Heartland virus (HRTV) is an emerging pathogenic phlebovirus first identified in the United States in 2009 and now reported in 15 states. Nymphal lone star ticks (Amblyomma americanum) are considered the primary vectors of HRTV, and a variety of domestic and endemic mammalian species are potential amplification hosts of this virus. Although A. americanum ticks are well-established throughout the eastern, southeastern, and midwestern United States, their range is expanding northward and westward, most likely because of increased host availability and abundance, changes in environmental and climatic conditions, and adaptive genetic variation (Figure, panel A). We tested for HRTV in A. americanum ticks collected in Alabama, USA, a state within the range of this vector where HRTV has not been documented previously from ticks.

From June 1, 2018, through August 31, 2018, we collected ticks as previously described (5) in the William B. Bankhead National Forest, Alabama (34.2270°N, 87.3461°W; Figure, panel B). In preparation for pathogen screening, we separated ticks into pools. Nymph tick pools ranged from 1 to 5 tick(s) of the same species per pool. We screened adult ticks individually (i.e., 1 adult tick per pool) (Appendix Table, https://wwwnc.cdc.gov/EID/article/26/8/19-0494-App1.pdf). We did not include larvae in pathogen screening. We used molecular methods to extract viral RNA and detect the small (S) segment of the HRTV genome using the HRTV-4 primer and probe set (6) in tick pools (Appendix Table). We sequenced HRTV-4–positive samples using the Ion Torrent Personal Genomic Machine system (Life Technologies, https://www.thermofisher.com) at the Centers for Disease Control and Prevention (CDC; Fort Collins, CO, USA) as described previously (7). We obtained sequences of the HTRV S segment of other HRTV samples and strains from the GenBank database, and aligned sequences using the MUSCLE alignment tool (https://www.ebi.ac.uk/Tools/msa/muscle) in MEGA software (8). We also included a closely related severe fever with thrombocytopenia syndrome virus isolate from the GenBank database as an outgroup for this analysis. We used a maximum-likelihood tree approach with 1,000 bootstrap replications to generate the genetic relationships between the Alabama samples and the other HRTV samples available through the GenBank database.

We collected 964 ticks, of which 921 were A. americanum (872 nymphs, 22 adult males, and 27 adult females) and 43 were Dermacentor variabilis (20 adult males and 23 adult females). We tested

Heartland Virus in Lone Star Ticks, Alabama, USA

Author affiliations: Tennessee State University, Nashville, Tennessee, USA (B.C. Newman, W.B. Sutton, A. Taheri); Tennessee Department of Health, Nashville (A.C. Moncayo, T.C. Moore); Centers for Disease Control and Prevention, Fort Collins, Colorado, USA (H.R. Hughes); US Department of Agriculture, Huntsville, Alabama, USA (C.J. Schweitzer); Alabama Agricultural and Mechanical University, Huntsville (Y. Wang)

DOI: https://doi.org/10.3201/eid2608.200494

We detected Heartland virus (HRTV) in lone star nymphs collected in 2018 in northern Alabama, USA. Real-time reverse transcription PCR selective for the small segment of the HRTV genome and confirmatory sequencing of positive samples showed high identity with HRTV strains sequenced from Tennessee and Missouri.
the ticks in 337 screened tick pools (Appendix Table). We amplified HRTV-4 from 5 pools that each contained 4 *A. americanum* nymphs. Therefore, the bias-corrected maximum-likelihood estimate of the infection rate (9) in questing *A. americanum* nymphs collected from the William B. Bankhead National Forest during 2018 was 0.58 (95% CI 0.21–1.27) and minimum infection rate (9) was 0.57 (95% CI 0.07–1.07) per 100 ticks screened on the basis of 235 nymph pools tested. To confirm results, we randomly selected homogenate from 3 of 5 HRTV-4–positive pools and submitted 3 individual RNA samples for sequencing at CDC. Sequencing RNA directly from tick homogenate confirmed HRTV in each of the 3 pools. Although we did not obtain whole-genome sequences, we identified partial coding sequences of all 3 HRTV segments in each pool. Maximum-likelihood phylogenetic inference of 730 nt of the S segment confirmed the BLAST analysis (https://blast.ncbi.nlm.nih.gov/Blast.cgi) and placed the generated HRTV S segment (submitted under GenBank accession no. MT052710) in a well-supported clade with HRTV strains previously described in Missouri and Tennessee (Appendix Figure).

Our findings of HRTV in *A. americanum* ticks in Alabama update knowledge of the virus’ distribution in the United States (Figure, panel A). Our findings also suggest *A. americanum* nymphs are the primary vectors of HRTV. As the geographic range of *A. americanum* continues to expand, we encourage enhanced surveillance and screening for HRTV to provide a more accurate and up-to-date understanding of where this tickborne virus probably occurs in the United States. Treatment for HRTV infection is limited to supportive care only; clinical data from the southeastern United States show that Heartland virus has a 10% death rate (10). Surveillance of HRTV in tick vector species is necessary to gain a comprehensive understanding of the environmental determinants that may put humans at risk for encountering the vector and to identify the geographic host range (both current and potential) of this emerging pathogen in the United States.

Acknowledgments

We thank Allison Cochran for forest stand access and logistical support at the William B. Bankhead National Forest and Stuart Robertson and Alexander Binney for field sampling assistance. We also thank Amy Lambert for enabling collaboration and sample sequencing for this research, Javier Monzón for permission to recreate his *A. americanum* range map, and Suzanne Wade for help creating the maps.

This study was supported by the US Department of Agriculture, National Institute of Food and Agriculture 1890 Institution Teaching, Research and Extension Capacity Building Grants Program.
Visceral Leishmaniasis Caused by Leishmania donovani Zymodeme MON-37, Western Ghats, India

Prasanta Saini, N. Pradeep Kumar, P.M. Ajithlal, Ashwathy Joji, K.R. Rajesh, K.J. Reena, Ashwani Kumar

Author affiliations: Indian Council of Medical Research–Vector Control Research Centre (Field Station), Kottayam, India (P. Saini, N.P. Kumar, P.M. Ajithlal, A. Joji); Government Medical College, Thrissur, India (K.R. Rajesh); District Medical Officer, Thrissur (K.J. Reena); Indian Council of Medical Research–Vector Control Research Centre, Puducherry, India (A. Kumar)

DOI: https://doi.org/10.3201/eid2608.200557

During 2015–2019, we recorded 10 patients with indigenous cases of visceral leishmaniasis caused by Leishmania donovani in Western Ghats, a region in India to which visceral leishmaniasis is not endemic. The parasite involved in 4 of these infections was of the MON-37 zymodeme strain, which normally causes cutaneous leishmaniasis in this region.

Leishmaniasis is a neglected tropical disease, caused by Leishmania parasites and transmitted by phlebotomine sand flies, which manifests in 3 primary clinical forms: visceral (VL), also known as kala-azar; cutaneous (CL); and mucocutaneous (MC). The lack of continuous active surveillance, indefinite array of symptoms, resemblance to other infections, and diverse clinical manifestations may lead to misdiagnosis of this disease, especially in areas to which it is not endemic. Despite the reduction in VL reported by the National Kala-azar Elimination Programme, emergence or resurgence is being recorded in different regions of India (3,4). During 2003, two indigenous cases of VL were reported from Kerala (5). We report the occurrence of 10 additional indigenous cases of VL from the foothills of the Western Ghats in Kerala during March 2015–October 2019 (Figure). Ethics clearance for this study was obtained from the Indian Council of Medical Research–Vector Control Research Centre (approval no. IHEC-0119/R/M).

The patients exhibited clinical symptoms of VL, such as hepatosplenomegaly, fever, malaise, pancytopenia, anemia, emaciation, and anorexia. They tested negative for other microbial infections, such as HIV and tuberculosis. Histopathologic examination of bone marrow aspirates detected Leishman Donovan bodies within the macrophages. Results of serologic diagnosis with a Kalazar Detect rK39 rapid test kit (InBiOS,
Heartland Virus in Lone Star Ticks, Alabama, USA

Appendix

Appendix Table. Total number of questing *Amblyomma americanum* and *Dermacentor variabilis* ticks collected at the William B. Bankhead National Forest, Alabama, June–August 2018

<table>
<thead>
<tr>
<th>Species</th>
<th>Stage, sex</th>
<th>No. screened</th>
<th>Pools screened and no. per pool</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>A. americanum</td>
<td>Adult, F</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Adult, M</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Nymph</td>
<td>872</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>921</td>
<td>50*</td>
</tr>
<tr>
<td>D. variabilis</td>
<td>Adult, F</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Adult, M</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>53</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>125</td>
</tr>
</tbody>
</table>

*Calculated as (no. per pool × pools screened) + column total of no. per pool by species.

Appendix Figure. Maximum-likelihood phylogenetic tree showing relationships among the Alabama Heartland virus strain, submitted under GenBank accession no. MT052710, with other Heartland virus strains and SFTSV strain available through the GenBank database. GenBank accession number,
collection location, and date are included for each viral strain. Country name is included for reference strain sequences. Numbers at the branch nodes represent bootstrap values as percentages of 1,000 replications. Scale bar indicates nucleotide substitutions per site. SFTSV, severe fever with thrombocytopenia syndrome virus.