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ARTICLE INFO ABSTRACT

Keywords: Land use and land cover (LULC) change is critical to hydrologic study as it affects surface runoff, sediment yield,
LULC and nutrient load from watersheds. Change in LULC is a continuous process in agricultural watersheds as per the

Seasonal variation growing and harvesting seasons. In this study, monthly LULC data layers were generated for the Big Sunflower

HydrologylA River Watershed (BSRW), Mississippi by classifying cloud free Landsat images from 2014 to 2018 and combining
:Vvsf; quality them according to the season in order to obtain dominant LULC data layers for spring, summer, and fall. About

60 % of the total land area in summer was cultivated land, whereas only 20 and 5 % of the total land area were
cultivated land during fall and spring, respectively. The rest of the total land area was constantly covered with
urban, forest, and water for the three seasons. The overall accuracy and kappa coefficient ranging from of 87 %
to 92 % and 0.8 to 0.90 was obtained during accuracy assessment of the seasonal LULC data layers. This sug-
gested that the seasonal data layers can reasonably be used in the Soil and Water Assessment Tool (SWAT) to
analyze the effects of LULC data variation on hydrology and water quality of BSRW. SWAT was calibrated and
validated for streamflow, sediment yield, and nutrient concentration using the summer LULC data layer and
those parameters were applied to the models using the spring and fall LULC data layers. SWAT output for runoff,
sediment yield, and nutrient load was found to be very sensitive to the change in LULC data layers. The average
amount of runoff and sediment yield was higher during the summer while total nitrogen and total phosphorous
yields were higher during the fall and spring, respectively. Agricultural operations are usually conducted during
the summer and fields are mostly barren during the spring and fall. The use of seasonal LULC data layers is very
beneficial to the scientific community as they can better explain the seasonal variation in hydrology and water
quality as compared to the annual cropland data layer that is available for a single season of a year.

1. Introduction

The modification of the earth’s surface caused by anthropogenic
activities such as urbanization, deforestation, and agricultural practices
or by natural phenomena such as floods, soil-erosion, landslides, and
climate change are referred as land use and land cover (LULC) change
(Abdulkareem et al., 2019; Hassan et al., 2016; Imran, 2019). Change in
LULC is responsible for alterations in ecosystems and environmental
processes at local, regional and global levels (Gebremicael et al., 2019;
Gyamfi et al., 2016). Changes in LULC have led to global warming, loss
of agricultural land, degradation of soil and water quality, expansion of
urban areas, etc. (Hassan et al., 2016).Thus, LULC change is a very
important topic of study as they relate to climate change, and changes
in urbanization, agriculture, forestry, geology, hydrology, and other
ecosystem services.
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Assessment of the effects of LULC change on hydrology and water
quality can provide critical inputs to the decision making during de-
velopment of watershed management and ecological restoration stra-
tegies (Gyamfi et al., 2016; Hassan et al., 2016; Nie et al., 2011). To
date, most of the research, on how LULC change affects hydrology and
water quality, has been focused on evaluating changes in channel dis-
charge in response to LULC change over a period of more than a decade
(Dinka and Klik, 2019; Ghaffari et al., 2010; Hernandez et al., 2000).
However, characteristics of agricultural land also vary seasonally, ac-
cording to cropping and harvesting operations conducted in the wa-
tershed, each year. LULC change for an agricultural watershed like the
Big Sunflower River watershed (BSRW) is a continuous process and the
hydrological behavior of the watershed varies significantly for different
seasons within a year. Thus, there is a need to study the changes in
hydrology and water quality within the watershed as a response to the
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Fig. 1. Location map of Big Sunflower River Watershed in Mississippi, its sub-watersheds, river network, weather stations, and USGS gauges.

seasonal variations in the LULC data. Spring, summer and fall seasons
were considered for the analysis of seasonal variation in the study area
while winter was not been considered in this study as the climate of
BSRW is characterized by very short duration of severe cold weather
(NOAA NCEIL 2020).

LULC change analysis is usually performed using remote sensing
data obtained using satellite imagery or aerial photographs. With the
development of remote sensing technologies and the availability of
satellite data such as Land remote-sensing satellite system (LANDSAT),
Moderate resolution imaging spectral-radiometer (MODIS), and other
spaceborne high resolution (HR) and very high resolution (VHR) sen-
sors, effective methods have been developed for the analysis of land
cover change (Goldblatt et al., 2018; Patel et al., 2015).

Much research has been conducted to quantify how climate and
land use change impact the hydrologic cycle and water quality. For
example, climate and land-use change impacts on streamflow, nitrogen,
and phosphorus were examined for a Canadian river basin where a
change in streamflow was due to climatic variability, whereas the
change in nutrient concentration was due to alteration in land-use (El-
Khoury et al., 2015). The hydrologic model, Soil and Water Assessment
Tool (SWAT), incorporating spatial and temporal dynamics of land use
and land cover, was effective in simulating streamflow, sediment and
nutrient yield for Bagmati River Basin, located in Kathmandu, Nepal
(Pokhrel, 2018). Impacts of LULC change in surface runoff, percolation,
baseflow and evapotranspiration (ET) were evaluated for the upper San
Pedro watershed located in Sonora, Mexico and southeastern Arizona,
USA providing quantitative information to the stakeholders for better
watershed management plan (Nie et al., 2011). A study conducted at
Lake Tahoe, a sub-alpine lake, located in the state of California and
Nevada, USA found that nutrients concentration varied according to the
seasonal alterations in groundwater recharge (Naranjo et al., 2019).

Although there are numerous studies related to hydrology and water
quality in response to long term LULC change, there is limited literature
to date that evaluates watershed processes based on dominant seasonal
LULC data (Dinka and Klik, 2019; Ghaffari et al., 2010; Hernandez
et al., 2000).

The objectives of this study are to (a) develop a LULC data layers for
spring, summer, and fall, (b) perform accuracy assessment of those data
layers, and (c) use them in the SWAT model to analyze sensitivity of
change in seasonal LULC data layers to streamflow, sediment yield, and
nutrient load.

2. Material and methods
2.1. Study area

The area selected for this study is the BSRW, a major sub-watershed
of the Yazoo River Basin, located within the lower part of Mississippi
River Alluvial Plain, also known as Mississippi Delta. It lies in the
northwestern part of Mississippi between the latitude of 32° 30°N to 34°
25°N and longitude of 91°10°E to 90°13°E. It covers an area of 10,500
km? and falls within ten different counties in Mississippi. Elevation of
the BSRW watershed ranges from nearly flat to undulating gentle slopes
from around 15-60 meters above mean sea level. It is an agricultural
watershed, with agricultural fields covering about 70 % of the total land
in BSRW. The major types of soil include Sharkey, Dowling, Forestdale,
Alligator and Dundee, all of which have higher percentages of clay and
silt. The location map of BSRW is shown in Fig. 1.

2.2. Landsat image

Landsat images from 2014 to 2018 were used to obtain seasonal
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Table 1
Representation of error matrix for a data layer classification having five dif-
ferent classes.

Classified data layer =~ Reference data Total
Class 1 Class2 Class3 Class4 Class 5
Class 1 Ci Ciz Ci3 Cia Cis Cin
Class 2 Ca Cao Cas Caq Cos Con
Class 3 Cay Cs Cs3 Caq Css Can
Class 4 Ca1 Ca2 Ca3 Caq Cas Can
Class 5 Cs1 Cs2 Cs3 Csa Css Csn
Total Ca1 Chz Chz Cns Cns Con

LULC data layers. Landsat satellites have been continuously providing
images of the earth’s land surface since 1972 (Goldblatt et al., 2018).
The temporal resolution of the Landsat is 16 days. The Landsat Eco-
system Disturbance Adaptive Processing System (LEDAPS), a National
Aeronautics and Space Administration (NASA) project, have processed
the Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper
Plus (ETM + ) imagery into surface reflectance scenes for North America
using atmospheric correction procedures that was originally developed
for the Moderate Resolution Imaging Spectroradiometer (MODIS) in-
struments (Masek et al., 2012, 2006). These surface reflectance scenes
are very helpful for the research on LULC since it does not have at-
mospheric scattering or absorption and is measured at ground level.
Cloud free Landsat 8 OLI Level-2 images, having higher image quality,
were used in this study. They are generated using the Land Surface
Reflectance Code (LaSRC) algorithm (Version 1.4.1), which makes use
of the coastal aerosol band to perform aerosol inversion tests, auxiliary
climate data from MODIS, and a radiative transfer model (Vermote
et al., 2016). Landsat Level-2 surface reflectance image produced by
USGS Landsat Science team are corrected for atmospheric errors such as
aerosol scattering and thin clouds, and can be used directly for research
purpose (USGS Landsat Missions, 2020). As the Landsat 8 data are
available from 2013 till date, the images from 2014 to 2018 for each
month were downloaded from USGS Global Visualization Viewer
(https://glovis.usgs.gov) (GLOVIS, 2020). The Landsat 8 OLI has nine
spectral bands including a panchromatic band. Band 1 to band 7 have a
resolution of 30 m while band 8, a panchromatic band has a resolution
on 15 m and band 9, a cirrus band has a resolution of 30 m. Bands 1-7
of the downloaded image were selected for this study. Those bands
were layer stacked using ArcGIS after which the two scenes of the image
for our watershed area were mosaicked and clipped using the wa-
tershed boundary.

2.3. LULC classification

Several parametric and non-parametric classification methods are
available for LULC classification. Maximum likelihood (ML) method is
one the extensively used parametric methods. It is based on Bayes’
Theorem and assumes a single normal distribution of the samples per
class in the feature space. Variances and covariances of the signatures
classes are used to assign each raster-cell a pre-defined class (Ritchie
et al., 2018). Different classes are characterized by the mean vector and
the covariance matrix with the assumption that the distribution of a
class sample is normal. Non-parametric classification methods like
support vector machine (SVM) and random forest (RF) do not make any
assumptions regarding data distribution and they do not require any
statistical parameters to identify classes. SVM is based on concept of
maximization and can be used for data with heterogeneous classes and
limited numbers of training samples (Melgani and Bruzzone, 2004).
Decision tree (DT) classification methods on the other hand divide a
dataset into smaller subsets through tests defined at each part in the
tree (Friedl and Brodley, 1997). DTs are further broken down into roots,
nodes, and leafs. DTs are open-source software and thus can be helpful
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in lowering the cost of classification. Random forest classifier (RF)
develops multiple decision trees in classifying images (Welch, 2019)
and each decision tree is generated from different subsets of the training
data. This method is comparatively accurate and can handle several
input variables at a time (Peng et al., 2019).

The Maximum Likelihood(ML) Classification algorithm available in
ArcGIS was applied to classify Landsat images to develop LULC data
layers for each month in this study because of its robust abilities and its
availability in almost every image processing software (Lu and Weng,
2007). These data layers were then combined to produce seasonal LULC
data layers. This method is one of the widely used supervised classifi-
cation techniques.

Multiple LULC data layers of BSRW for each month from 2014 to
2018 were developed by classifying cloud free Landsat images. The
images were classified to water, forested wetlands, cultivated, barren,
and urban. The year was divided into three seasons: January to April as
spring, May to August as summer, and September to December as fall.

2.4. Development of seasonal LULC data layer

The numerical values were given to each class in the monthly LULC
data layers. The data layers from 2014 to 2018 were then added to-
gether according to the months in spring, summer, and fall using raster
calculator tool in ArcGIS. The resulting data layers were then re-
classified again as water, forest, cultivated, barren, and urban according
to resultant pixel value to produce dominant LULC data layers re-
presenting each season. Those seasonal LULC data layers were used in
SWAT to analyze differences in runoff, sediment yield, and nutrient
concentration due to changes in seasonal LULC data layers.

2.5. Accuracy assessment

The accuracy of the classification describes the agreement of clas-
sified image with reference to ground truth data and is performed
generally using confusion or error matrix (Foody, 2002). The error
matrix provides a cross-tabulation of a mapped classes against the
ground truth reference data and helps to characterize accuracy me-
trices. The accuracy of the LULC data layers for each season was as-
sessed by comparing the classified seasonal data layer with Landsat
images of the respective seasons. A set of random points for ground
truth data or reference data were created for the accuracy assessment
using error matrix. Some of these points were also validated by visiting
the study area. About 50 points for each class including water, forest,
cultivated land, barren land, and urban areas were considered for ac-
curacy assessment.

2.5.1. Error matrix and the accuracy Metrices

An error matrix is one of the quantitative methods for characterizing
the accuracy of classified images. It is a square array denoting the
correspondence between a classified data layer and the ground truth
data. The rows in the matrix indicate the class of classified data layer
while the columns indicate the ground truth data or reference data. A
sample error matrix for five classes is shown in Table 1.

The diagonal values indicate the accuracy of the classification while
non-diagonal values indicate the error between the classified data and
its corresponding reference data. Producer’s accuracy (PA), user’s ac-
curacy (UA), overall accuracy (OA), and kappa coefficient were com-
puted using an error matrix. PA or the omission error (OE) gives the
indication of accuracy of each class where pixels of a known class are
classified as something other than that class. Similarly, UA or the
commission error (CE) indicates the accuracy of each class where pixels
are incorrectly classified as a known class when they should have been
classified as something else.

2.5.1.1. Overall accuracy. The overall accuracy (OA) indicates the
accuracy of all the classes included in image classification and
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informs what proportion of the entire area is classified correctly. The
diagonal cells of the error matrix contain the number of correctly
classified pixels. The overall accuracy (OA) of the classification is
obtained by dividing the sum of correctly classified pixels by the total
number of reference pixels. It is usually expressed as a percent. From a
similar error matrix generated in this study as shown in Table 1, the OA
was calculated by summing the pixels in the diagonal and dividing
them by total number of pixels in the error matrix as

N

OA

where C;1, Cas, C33, C44, and Css are the correctly assigned pixels for
each class; and N is the total number of pixels for all the classes
considered in the accuracy assessment.

2.5.1.2. Kappa coefficient. The kappa coefficient is a measure of the
difference between actual agreement and the agreement expected by
chance. It is one of the standard measures used in accuracy assessment
and has been recommended by several studies as it resolves the issue of
correct allocation of a class by coincident (Foody, 2002; Rosenfield and
Fitzpatrick-Lins, 1986; Smits et al., 1999). The kappa coefficient is
generated using a statistical test and its value can vary from -1 to 1. A
value less than O indicates that the classification is no better than a
classification obtained by chance and a value near 1 indicates that the
classification is significantly better than a classification obtained by
chance. A kappa coefficient > 0.80, represents strong agreement and
good accuracy while a kappacoefficient< 0.40 is considered poor
(Rwanga and Ndambuki, 2017).

From a similar error matrix generated in this study as shown in
Table 1, the kappa coefficient was computed by

NZ;{:I Ci— Ef:l (Ciy X Cyi)
N2 = 3 (G X Caa)

kappa coefficient =

where, C;; is the correctly assigned pixel for ith class, C;, marginal total
of row for class i; C ; is the marginal total of column for class i; k is the
total number of classes; and N is the total number of pixels considered
in accuracy assessment.

2.6. SWAT

SWAT is an extensively applied watershed scale model that can si-
mulate hydrology and water quality and predict the impacts of different
land use change and best management practices (BMPS) at a watershed
scale (Neitsch et al., 2002). The modelling tool delineates the watershed
using digital elevation model (DEM) and divides it into sub-basins. Sub-
basins are further divided into hydrologic response units (HRUs), a
unique combination of land use, soil, and slope, after incorporation of
land use and soil data in the model. The time series data of precipita-
tion, temperature, relative humidity, solar radiation, and wind speed
along with management operation are provided to the model which
helps in determination of quantities such as surface runoff, evapo-
transpiration, infiltration, sediment yield, groundwater recharge, water
quality outputs etc. at each HRU, sub-basins and reach segments of the
watershed (Neitsch et al., 2005, 2002).

The SWAT model has been successfully implemented in simulating
streamflow, sediment yield, and the nutrient load from a watershed
(Dakhlalla et al., 2016; Ni and Parajuli, 2018; Parajuli et al., 2013; Risal
and Parajuli, 2019). Streamflow is the discharge of water in streams or
any water body and is one of the main components of runoff generated
from the land surface. In SWAT, streamflow is estimated using SCS
curve number method (Neitsch et al., 2005). The sediment eroded by
sheet, rill, gully, and streambank erosion are transported through the
streams and are estimated in SWAT using the Modified Universal Soil
Loss Equation (MUSLE) (Neitsch et al., 2005). Similarly, nutrients like
nitrogen and phosphorous are the essential micro-nutrients required for
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crop growth the excess amount of these nutrients, transported to the
water body, severely deteriorates the water quality of streams, rivers,
lakes and shallow groundwater (Lory, 2018). They are estimated in
SWAT considering their supply and demand (Neitsch et al., 2005).

In the current study, three seasonal LULC data layers were in-
dividually applied to the SWAT with other inputs being same in order to
analyze difference in streamflow, sediment yield, and nutrient con-
centration as response to the seasonal LULC change.

2.6.1. SWAT input

SWAT input requirements include: Digital Elevation Model (DEM),
LULC data layer, Soil fata layer, and daily time-series of meteorological
data such as precipitation, maximum and minimum temperature, re-
lative humidity, solar radiation, and wind speed. A 30 m resolution
DEM of 3D Elevation Program (3DEP) series, provided by United States
Geological Survey (USGS, 2020), was obtained from National map
viewer (http://viewer.nationalmap.gov).

Soil Survey Geographic (SSURGO) data was obtained from United
States Department of Agriculture (USDA), Natural Resource
Conservation Service (NRCS) (https://www.nrcs.usda.gov) (NRCS,
2020). Meteorological data was derived from National Oceanic and
Atmospheric Administration (NOAA) (https://www.ncdc.noaa.gov)
(NOAA NCEI, 2020).

2.6.2. SWAT calibration and validation

Multisite SWAT calibration and validation was performed for
streamflow, sediment yield, total nitrogen and total phosphorous at the
outlets of sub-basin 5, sub-basin 10 and sub-basin 17 of BSRW situated
at the USGS gauges 728,820 (Marigold), 7,288,500 (Sunflower) and
788,650 (Leland) respectively as shown in Fig. 1. Streamflow was ca-
librated from January 2013 to December 2015 and validated from
January 2016 to December 2019 using observed monthly discharge
obtained from the three USGS gauges. Similarly, sediment yield, total
nitrogen, and total phosphorous were calibrated from November 2013
to December 2014 and validated from January 2015 to December 2016
at the outlets of sub-basin 5, sub-basin 10, and sub-basin. Calibration
and validation were based on measured daily total suspended solid
(TSS), total nitrogen (TN), and total phosphorous (TP). These data were
obtained every fifteen days from 2013 to 2016. The calibration and
validation period for sediment yield, total nitrogen, and total phos-
phorous was shorter than that for streamflow because of the limitation
of observed data.

Automatic calibration of streamflow, sediment yield, total nitrogen,
and total phosphorous was performed using the Sequential Uncertainty
Fitting (SUFI-2) algorithm within SWAT Calibration and Uncertainty
Procedures (SWAT-CUP) package (Abbaspour, 2013). The R-factor and
P-factor, which were computed by SUFI-2, were used to predict model
uncertainty. T-statistics and P-value were used to perform sensitivity
analysis.

The model performance during calibration and validation was
analyzed using the coefficient of determination (R? (Draper and Smith,
1966), and Nash Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970).
These two statistics are widely used and reliable measures for com-
paring observed and simulated data. The value of NSE ranges from - o
to 1 and R? ranges from O to 1. Values of 1, for both statistics, are
considered perfect (Krause et al., 2005; Nash and Sutcliffe, 1970). In
general, if NSE is greater than 0.50, model simulation can be considered
as satisfactory (Moriasi et al., 2007).

The parameters used, their range, and the calibrated values for
streamflow, sediment yield, total nitrogen, and total phosphorous are
shown in Table 2.
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Table 2
SWAT parameters for the calibration of streamflow, sediment yield, total nitrogen and total phosphorous in the Big sunflower river watershed.
Variable Parameters” Description Fitted value Minimum Maximum
value value

Streamflow r_CN2.mgt Initial SCS runoff curve number for moisture condition II —0.09 -0.24 0.05
v_ALPHA BF.gw Base flow alpha factor (days) 0.14 -0.28 0.57
v_GW_DELAY.gw Groundwater delay (days) 516.07 273.02 759.10
v_GWQMN.gw Threshold depth of water in the shallow aquifer for return flow to occur (mm H20) 1.34 0.67 2.01
r_SOL_AWC(1).sol Available water capacity of first soil layer 0.37 0.05 0.68
v_ESCO.bsn Soil evaporation compensation factor 1.05 0.67 1.42
v_CH_N2.rte Manning's n (roughness) for channel 0.35 0.07 0.62
v_GW_REVAP.gw Groundwater re-evaporation coefficient 1.07 0.53 1.59
v_SURLAG.bsn Surface runoff lag time (days) 8.37 2.55 14.18

Sediment yield v_CH_COVl.rte Channel cover factor 1 0.27 0.12 0.53
v_CH_COV2.rte Channel cover factor 2 0.61 0.48 0.61
v_CH_ERODMO().rte Monthly channel erodibility factor 0.53 0.48 1.03
v_SPEXP.bsn Exponent parameter for calculating sediment re-entrained in channel 1.10 0.96 1.28
v_SPCON.bsn Linear parameter for calculating the maximum amount of sediment re-entrained during 0.00 —0.01 0.00

channel sediment routing

v_USLE_P.mgt Universal Soil Loss Equation (USLE) management practice factor 0.87 0.84 1.29
r_SLSUBBSN.hru Average slope length 0.44 0.19 0.41
r_HRU_SLP.hru Average slope steepness -0.99 -1.37 -0.77
r_USLE_K(1).sol Universal Soil Loss Equation (USLE) soil erodibility factor of first soil layer 0.46 0.02 0.55

Total nitrogen v_RCN.bsn Concentration of nitrogen in rainfall 2.51 1.05 3.96
v_NPERCO.bsn Nitrogen percolation coefficient 0.01 -0.24 0.26
v_BC3.swq Rate constant for hydrolysis of organic nitrogen to NH4 in reach 0.41 0.32 0.49
v_RS3.swq Benthic source rate for NH4-N in reach 2.67 1.96 3.38
v_RS4.swq Rate coefficient for organic nitrogen settling in reach 0.39 0.27 0.51
v_ERORGN.hru Organic nitrogen enrichment ratio 3.03 2.25 3.82

Total Phosphorous v_CMN.bsn Humus mineralization rate factor of active organic nutrient 0.001 0.001 0.003
v_PHOSKD.bsn Phosphorus soil partitioning coefficient 119.40 100 300
v_PPERCO.bsn Phosphorus percolation coefficient 12.81 10 15
v_BC4.swq Rate constant for decay of organic phosphorus to dissolved phosphorus 0.17 0.01 0.7
v_RS2.swq Benthic source rate for dissolved phosphorus in reach 0.39 0.005 0.5
v_RS5.swq Organic phosphorus settling rate in reach 0.05 0.05 1

2 V_indicates existing parameter was replaced by the fitted value, and r_ indicates existing parameter value is multiplied by (1 + fittedvalue).

3. Results
3.1. Seasonal LULC data layer

The LULC data layer from summer showed that about 60 % of the
total land was cultivated whereas the percentage of cultivated land
during fall and spring were just 20 % and 5%, respectively. The ma-
jority of the agricultural lands during spring and fall were barren. The
percentage of urban, forest, and water, for all three seasons, was almost
constant with around 21 %, 12 % and 1 %, respectively. The seasonal
LULC data layers for spring, fall, and summer are shown in Fig. 2.

3.2. Accuracy of seasonal data layer

The seasonal LULC data layer for all three seasons were character-
ized by higher precision with overall accuracy ranging from of 87% to
92% and kappa coefficient ranging from 0.84 to 0.90. The producer’s
accuracy and user’s accuracy for different classes ranged from 68 % to
100 % and 75% to 100 %, respectively. The different accuracy matrices
for summer, fall and spring are summarized in Table 3.

3.3. Model performance

3.3.1. Streamflow

For the calibration of streamflow, nine parameters were used.
Among them, four parameters namely: initial SCS runoff curve number
for moisture condition II (CN2), available water capacity of first soil
layer (SOL_AWC (1)), ground water delay (GW_DELAY), and manning's
roughness coefficient for channel (CH_N2) were highly sensitive having
an absolute value of a T-stat greater than 4 and a P-value less than
0.0001. The groundwater re-evaporation coefficient (GW_REVAP) was
the least sensitive parameter with a T-stat of 0.33 and a P-value of 0.7.

The statistics obtained during the calibration and validation of

streamflow were reasonable with an R? ranging from 0.65 to 0.92 and
an NSE ranging from 0.60 to 0.91. The summary of statistics for cali-
bration and validation of streamflow at sub-basin 5, sub-basin 10, and
sub-basin 17 of BSRW are presented in Table 4 and the graph showing
time series of observed and simulated streamflow during its calibration
and validation at sub-basin 5 is presented in Fig. 3.

3.3.2. Sediment yield

For the calibration of sediment yield, nine parameters were used.
Among them, five parameters namely: average slope steepness
(HRU_SLP), universal soil loss equation- soil erodibility factor of first
soil layer (USLE K (1)), universal soil loss equation-management prac-
tice factor (USLE_P), channel cover factor 2(CH_COV2), and monthly
channel erodibility factor (CH.ERODMO) were highly sensitive with
absolute value of a T-stat greater than 2 and a P-value less than 0.02.
The exponent parameter for calculating sediment re-entrained in
channel (SPEXP) was the least sensitive with a T-stat of 0.09 and a P-
value of 0.9.

The statistics obtained during the calibration a nd validation of
sediment yield were satisfactory with an R? ranging from 0.59 to 0.75
and an NSE ranging from 0.30 to 0.48. The statistics obtained during
calibration and validation of sediment yield at sub-basin 5, sub-basin
10, and sub-basin 17 of BSRW are summarized in Table 5 and the graph
showing time series of observed and simulated sediment yield during its
calibration and validation at sub-basin 5 is presented in Fig. 4.

3.3.3. Total nitrogen

For the calibration of total nitrogen, six parameters were used.
Among them, the nitrogen percolation coefficient (NPERCO) and the
concentration of nitrogen in rainfall (RCN) were highly sensitive with a
T-stat greater than 2 and a P-value less than 0.01. The benthic source
rate for NH4-N in reach (RS3) was the least sensitive parameter with a
T-stat of -0.5 and a P-value of 0.5.
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Fig. 2. The land-use and land-cover data layer for spring (January to April), summer (May to August), and fall (September to December).

The R* and NSE obtained during the calibration and validation of
total nitrogen were satisfactory with an R? ranging from 0.45 to 0.80
and a NSE ranging from 0.19 to 0.69. The summary of statistics ob-
tained during calibration and validation of total nitrogen at sub-basin 5,
sub-basin 10, and sub-basin 17 of BSRW are presented in Table 6 and
the graph showing time series of observed and simulated total nitrogen
load during its calibration and validation at sub-basin 5 is presented in
Fig. 5.

3.3.4. Total phosphorous

For the calibration of total phosphorous, six parameters were used.
Among them, the rate constant for decay of organic phosphorus to
dissolved phosphorus (BC4), phosphorus soil partitioning coefficient
(PHOSKD), and phosphorus percolation coefficient (PPERCO) were
seen to be highly sensitive with the T-stat greater than 2.6 and a P-value
less than 0.009 while the humus mineralization rate factor of active
organic nutrient (CMN) was found to be the least sensitive with the T-

Table 3

Table 4
Statistics obtained during calibration and validation of streamflow at the outlet
of three sub-basins of Big Sunflower River watershed.

Calibration Validation

R? NSE R? NSE
Sub-basin 5 0.76 0.62 0.65 0.60
Sub-basin 10 0.79 0.75 0.75 0.74
Sub-basin 17 0.77 0.75 0.92 0.91

stat of 0.6 and a P-value of 0.5.

The calibration and validation statistics of total phosphorous were
satisfactory with an R? ranging from 0.67 to 0.91 and an NSE ranging
from 0.49 to 0.77. A summary of calibration and validation statistics of
total phosphorous at sub-basin 5, sub-basin 10, and sub-basin 17 of
BSRW are presented in Table 7 and the graph showing time series of
observed and simulated total phosphorous load during its calibration

Accuracy metrices of individual class, Overall accuracy and Kappa coefficient for summer fall and spring.

Class Summer Fall

Spring

Producer’s Accuracy User’s Accuracy

Producer’s Accuracy

User’s Accuracy Producer’s Accuracy User’s Accuracy

Water 0.81 1.00 0.81
Forest 1.00 1.00 0.94
Cultivated land 0.98 0.76 0.90
Barren land 0.68 0.96 0.98
Urban 0.91 0.75 0.95
Overall Accuracy 0.87

Kappa Coefficient 0.84

1.00 0.94 1.00
0.98 0.80 0.98
0.87 0.94 0.88
0.90 1.00 0.80
0.89 0.87 0.95
0.92 0.91
0.90 0.88
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Fig. 3. Observed and simulated streamflow during calibration and validation of streamflow at sub-basin 5 of Big Sunflower River watershed.

Table 5
Statistics obtained during calibration and validation of sediment yield at the
outlet of three sub-basins of Big Sunflower River watershed.

Table 6
Statistics obtained during calibration and validation of total nitrogen at the
outlet of three sub-basins of Big Sunflower River watershed.

Calibration Validation Calibration Validation

R? NSE R? NSE R? NSE R? NSE
Sub-basin 5 0.75 0.48 0.59 0.30 Sub-basin 5 0.59 0.32 0.45 0.20
Sub-basin 10 0.67 0.42 0.72 0.31 Sub-basin 10 0.78 0.31 0.33 0.19
Sub-basin 17 0.59 0.39 0.66 0.32 Sub-basin 17 0.80 0.69 0.48 0.23

and validation at sub-basin 5 is presented in Fig. 6.

3.4. Effect of seasonal LULC data layers

3.4.1. Streamflow

The average streamflow was slightly higher during summer for all
the four sub-watersheds than that during spring and fall. The average
streamflow at the watershed outlet was observed to be 185.75 m>/sec
in summer while that for spring and fall were 164.82 m>/sec and
181.12 m®/sec respectively. Average streamflow at the outlet of sub-
watersheds 5,10,17, and 30 of BSRW for spring, summer and fall sea-
sons are shown in Fig. 7.

500 Calibration

The average precipitation in the BSRW was highest in spring (636
mm) while rainfall during summer and fall were 439 mm and 455 mm
respectively. The average monthly precipitation was highest during
March and April (182 mm and 176 mm respectively) and lowest during
September and August (84 mm and 93 mm respectively).

3.4.2. Sediment yield

The average sediment concentration was higher in summer for all
the sub-watersheds in comparison to that in spring and fall despite the
reduced average rainfall during summer. The average sediment con-
centration at the watershed outlet was observed to be 10.92 mg/L in
summer while that for spring and fall were 3.10 mg/L and 3.27 mg/L
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Fig. 4. Observed and simulated sediment yield during calibration and validation of sediment yield at sub-basin 5 of Big Sunflower River watershed.
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Fig. 5. Observed and simulated total nitrogen load during calibration and validation of total nitrogen at sub-basin 5 of Big Sunflower River watershed.

Table 7
Statistics obtained during calibration and validation of total phosphorous at the
outlet of three sub-basins of Big Sunflower River watershed.

Calibration Validation

R? NSE R® NSE
Sub-basin 5 0.85 0.77 0.67 0.65
Sub-basin 10 0.91 0.51 0.80 0.75
Sub-basin 17 0.81 0.49 0.67 0.56

respectively. Average sediment concentration at the outlet of sub-basin
5, 10, 17, and 30 for spring, summer and fall are shown in Fig. 8.

Although average precipitation was lower during the summer than
spring or fall, average sediment concentration was higher during the
summer. This is due to tillage during late spring and early summer
before planting. In addition, increased flow from irrigation is re-
sponsible for higher soil erosion and sediment yield in the BSRW.
Although conservation tillage practices such as no-till, strip-till, and
mulch-till are encouraged to reduce soil erosion, more than 75 %
farmers in Mississippi Delta still use conventional tillage prior to
planting corn and soybean to create uniform seedbed and eliminate
competition from weeds (Snipes et al., 2005).

Tillage induces soil erosion and is one of the responsible factors for
the increase in sediment yield from agricultural watersheds (Zhao et al.,
2018). This watershed scale study was conducted to assess the impact of
tillage practices on stream flow, crop and sediment yields at the BSRW,
Mississippi. Results show that conventional tillage produced higher
sediment yield than reduced tillage (Parajuli et al., 2016).

3.4.3. Total nitrogen

The average total nitrogen concentration during fall was higher
compared to the spring and summer for all four sub-watersheds. The
average total nitrogen concentration at the watershed outlet was 136
Mg in the fall while that for spring and summer were 54 Mg and 92 Mg
respectively. Average total nitrogen concentration at the outlets of sub-
basins 5, 10, 17, and 30 for spring, summer and fall are shown in Fig. 9.

3.4.4. Total phosphorous

The average amount of total phosphorous concentration was higher
in spring compared to summer and fall. The average total phosphorous
yield at the watershed outlet was 325 Mg in spring while that for
summer and fall were 245 Mg and 285 Mg respectively. Average total
phosphorous concentrations at the outlet of sub-basins 5, 10, 17 and 30
for spring, summer and fall are shown in Fig. 10.
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Fig. 6. Observed and simulated total phosphorous load during calibration and validation of total phosphorous at sub-basin 5 of Big Sunflower River watershed.
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Fig. 7. Average streamflow at four sub-basins of the Big Sunflower River watershed for spring, summer and fall.

4. Discussion and conclusions

LULC data layers for three different seasons in the SWAT model. These
kinds of seasonal variations cannot be observed using a single LULC

This study investigated the variation in surface runoff, sediment, data layer such as the cropland data layer (CDL) or the national land
and nutrient yield due to seasonal changes in land use and land cover cover dataset (NLCD), as they use the LULC data layer created mostly
for an agricultural watershed. This was accomplished by using multiple from the images taken in summer.
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Fig. 8. Average sediment concentration at three calibrating sub-basins of Big Sunflower river watershed for spring, summer and fall.
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Fig. 9. Average total nitrogen concentration at three sub-basins of the Big Sunflower River watershed for spring, summer and fall.

The seasonal LULC data layers for spring, summer, and fall were
obtained by combining monthly LULC data layers whose overall accu-
racy ranged between 87 % and 92 % and the kappa coefficient ranged
between 0.84 to 0.90. These statistics suggest that the classified data
layers generated represented respective seasons well. Three seasonal
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LULC data layers were used in SWAT and three separate models were
developed.

The SWAT model was calibrated and validated for streamflow, se-
diment yield, total nitrogen and total phosphorous. The statistical va-
lues of R?> and NSE obtained during the calibration and validation of
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Fig. 10. Average total phosphorous concentration at three sub-basins of the Big Sunflower River watershed for spring, summer and fall.
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streamflow was in accordance to the results of previous modelling
studies conducted in the BSRW (Dakhlalla et al., 2016; Ni and Parajuli,
2018; Parajuli et al., 2016; Risal and Parajuli, 2019). Calibration and
validation statistics were not much affected by the change in seasonal
LULC data layer and were reasonable according to the standard set in a
comprehensive review article based on more than 250 worldwide
SWAT application studies (Gassman et al., 2007). Similarly, the statis-
tics during simulation of sediment yield were also reasonable as sedi-
ment loading is driven by surface runoff and streamflow (Qi et al.,
2020). The calibration and validation of sediment concentration at the
three USGS gauging stations within BSRW were also found to be con-
sistent with the previous SWAT calibration and validation results
(Dakhlalla et al., 2016; Ni and Parajuli, 2018; Risal and Parajuli, 2019).
Likewise, the calibration and validation of TN and TP were found sa-
tisfactory except for few exceptions caused by limitation of observed
data (Moriasi et al., 2007). The observed data at certain periods were
abnormally high and were responsible for lower value of statistics. The
TN and TP simulations were consistent with previous calibration and
validation results for BSRW (Risal and Parajuli, 2019). Even though it is
desirable to calibrate the major constituents of nitrogen and phos-
phorous loading such as organic nitrogen/phosphorous and mineral
nitrogen/phosphorous rather than TN and TP, the individual con-
stituents could not be calibrated due to the unavailability of monitoring
data for each constituent (Arnold et al., 2012).

The average streamflow at the watershed outlet during summer
(185 m>/sec) was highest than the average streamflow during spring
(164 m3/sec) and fall (181 m3/sec) even though the average rainfall
received during summer (439 mm) was lower than the average rainfall
received during spring (636 mm) and fall (455 mm). This is due to the
additional irrigation supplied to the fields through groundwater
pumping. Due to the seasonal distribution of rainfall in BSRW region,
supplemental irrigation is required to maximize crop yield. The crops in
BSRW were planted in late April, harvested in early September and
irrigated periodically during July to early August. The application of
irrigation in the field was simulated using the auto-irrigation function
of SWAT. Similarly, a study conducted in 18 Indian sub-continental
river basins showed that irrigation is responsible for increases in surface
runoff and streamflow in an agricultural watershed (Shah et al., 2019).
The observed flow data also suggests greater flows in summer compared
to fall or spring. Apart from increased crop productivity through re-
quired water supply during the dry period of the year, irrigation may
also lead to increase in surface runoff and sediment transport if the
method of irrigation is not appropriate (Peddi and Kumar, 2019; Raeisi-
Vanani et al., 2017).

Like streamflow, average sediment concentration at the watershed
outlet was highest during summer (10.92 mg/L) than during spring
(3.10 mg/L) and fall (3.27 mg/L). This is due to the tillage operation
conducted during late spring and early summer before planting. In
addition, increased flow from irrigation is responsible for higher soil
erosion and sediment yield in the BSRW. Although conservation tillage
practices such as no-till, strip-till, and mulch-till are encouraged to re-
duce soil erosion, more that 75 % of farmers in the Mississippi Delta still
use conventional tillage prior to planting corn and soybean to create
uniform a seedbed and eliminate competition from weeds (Snipes et al.,
2005). Tillage induces soil erosion and is one of the responsible factors
for the increase in sediment yield from an agricultural watershed (Zhao
et al., 2018). A previous watershed scale study conducted to assess the
impact of tillage practices on stream flow, crop and sediment yields at
the BSRW, Mississippi showed that conventional tillage produced
higher sediment yield than reduced tillage (Parajuli et al., 2016).

On the other hand, average total nitrogen yield was lowest during
spring (54 Mg) and highest during fall (136 Mg) due to the inability of
plants to uptake all of the nitrogen fertilizer and washing off of unused
nitrogen after runoff events. Nitrogen is added to the soil by different
means such as fertilizer application, manure and plant residue appli-
cation, rainfall, or fixation by symbiotic and non-symbiotic bacteria.
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Nitrogen is removed from the soil through plant uptake, leaching, de-
nitrification, volatilization, and erosion. (Neitsch et al., 2005). Mineral
nitrogen applied to corn and cotton during the last week of April and
the crop residues left in the field after harvest in early September are
responsible for high level of total nitrogen during the fall as only a small
portion of applied fertilizer is up-taken by crops (Moreno et al., 2018).
Moreover, crop residue left on the field in the fall after harvest also
contributes total nitrogen washoff during runoff caused by rainfall.

Likewise, the average total phosphorous at the watershed outlet was
highest in spring (325 Mg) and lowest in summer (245 Mg) due to the
soluble nature of phosphorous which becomes readily available for
transport in surface runoff and the ability of crops like soybean to ac-
cumulate phosphorous in the soil. Phosphorous is applied to soil
through fertilizer, manure, and residue and removed by soil through
plant uptake and erosion. The average amount of precipitation during
the spring was higher than that in summer and fall. The total phos-
phorous concentration was also highest in spring. Phosphorous is highly
soluble in water and is readily available for transport with surface
runoff (Neitsch et al., 2005). Unlike nitrogen which is usually con-
sidered mobile, phosphorous is capable of easily combining with other
ions to form insoluble compounds and precipitate out of soil and wash
off with rainwater. The phosphorous present in the soil was mostly
discharged by surface runoff during heavy rainfall events in the spring
(Neitsch et al., 2005; Sharpley and Syers, 1979). As the major crop
grown in the BSRW is soybeans, which is capable of accumulating soil
phosphorous (Reddy et al., 1999), the total phosphorous concentration
was lowest throughout summer during which the fields were planted
with soybean.

This study is very valuable to the scientific community as it explains
the variability of hydrologic and water quality components within a
year not only due to changes in hydrology and agricultural practices,
but also due to seasonal changes in land-use and land-cover patterns.
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