Du
et al., 2012; Hao et al., 2015b). Among many existing hydrological
models, the Soil Water Assessment Tool (SWAT) has been widely used
because of its versatility and open sources (Sun et al., 2017; Zhao et al.,
2019a,b; Wu et al., 2016). SWAT as a process-based watershed model
describes the essential hydrological processes and is capable for asses-
sing the impacts of agricultural practices on water quality, providing an
effective tool for environmental assessment and watershed manage-
ment (Fan et al., 2016; Laurent and Ruelland, 2011). However, SWAT
has not been applied widely in modelling hydrological processes in rice
paddy-dominated watersheds. Previous modification of the SWAT
model simply treats rice field as a pothole or an impoundment. The
original pothole module in SWAT assumes that the water surface eva-
poration is actual ET in rice field. Sakaguchi et al. (2014) developed a
modified paddy module in SWAT and modelled the hydrological pro-
cesses in a 3-km2 paddy field. Xie and Cui (2011) incorporated a new
irrigation scheme to SWAT for simulating streamflow in Zhanghe Irri-
gation District of southern China. Kang et al. (2006) incorporated the
total maximum daily load system within the SWAT model to evaluate
water balance and water quality in irrigated rice paddy region in South
Korea. However, these studies rarely examined model performance in
modelling ET, a major hydrological component in a humid region and
one of the most uncertain hydrologic variables that plays a key role in
determining watershed water balance, assessing effects of LULCC on
local and climate, scheduling agricultural irrigation (Aouissi et al.,
2016; Abdullah et al., 2014; Chirouze et al., 2014; Qiu et al., 2015; Liu

et al., 2017a), and assessing climate change impacts (Falamarzi et al.,
2014; Shiri et al., 2012, Wang and Liang, 2008).

We chose the Qinhuai River Basin (QRB) for this case study to un-
derstand hydrological response, ET in particular, to urbanization and
climate change at spatial multiple scales. The QRB represents a typical
watershed on the Yangtze River Delta (YRD), one of the most developed
and highly populated regions in China (Hao et al., 2018). The region is
facing serious environmental challenges such as flood risk and water
quality deterioration (Zhou et al., 2013), local climate change such as
Urban Heat Islands (UHIs) (Hao et al., 2015a) and Urban Dry Islands
(UDI) (Hao et al., 2018) and global warming (Gu et al., 2011). Un-
derstanding the impacts of climate change and LULCC on watershed
hydrology is essential to mitigating global climate change and local
LULCC, and most importantly offering scientific principles to guide
watershed ecosystem restoration efforts (Zhou et al., 2013; Chien et al.,
2013).

We hypothesized that the dominated driving factors for ET change
varied across spatial scales, and LULCC was the main cause of ET re-
duction in the study basin. The overall goal of this modelling study was
to understand the individual and combined impacts of LULCC and cli-
mate change on ecohydrological processes, ET in particular. The spe-
cific objectives were: (1) to modify, calibrate, and validate an improved
SWAT model for estimating ET at different temporal and spatial scales,
(2) to examine the response of ET to disturbance by land-cover type,
and (3) to quantify the individual contributions of climate and LULCC
to ET variations over a 14-year period at a watershed scale.

2. Materials and methods

2.1. Study area

The QRB, one of the tributaries of the Yangtze River, covers most of
the administrative area of Nanjing City, the capital of Jiangsu Province
(118.39−119.21° E longitudes and 31.30−32.10° N latitudes) (Fig. 1).
As a highly human-impacted watershed, the QRB has two main flow
outlets, Wuding and Inner Qinhuai Sluice Gates. Flat topography
characterizes most part of the watershed except the northeast. The
basin has an area of approximately 2,631 km2 with an elevation ranging
from 0 to 410 m. The study region is dominated by the East Asia
summer monsoon climate (Gu et al., 2011), with an average annual
temperature and total precipitation of 15.4 °C and 1116 mm, respec-
tively. The QRB has experienced global warming with mean air tem-
perature increased at a rate of 0.44 °C per decade, and thus an in-
creasing evaporative potential during the past two decades (Hao et al.,
2015a). Nearly 75% of the annual precipitation falls during April to
October as the rainy season. The dominant land cover type in this
watershed is rice paddy (RICE), followed by urban area (URHD), water
body (WATR), forests (FRST) and dry agricultural land (AGRC). The
QRB has experienced a rapid urbanization since 2002 (Hao et al.,
2015a) at the expense of rice paddies and other land types (Du et al.,
2013). During the past decade, the area of rice paddies has significantly
reduced by 7.6%, followed by agricultural land (2.4%), water body
(0.6%), and forests (0.5%), in contrast to the notable increase in urban
area of 11.3%.

2.2. SWAT model

The SWAT model was selected in this study for assessing the hy-
drological impacts of LULCC and climate change and variability on
watershed (QRB) ET for three different periods (2000–2003,
2004–2008, 2009–2013). Our previous empirical studies indicated that
the QRB had been significantly impacted by urbanization and climate
change in both hydrology (i.e., streamflow and ET) and local meteor-
ology (Hao et al., 2015a; Qin et al., 2019; Hao et al., 2018).

The SWAT model is a semi-distributed continuous hydrologic model
operated in a Geographic Information System (GIS) environment
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(Arnold et al., 2012). The entire watershed simulation domain is di-
vided into sub-basins, which are further subdivided into uniform hy-
drological response units (HRUs) with homogeneous soil, land-cover,
and slope characteristics. About 300 HRUs in 54 sub-basins were used
in the present study. Simulations of hydrological processes such as ET
and percolation occur at the HRUs level (Arnold et al., 2012; Gassman
et al., 2007). The model parameters are distributed across HRUs and are
finalized during model calibration and validation by comparing simu-
lated and measured hydrologic fluxes including both streamflow and
ET. In this study, we use the SCS method and Penman-Monteith equa-
tion for estimating surface runoff and PET, respectively. For estimating
total actual ET at the HRUs level, SWAT first calculates plant canopy
interception, then simulates the maximum amount of transpiration and
soil evaporation, and computes the actual soil evaporation last.

2.3. Improved SWAT model

The original SWAT model treats a rice paddy as an impounded area
(Xie and Cui, 2011). In this study, to represent flow patterns of a rice
paddy landscape, we modified the SWAT wetland pothole module that
is originally introduced by Sakaguchi et al. (2014) and Xie and Cui
(2011). Additional modifications to SWAT include algorithms for esti-
mating wetland surface area, irrigation schedules, and the evaporation
process of pothole. (Fig. 2) (More supporting information see Appendix
A, Figs. A.1–A.3).

2.3.1. Calculation of the surface area of rice paddy field
The surface area (SA) of the original pothole module is computed as

a cone-shaped wetland which varies with the volume of water stored in
the impoundment. The improved rice paddy model assumes that the
surface area of rice paddy in the pothole module as a cuboid shape
according to Sakaguchi et al. (2014). Thus, the surface area of water
would not decrease with the decrease of water level. The equation of
the surface area has been changed as follows:

= =SA A SA AHRU HRU (1)

where AHRU is the surface area of the HRU (ha) dominated by rice

paddies.

2.3.2. Irrigation algorithms
The actual amount of irrigation is difficult to estimate since the

timing of irrigation operations is often irregular, thus the original
pothole module assumes enough water for irrigation without con-
sidering unused water. Therefore, this algorithm does not reflect the
reality of the irrigation system in the study area. When the water sto-
rage in paddy field reaches its maximum after irrigation, the irrigation
water becomes overflow. Therefore, this study assumes that the daily
water need of irrigation by a rice paddy is equal to the rate of flow in
the irrigation canal. The improved model for rice paddy field takes
unused water into account by adding an irrigation formula preventing
irrigation water overflowing the modelled impoundment:

+ > =V irr V irr V Vif ,pot mxpot pot mxpot pot (2)

+ =ifV irr V irr irrpot mxpot pot (3)

where irrpot is the amount of water added to the impoundment on a
given day (m3); Vpot is the current volume of water stored in the im-
poundment (m3); Vmxpot is the maximum volume of water which can be
stored in the impoundment (m3); irr is the amount of water added
through an irrigation operation on a given day (m3).

Accordingly, the drainage process has been modified as:

+ > = +
+

V irr V Q Q
V irr V

A
if ,

( )
(10 )pot mxpot out surf

pot mxpot

HRU (4)

+ =ifV irr V Q Qpot mxpot out surf (5)

where Qout is the volume of water flowing out of a HRU to the main
channel on a given day (mm); Qsurf is the volume of the surface runoff
released from a HRU to the main channel which does not include the
irrigation water overflow from the impoundment on a given day (mm).

2.3.3. Water evaporation algorithms
For modelling ET for rice paddies, we adopted findings from

Miyazaki et al. (2005) and Sakaguchi et al. (2014) that water eva-
poration is limited when leaf area index (LAI) of rice crop exceeds 4.0.

Fig. 1. Topography, river network, hydrometerological measurements in the Qinhuai River Basin (QRB) located in the humid southern China.
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In this case, more than 90% of the total ET is transpiration for rice
paddy. This model modification ensures that rice transpiration depends
on LAI and dominates ET. In addition, the evaporation coefficient η was
introduced to estimate actual water evaporation based on PET. Thus,
the ET equations were modified as:

< = <

= <

ifLAI QUOTE4, V 10 (1 LAI/4) PET SA(ifLAI 4)V

10 (1 LAI/4) PET SA(ifLAI 4)
evap evap

(6)

= =ifLAI QUOTE4, V 0(ifLAI 4)V 0(ifLAI 4)evap evap (7)

where Vevap is the volume of water removed from the water body by
evaporation per day (m3); PET is the daily potential evapotranspiration
(mm). In this study, we set η as 0.6 based on the evaporation process of
the rice paddies (Neitsch et al., 2002).

2.4. Model input data

The data required to run SWAT consist of digital elevation model
(DEM), land-cover, soil, and daily meteorological data (e.g. precipita-
tion, relative air humidity, maximum and minimum temperature, solar
radiation, and near surface wind speed). The 30 m × 30 m resolution
DEM was obtained from the International Scientific Data Platform of
the Chinese Academy of Sciences. We examined land use data for three
distinct periods of 2000, 2004 and 2011. These spatial data were de-
rived from Landsat Thematic Mapper (TM) and ETM + images with a
30 m × 30 m pixel resolution (http://glovis.usgs.gov/) (Fig. 3). The
digital soil data at a 1:5,000,000 scale from the Harmonized World Soil
Database (HWSD) updated by the Food and Agriculture Organization
(FAO) of the United Nations and the International Institute for Applied
Systems Analysis (IIASA) were used to extract soil information. The
daily meteorological data for 27 years (1987–2013) were acquired from
weather stations in/or near QRB and were interpolated to the DEM
grids.

2.5. Parametrization for reservoir and irrigation management

SWAT provides several options related to water management
practices that allow users to choose based on data availability such as
irrigation, tile drainage, and consumptive water use. Water for irriga-
tion in a HRU is obtained from one of the five main water sources: river
reach, reservoir, shallow aquifer, deep aquifer, or a source outside the

watershed. Reservoirs are impoundments located on the main channel
network of the watershed. In this study, we added five reservoirs based
on the reservoir information obtained from Nanjing Water Resources
Bureau (Table 1). For rice paddy phonology, we set Jun 16th as the
beginning day of the growing season, October 20th as the harvest day.
In addition, November 2nd was set as the planting day, and May 20th as
the harvest day of winter wheat rotation in the following year. The
parameters for rice paddy irrigation operations were derived from local
knowledge (Hao et al., 2015b; Huang et al., 2015; Wang et al., 2013;
Wang et al., 2006), and the irrigation dates are listed in Table 2 (more
information see Appendix B Table B.1).

2.6. Model performance evaluation and uncertainty analysis

Actual ET rates for a rice paddy field were measured by a weighing
lysimeter at a research site with an area of 300 km2 managed by the
Agro-meteorological Experimental Station (32.21° N, 118.71° E) on the
Nanjing University of Information Science and Technology (NUIST)
campus, about 10 km from the QRB. The measurement period spanned
from July 1st to November 2ndin 2007. The weather conditions at the
NUIST station are similar to the Lishui Research Station dominated by
rice paddy fields in the QRB. Therefore, the measured lysimeter ET
rates were used to validate the simulated ET for rice paddy land covers.
The precision of the ET measurements was estimated to be
0.1 mm day−1. The effective ET area of the lysimeter was 4.0 m2.
Measured ET data in heavy rainy days were removed from the data sets
due to potential estimation errors of the lysimeter method.

We used the Sequential Uncertainty Fitting Algorithm (SUFI-2)
(Abbaspour et al., 2007) based on SWAT-CUP for parameter calibration
and uncertainty analysis. A total of 10 parameters were chosen for
calibration according to the sensitivity analysis method. Output un-
certainty was calculated by the 95% prediction uncertainty (95PPU),
which was defined as the interval between 2.5% and 97.5% levels of the
cumulative distribution of simulated results (Zhao et al., 2015). The
parameter uncertainty is one of the major sources of simulation un-
certainty in modelling studies (Zhang et al., 2014). Two variables, p-
factor and r-factor, were applied for defining parameter uncertainty.
The p-factor was the percentage of observed data enveloped by the
95PPU, and r-factor indicated simulation accuracy. Theoretically, the p-
factor ranges from 0 to 1 and r-factor ranges from 0 to infinity. When
the p-factor is close to 0.7 and r-factor around 1 for discharge,

Fig. 2. Schematic diagram of the water balance in an improved paddy module (Ecan, Etran, Esoil, and Epot denote the evaporation from free water in canopies, the crop
transpiration, soil water, and impounded water surface of rice paddy, respectively).
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simulation outcomes are close to satisfactions. The years of 1987–1989
were selected as a warm-up period before the calibration period
(1990–1994), and 1995–1999 was set as model validation. The land
cover maps of 2000, 2004 and 2011 were used to represent three time
periods of 2000–2003, 2004–2008 and 2009–2013 respectively.

The stream flow data were compiled from hydrologic records for the
Wuding Sluice Gate hydrological station, which controlled the outflows
from the Qinhuai River and back flows from the Yangtze River (Fig. 1).
The monthly stream-flow data (1990–1999) used for model calibration
and validation were the sum of daily flow measured at the Wuding
Sluice Gate Station. The monthly data preprocessing and quality control
were carried out by the local Jiangsu Bureau of Hydrology and Water

Resources.
We applied three criteria to evaluate the model’s performance in

simulating streamflow: Nash-Sutcliffe model efficiency (NSE) (Nash &
Sutcliffe, 1970; Moriasi et al., 2007), percent bias (PBIAS) (Gupta et al.,
1999) and coefficient of determination (R2) (Immerzeel et al., 2008)
(see Appendix C). Values for R2 range from 0 to 1, with 1 indicating a
perfect linear relationship, and 0 indicating no linear relationship.
Values for NSE between 0 and 1 are generally acceptable values for
SWAT models (Moriasi et al., 2007). The optimal PBIAS value is 0, with
lower values indicating accurate model simulation (Gupta et al., 1999;
Paul et al., 2017).

2.7. Separating contributions of climate and LULCC to ET

We used the method developed by Eum et al. (2016) to estimate the
individual contributions of LULCC and climate variability to the
changes in ET. The period 1987–1999 was selected as the reference
period with climate data from 1987 to 1999. Changes in ET were
evaluated for three time periods of 2000–2003, 2004–2008 and
2009–2013 with climate data from 2000 to 2013 and LULCC re-
presenting three periods in 2000, 2004 and 2011, respectively. The
effects of both LULCC and climate variability were determined from
modelling results when changing LULCC from 2000 (simulated ET of
2000–2003) to 2004 (simulated ET of 2004–2008) then to 2011 (si-
mulated ET of 2009–2011) with the entire weather data series
(2000–2013). The individual contributions of LULCC or climate are

Fig. 3. Land covers and land uses of the Qinhuai River Basin (QRB) in 2000 and 2011.

Table 1
SWAT model parameters for five reservoirs in the Qinhuai River Basin (QRB).*

Reservoir RES_ES1 RES_EVOL2 RES_PSA3 RES_PVOL4 RES_VOL5 RES_RR6

Beishan 188 5824 78 2601 192 250
Jurong 108 2002 64 1202 110 108
Chishanhu 719 6168 148 504 100 120
Fangbian 119 3106 74 2084 172 97
Zhongshan 81 2099 53 1318 137 95

* Note: 1RES_ESA is reservoir surface area as determiend by water level at the emergency spillway (ha).
2 RES_EVOL is volume of water needed to fill the reservoir to the emergency spillway (104 m3).
3 RES_PSA is reservoir surface area as determiend the principal spillway (ha).
4 RES_PVOL is volume of water needed to fill the reservoir to the principal spillway (104 m3).
5 RES_VOL is initial reservoir volume (104 m3).
6 RES_RR is average daily principal spillway release rate (m3 s−1).

Table 2
SWAT model irrigation management parameters for rice paddy (RICE) in the
Qinhuai River Basin (QRB).*

Crop Starting Date IRR_AMT1 IRR_EFM2 IRR_SQ3 FLOWMIN4 DIVMAX5

Rice Jun 17th 20 0.75 0.1 100 150

* Note: Irrigation management is set as auto-irrigation operation in SWAT,
and water for irrigation to an HRU is from rivers.

1 IRR_AMT is the depth of irrigation water applied on an HRU (mm).
2 IRR_EFM is the irrigation efficiency.
3 IRR_SQ is the surface runoff ratio.
4 FLOWMIN is the minimum in-stream flow for irrigation diversion (m3 s−1).
5 DIVMAX is the maximum daily irrigation diversion from the reach (mm).
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calculated by computing deviation of accumulated ET from the re-
ference of LULCC or climate. Contribution of climate variability (Ec)
during 2000–2013 was derived from ET values modelled by using fixed
LULCC of 2000. Contribution of LULCC (El) represents ET derivation
from the reference climate period (1987–1999). The accumulated ET
deviation resulting from LULCC (Eal), climate variability (Eac), and
combined effects of climate change and LULCC (Eacl) were calculated
as:

= =E (t) E(t) Ē E (t) E(t) Ēcl r cl r (8)

= =E (t) E (t) Ē E (t) E (t) Ēc n r c n r (9)

= =E (t) E (t) E (t)E (t) E (t) E (t)l cl c l cl c (10)

=
=

E E t( )acl
t

cl
2003

2013

(11)

=
=

E E t( )ac
t

c
2003

2013

(12)

=
=

E E t( )al
t

l
2003

2013

(13)

where Em(t) represent modelled annual ET rate at year t (t = 2003,
2004, …0.2013) using actual climate and LULC of the three re-
presentative periods. In particular, Em(t) rates in 2003 were estimated
using LULCC of 2000 while Em(t) rates for 2004–2008 and 2009–2013
were simulated with LULCC of 2004 and 2011, respectively; Ēr is the
mean ET for the reference period of 1990–2002 with LULCC set as year
2000 and climate of the reference period; Ecl(t) represents the combined
ET effects of climate and LULCC for year t. En(t) is modelled annual ET
for year t during 2003–2013 with a fixed LULCC set as 2000. Therefore,
Ec (t) represents the sole effects of climate on ET for year t. Eacl, Eac, and
Eal, represents the accumulated effects of combined climate and land
use change, accumulated effects of climate alone, and accumulated
effects of land use alone by year t (t = 2003–2013), respectively.

The relative contributions of LULCC, Rl(t), and climate variability,
Rc(t), at year t were calculated as:

=
+

R t E t
E t E t

( ) | ( )|
| ( )| | ( )|l

l

l c (14)

=
+

=
+

R (t) |E (t)|
|E (t)| |E (t)|

R (t) |E (t)|
|E (t)| |E (t)|c

c

l c
c

c

l c (15)

3. Results

3.1. Sensitivity analysis

Five iterations were used in model calibration to match simulated
daily streamflow with measured at Wuding Sluice Gate, and each
iteration was run for 500 times. The ten most sensitive parameters, as
ranked according to model sensitivity from high to low, were identified
(Table 3). In this study, the value of p-factor that represents the per-
centage of observed streamflow falling within the 95PPU of the simu-
lated values, was 0.78 in the calibration period (1990–1994). In the
meantime, the r-factor is 1.07, implying that the model results are ac-
ceptable (Abbaspour et al., 2007).

3.2. Model calibration and validation with measured streamflow and ET

When the original SWAT model was first tested, negative correla-
tions between the observed and simulated streamflow were found,
suggesting poor model performance of the default model. NSE values
were lower than 0 both in 1990–1994 (NSE = −3.28) and 1995–1999
(NSE = −8.42), and the simulated value were much higher than the
observations (Fig. 4). However, the improved SWAT model showed

much better performance after model calibration and validation. Both
NSE and R2 exceeded 0.8 (NSE = 0.86, R2 = 0.88), and PBIAS is less
than 5% (−1.5%) on calibration period (1990–1994). As for validation
period (1995–1999), NSE and R2 for monthly streamflow simulation
were 0.65 and 0.71, respectively, while PBIAS was only 0.07%. Fur-
thermore, the simulated mean annual streamflow was 15.8 (m3 s−1)
and 13.3 (m3 s−1) during calibration and validation period, respec-
tively. The simulated high flows were compared well with measure-
ments during spring and summer periods except in 1990 and 1994.
Underestimates were noticed during winter and overestimates were
obvious during autumn months except in 1993. Overall, the model
performance indicators and simulated streamflow patterns suggested
that the improved model performance was suitable for simulating major
components of water balance for this watershed.

The daily measured and modelled ET rates showed a good agree-
ment as determined by a regression model with a slope of 0.75 and a
coefficient of determination (R2) of 0.75 (Fig. 5). The average of the ET
measurement is 4.0 mm during the observation period from May 2007
to November 2007. The estimated ET is 3.8 mm, and its relative error
is − 5.8%, on average. This was an improvement when compared with
the original modelling results (R2 = 0.49, negative slope).

3.3. Monthly variations and temporal trend of PET, VPD, and ET at
watershed scale

At the monthly scale, modelled ET and PET as well as vapour
pressure deficit (VPD) showed consistent variations (Fig. 6). The pat-
tern was mainly attributed to the combination of temperature and
precipitation variations. The ET and PET rates peaked in August and
July due to high precipitation and air temperature during this period.
Relative low values of ET and PET occurred in June were mostly at-
tributed to increased relative humidity in the plum rainy season lasting
for about 30–40 days from the end of May to early July. In general,
variations of ET, PET and VPD follow similar seasonal patterns at the
monthly scale.

The slopes of the ET trend lines for the growing season, Spring,
Summer, Autumn, and Winter, were all negative with values of −2.68,
−0.36, −1.01, −2.03, and −1.30, respectively. ET rates decreased in
all seasons, and annual ET reduction mostly occurred during the
growing season (Fig. 7a). However, the slopes of the trend regression
lines for PET had all positive values of 5.50, 4.47, 4.22, 2.32, and 1.57

Table 3
Key SWAT model parameters and fitted values.*

Rank Parameter Variation Range Fitted value

1 CN2 Absolute −30 to 0 −24
2 ALPHA_BF Absolute 0 to 0.002 0.001
3 ESCO Replace 0.01 to 1 0.043
4 SOL_AWC Relative −0.03 to 1 0.98
5 SOL_Z Absolute −17 to 80 47.9
6 EPCO Replace 0.01 to 1 0.78
7 GWQMN Replace 2000 to 4500 3345
8 REVAPMN Replace 0 to 450 35
9 GW_DELAY Replace 0 to 500 1
10 CANMX Replace 0 to 100 85

* Note: Relative means of an existing parameter value are multiplied by the
(1 + a given value), Replace means the default parameter is replaced by the
given value, and Absolute means the given parameter value is added to the
existing parameter value. CN2 is SCS runoff curve number for moisture con-
dition II. ALPHA_BF is baseflow alpha factor characterizes the groundwater
recession curve. ESCO is soil evaporation compensation coefficient. SOL_AWC is
available water capacity of the soil layer (mm). SOL_Z is depth from soil surface
to bottom of layer (mm). EPCO is plant uptake compensation factor. GWQMN is
threshold depth of water in the shallow aquifer required for return flow to occur
(mm). REVAPMN is threshold depth of water in the shallow aquifer for “revap”
to occur (mm). GW_DELAY is groundwater delay. CANMX is Maximum canopy
storage.
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for the growing season, Spring, Summer, Autumn, and Winter, respec-
tively. PET increased significantly in all seasons, especially the growing
season, Spring, and Summer. VPD showed an increasing trend during

the 14-year study period, consistent with PET trend, but with an op-
posite trend of ET.

3.4. Annual trend of ET at watershed scale and contributions of LULCC

Overall, simulated annual actual ET at the watershed scale de-
creased from 2000 to 2013. This was in contrary to simulated PET. PET
increased due to an increase in air temperature (Fig. 7b). Annual ET
rates decreased from 700 mm in 2000 to 627 mm in 2004 (3.4% re-
duction), and then dropped to a minimum value of 524 mm in 2011
(19.4% reduction), while annual watershed-level PET increased from
942 mm to 1034 mm (9.6% increase) and further jumped to 1164 mm
(20.4% increase) subsequently. Meanwhile, precipitation (P) increased
from 2000 to 2010, contrary to the observably decrease trend of ET
during the same period. Runoff coefficient of Q/P increased from 0.40
(2000) to 0.52 (2013), while the ratio of ET/P reduced by 14%
(2000–2011).

Rice paddy field (RICE) contributed most to watershed ET volume
(m3), ranging from 46% up to 56%, followed by agricultural land
(AGRC) 27−31%) (Fig. 8). An obvious increasing trend of ET con-
tribution by urban lands (URHD, 9%) agreed with urban area expansion
that mainly involved land conversion from crop land especially rice
paddy (decreased by 6.8% in area), while forest (FRST) ET remained
unchanged owing to the small change (only 1.2%) in total area.

3.5. Contrasting trend of ET and PET by LULCC at field (HRU) level

HRUs with little changes in LULCC (Fig. 9) showed that ET rates in
agricultural land (AGRC), urban use (URHD), forest (FRST) and rice
paddy (RICE) increased by 7.3%, 12.9%, 26.4% and 12.5%, respec-
tively. The findings were consistent with the increasing trend of PET
due to global warming. PET with urban use was much higher than that
of other land cover types. Forests showed higher ET than other land
cover types, followed by rice paddy fields, and agricultural land, and ET
rates in urban areas were the lowest.

3.6. Relative contributions of climate change and LULCC to long term total
ET variations

Our previous study has identified a streamflow ‘break point’ of 2003
showing a dramatic increase in streamflow during 2003–2013 due to
LULCC (Hao et al., 2015a). Thus, the period of 2003–2013 was selected
to separate the contributions of LULCC and climate change to total ET
change. The accumulated contributions of LULCC (Eal) and climate
variability (Eac) to the simulated ET change appeared to be in opposite
directions (Fig. 10). The contribution of climate to change in ET was
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positive (29%), while the contribution of LULCC was negative (−50%).
Overall, the combined accumulated contributions of climate and LULCC
caused the annual ET to decrease by − 21% (Eacl) (Fig. 10). Dynamic
attribution analysis indicated that the negative contribution of LULCC
(Rl) to change in ET increased from 53% in 2000 to 61% in 2013 while
the positive contribution of climate variability (Rc) decreased from 47%
in 2000 to 39% in 2013. This demonstrated that land-cover change was
the main driver of change in watershed-level ET during the study period
(insert in Fig. 10).

4. Discussion

4.1. Impacts of climate change on PET, ET

Our study results were consistent with the literature regarding the
relationship among ET, PET, and climate warming for humid regions.
Because temperature and relative humidity are the two key factors ef-
fecting PET and ET variation (Yang, 2014; Mcleod et al., 2004; Yang
et al., 2014; Wang et al., 2016; Gong et al., 2006; Feng et al., 2017)
especially in humid areas (Feng et al., 2016; Liu et al., 2010), any rise in
air temperature is likely to increase PET. Our previous studies (Hao
et al., 2015a; Qin et al., 2019) and Gong et al. (2006) suggested that the
increase in PET is mainly due to the increase in air temperature or
global warming followed by the increase in VPD and decrease in re-
lative humidity (RH). VPD is an important factor determining ET pro-
cess by affecting canopy-level evaporation and leaf-level transpiration

(Wu et al., 2015; Silva et al., 2016). We showed that PET and VPD had
an upward tendency, contrary to the notable decreasing trend of actual
ET over the past 14 years. We also found that precipitation increased
during this period from 2000 to 2010. However, ET decreased at the
watershed level. The increasing trends of PET and precipitation in-
dicated that the decrease in ET trend was not likely to be caused by
climate change at the watershed scale.

4.2. Impacts of Land-Use and Land-Cover change (LULCC) on ET

The relative contributions of LULCC and climate (Fig. 10) showed
that watershed-level ET reduction was not only influenced by climate
change, but also was strongly affected by LULCC. This was consistent
with our previous streamflow attribution analysis based on two em-
pirical models in the same watershed (Hao et al., 2015a). We found that
LULCC contributed about 85% of the observed increase in streamflow
and climate variability of precipitation contributed about only 15%.
Therefore, the current method is acceptable to separate the hydro-
logical impacts of climate variability from land-use/land-cover change
with the aid of the SWAT model. The results support our hypothesis that
land-use/land-cover change is the main driver to ET variations.

4.3. Factors affecting change in ET at different spatial scales

Most previous studies on the QRB focused on temporal variations in
streamflow (Du et al., 2012; Du et al., 2013; Liu et al., 2012), and re-
cently on ET (Hao et al., 2015a; Zheng et al., 2020) at the watershed
level. The current study focused on the spatial distribution of ET of
different land-cover types. In our study, at HRU scale, ET of all land-
cover types is increasing significantly, especially for forest and rice
paddy field (Fig. 9). The ET increase patterns were similar to increasing
PET which was mainly influenced by increasing air temperature, VPD
and RH from 2000 to 2013. Among all land covers, ET rates from forests
were highest due to their high canopy interception and transpiration
rates. Therefore, ET variations were dominated by meteorological fac-
tors and plant types at the HRU scale. However, for watershed scale, the
volume of ET for rice paddy and agricultural lands were decreasing,
causing overall decrease in ET at the watershed level. Therefore, LULCC
plays a critical role in affecting the hydrology at the watershed scale.

4.4. Impacts of LULCC on streamflow as a result of reduction of ET

Numerous studies show that urbanization leads to increase in water
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yield as a result of increase in direct runoff from impervious surfaces
(Oudin et al., 2018; Li et al., 2020) and decrease in ET (Boggs and Sun,
2011) due to reduction in canopy interception, lower soil percolation
rate and soil moisture storage capacity (Locatelli et al., 2017; Xu et al.,
2017; Barron et al, 2013; Zhou et al., 2013; Nguyen and Kappas, 2015;
Lin et al., 2015; Baker and Miller, 2013; Nie et al.,2011; Zhu and Li,
2014). Our simulated results support these findings. LULCC during
2000–2013 in the QRB increased annual total streamflow when calcu-
lated as Q = P − ET with a decrease in ET and a slight increase in P.
The reduction of watershed-level annual ET is mostly resulted from
converting rice paddy to urban uses. The rice paddy represents the
largest area of the whole watershed and contributes most to ET

comparing with other land-cover types (Fig. 8). The relatively high
level of R2 and low p value in growing season (Fig. 7) also show
agreement with the fact that reduced ET in rice paddy is the main
contributor to total ET decrease. Du et al. (2012) reported that annual
runoff as well as flood volume would increase with increase in im-
pervious area by urbanization in the QRB. Other studies (Xu et al.,
2017; Zhou et al., 2013) pointed out that land-cover change would alter
soil property which dramatically change the soil moisture storage ca-
pacity and infiltration rate. Kim et al. (2014) applied the HSPF-Paddy
model in Bochung watershed of Korea and found that runoff depth and
ET from rice paddy field were higher than other land-cover types at-
tributed to amounts of water irrigation. Feng and Liu (2015) indicated

Fig. 9. Simulated annual ET and PET at the hydrological response units (HRUs) scale with little land cover change in the Qinhuai River Basin. (a) AGRC: agricultural
land, (b) URHD: urban use, (c) RICE: paddy rice, and (d) FRST: forest, (e) HRU ET with different land cover types.
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that soil moisture change is mainly controlled by land-cover types in
humid area of Poyang Lake Basin, China.

4.5. Implications of urbanization to watershed ecosystem services and
climate feedback

Paddy wetlands are the main land use type across the humid
southern China. Our study shows that LULCC, reduction of paddy rice
field due to urbanization in particular, alters the watershed hydro-
logical cycle. Such hydrologic changes have important implications to
flooding risks due to increase in storm runoff and water quality de-
gradation from sediment and urban runoff (Sun and Lockaby, 2012).
Because the water and energy is tightly coupled, reduction in wetlands
including rice paddies is likely to aggravate Urban Heat Island effect
(Zhou et al., 2013) and Urban Dry Island effect (Hao et al., 2018) in the
study region. Thus, paddy field not only provide abundant agricultural
resources, but also play a key role in local climate regulation, soil and
water conservation, water storage and flood regulation, groundwater
supply, water purification, and local and global geochemical cycle (e.g.,
Greenhouse Gas emission that depends in hydrology). The feedbacks of
the ecohydrological cycle to urbanization-associated land cover change
are particularly evident in subtropical humid regions such as southern
China that are dominated by water bodies and wetlands including rice
paddy fields or extensive wetlands and forests. However, the ecosystem
service functions of these artificial wetlands are being threatened by
massive urbanization in southern humid China (Tsai 2002; He et al.
2009).

In this study, the traditional watershed ecohydrological simulation
model (SWAT) was improved and adapted for the paddy field-domi-
nated basin. The present watershed-level study advances our under-
standing of the combined and individual impacts of land use/land cover
change and climate change on watershed ecohydrological processes at
multiple spatial scales. The process-based study at multiple scales offers
insight of hydrological response to urbanization and our findings have
important environmental implications for integrated watershed man-
agement (i.e., both climate and LULCC). The improved model provides
a better integrated method for ecosystem services assessment in the
highly urbanized regions in humid southern China and East Asia.

4.6. Uncertainties and limitations

Parameter uncertainty is one of the major sources resulting in the
hydrological simulation uncertainty (Zhao et al., 2015; Zhang et al.,
2014). Monthly streamflow during 1990–1999 from Wuding Sluice

Gate is the only data used for model calibration and validation, thus
leading to range of deviation in parameters for the subbasins. A lack of
the observed streamflow and ET in subbasins can result in bias in ca-
librated parameters. Studies by Xie and Cui (2011) have incorporated
with new paddy module in SWAT by introducing three critical water
depths designed for irrigation and drainage management during the
rice paddy growing period in China, indicating that simulated results
showed a good agreement with the measurements. However, the im-
proved irrigation algorithm of the pothole module is not able to com-
pletely represent actual irrigation process because the volume of irri-
gation varies with different growth stage of rice paddy and is affected
by local artificial irrigation plans. In addition, the modified model does
not account for the infiltration as affected by soil types (Kang et al.,
2006) and ground water level of the drainage channel (Sakaguchi et al.,
2014). Combining with physically based ground water models with
surface water processes will likely to improve the SWAT model further
for application in a humid region (Kim et al., 2008). Similar to previous
work (Sakaguchi et al., 2014), our study provides critical information
and strategies for improving rice paddy module for understanding hy-
drological process in a rice paddy dominated region. The improved
SWAT model still needs to be evaluated in other watersheds for ET in
similar landscape in the future when field data (such as FLUXNET) (Liu
et al., 2017b) become available at different spatial scales. The impacts
of shallow groundwater on ET and streamflow should be explicitly
modeled in future studies. This is important for humid regions where ET
is closely couple with surface and groundwater systems, and wetland
dynamics (Lu et al., 2009; Dai et al., 2010).

5. Conclusions

We quantified the response of ET to LULCC associated with rapid
urbanization and climate change over a 14-year period in the Qinhuai
River Basin, southern China. We conclude that the driving factors to ET
change vary with spatial scale. Conversion of cropland to urban use
directly results in significant ET reduction and increase in runoff at a
watershed scale in spite of a warming climate and rise of water eva-
poration demand.

Replacing the original wetland and irrigation algorithms with new
models describing the hydrological processes for rice paddy greatly
improved SWAT model performance. Integrating multiple methods and
techniques of ecohydrological model, ground observation and remote
sensing to study the effects of land-use/land-cover change on ecological
processes (e.g. ET) is essential and beneficial for explaining the me-
chanisms regulating of hydrological processes in a rapidly urbanizing
watershed.

To mitigate the environmental effects of urbanization such as
flooding, water quality degradation, Urban Heat Island, and Urban Dry
Island in southern China, future impacts from changes in global climate
and land use change must be managed together along with ecosystem
conservation measures. The improved SWAT provides a useful model-
ling tool for ecosystem service impact assessment and land planning in
the rapidly urbanizing regions in southern China.
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