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A B S T R A C T

The Lower Mississippi Alluvial Valley (LMAV) was home to about ten million hectare bottomland hardwood
(BLH) forests in the Southern U.S. It experienced over 80 % area loss of the BLH forests in the past centuries and
large-scale afforestation in recent decades. Due to the lack of a high-resolution cropland dataset, impacts of land
use change (LUC) on the LMAV ecosystem services have not been fully understood. In this study, we developed a
novel framework by integrating the machine learning algorithm, county-level agricultural census, and satellite-
based cropland products to reconstruct the LMAV cropland distribution during 1850–2018 at a 30-m resolution.
Results showed that the LMAV cropland area increased from 0.78×104 km2 in 1850 to 6.64×104 km2 in 1980
and then decreased to 6.16× 104 km2 in 2018. Cropland expansion rate was the largest in the 1960s (749 km2

yr−1) but decreased rapidly thereafter, whereas cropland abandonment rate increased substantially in recent
decades with the largest rate of 514 km2 yr−1 in the 2010s. Our dataset has three notable features: (1) the
depiction of fine spatial details, (2) the integration of the county-level census, and (3) the inclusion of a machine-
learning algorithm trained by satellite-based land cover product. Most importantly, our dataset well captured the
continuous increasing trend in cropland area from 1930–1960, which was misrepresented by other cropland
datasets reconstructed from the state-level census. Our dataset would be important to accurately evaluate the
impacts of historical deforestation and recent afforestation efforts on regional ecosystem services, attribute the
observed hydrological changes to anthropogenic and natural driving factors, and investigate how the socio-
economic factors control regional LUC pattern. Our framework and dataset are crucial to developing managerial
and policy strategies for conserving natural resources and enhancing ecosystem services in the LMAV.

1. Introduction

Human activities have been recognized as the dominating factor
altering land cover types on the earth’s surface (Foley et al., 2005).
Driven by increased demands of food and fiber, the global cropland
area experienced a five-fold increase from ∼ 3 million km2 (2% of land
area) to ∼ 15 million km2 (11 % of land area) in the past three cen-
turies (Klein Goldewijk et al., 2011). Presently, over 30 % of the global
natural vegetation has been cleared for agricultural use (crop cultiva-
tion and grazing) (Vitousek et al., 1997), most of which are distributed
in the temperate and tropical regions in the Northern Hemisphere.
These changes have significantly disturbed the terrestrial ecological,
biogeochemical, and hydrological processes (Foley et al., 2005). Al-
though food and fiber production increased substantially along with

cropland expansion, many other ecosystem services experienced con-
siderable degradations, such as soil erosion, water pollution, aquifer
decline, and enhanced greenhouse gas (GHG) emissions (Foley et al.,
2005). To maintain and improve ecosystem services, there is a critical
need to understand the long-term patterns of land use change (LUC) as
well as its impacts on natural resources.

Several global-scale historical cropland datasets have been devel-
oped through combining remote sensing observations, historical agri-
cultural census data, and socioeconomic records (e.g. Klein Goldewijk
et al., 2011; Pongratz et al., 2008; Ramankutty and Foley, 1999a).
These datasets are valuable to understand the long-term cropland var-
iations and spatial distribution. They have been widely used to examine
the global impacts of the LUC on GHG emissions (DeFries et al., 1999;
Houghton et al., 2012; Tian et al., 2016), terrestrial hydrological
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processes (Claussen et al., 2001; Sterling et al., 2013), and climate
conditions (Betts et al., 2007; Gibbard et al., 2005).

However, global LUC datasets usually have a relatively coarse spa-
tial resolution (e.g., half-degree for the dataset in Ramankutty and
Foley (1999a)). Applications of global LUC datasets in evaluating na-
tional-level and regional carbon emissions (such as US and China) led to
substantial uncertainties due to the coarse delineation of land conver-
sion (Yu et al., 2019) and the inconsistency with satellite data in tem-
poral trend of croplands (Lu and Tian, 2017). Therefore, much effort
has been made to develop regional cropland datasets for countries that
experienced significant cropland expansion, such as China, India, and
the Continental U.S. Comparing to global-scale datasets, regional
cropland datasets usually utilize remote sensing data with a higher
spatial resolution and/or a more detailed agricultural census. For in-
stance, Liu and Tian (2010) reconstructed China’s LUC pattern during
1700–2005 using the 30-m Landsat-based land cover data and pro-
vincial-level census data. Yu and Lu (2018) reconstructed cropland
patterns in the Continental US from 1850 to 2016 using the 30-m re-
mote sensing data and state-level census data. Tian et al. (2014) de-
veloped India’s LUC data during 1880–2010 using the 56-m Re-
sourcesat-1 remote sensing data and census data at the district and state
levels. In contrast, the global cropland pattern in the Historical Data-
base of the Global Environment (HYDE) 3.1 (Klein Goldewijk et al.,
2011) was reconstructed from the DISCover data and the Global Land
Cover 2000 at a 5-min resolution (∼ 9 km at the equator) and state-
level agricultural census data. Because the regional datasets provide
more accurate temporal and spatial information of cropland distribu-
tion, its application could result in a more accurate evaluation of the
LUC impacts on the national carbon budget (Sohl et al., 2012; Yu et al.,
2019).

A series of approaches and models have been developed to re-
construct the spatially-explicit cropland distribution. At the local and
landscape scales, land cover distribution and temporal changes have
been simulated by the Multi-Agent Systems of Land-Use/Cover Change
(MAS/LUCC) models through combining agent-based representation of
decision-making and cellular landscape modeling (e.g. Le et al., 2008;
Li and Yeh, 2002; Parker et al., 2003; Veldkamp and Verburg, 2004).
LUC agent parameters include farm size and number, rural population
and household, landowners, etc. (Parker et al., 2003), while the cellular
model integrates spatially-explicit parameters, such as physical prop-
erties, neighbor functions, and distance variables, to simulate the spa-
tial pattern of cropland expansion and abandonment (Li and Yeh,
2002). At the national, continental, and global scales, historical crop-
land patterns have been reconstructed through a combination of the
satellite observations in the contemporary period and historical agri-
cultural census data (e.g. Klein Goldewijk et al., 2011; Liu and Tian,
2010; Ramankutty and Foley, 1999a; Tian et al., 2014; Yu and Lu,
2018). The total cropland area in one administrative unit is allocated to
grid cells according to a specific spatialization rule. For instance,
Ramankutty and Foley (1999b) and Zumkehr and Campbell (2013)
assumed that the cropland spatial pattern in each political unit in the
historical period was the same as that observed by satellite in the
contemporary period. Klein Goldewijk et al. (2011) allocated the total
cropland area to grid cells by considering cropland distribution in the
contemporary period as well as the influences of topography, climate,
and soil condition on cropland distribution. Sohl et al. (2016) used the
Forecasting Scenarios of Land use Change (FORE-SCE) model to define
the relationship between satellite-observed land cover and various en-
vironmental factors and identify the locations of historical land use
change patches.

The Lower Mississippi Alluvial Valley (LMAV) was once the largest
floodplain in North America extending from Illinois in the north to the
Gulf of Mexico in the south. In the pre-settlement era, the LMAV was
home to 8–10 million ha highly productive Bottomland Hardwood
(BLH) forests (Stanturf et al., 2000). Since the 19th century, large-scale
deforestation has been widely implemented in the LMAV, which cleared

more than 80 % of the natural BLH forests (King et al., 2006). The
LMAV has become one of the major agricultural regions in the U.S. for
soybean and corn productions owing to its flat landscape, fertile soil,
and favorite climate conditions (Yang et al., 2019). Nevertheless, in
recent decades, the LMAV forest area has increased considerably due to
afforestation efforts on the marginal croplands under the financial
support of conservation and wildlife habitat easement programs
(Faulkner et al., 2011; King et al., 2006; Oswalt, 2013). The historical
cropland expansion and the recent afforestation activities in the LMAV
likely have exerted strong influences on natural resources and en-
vironment, but the spatial pattern and long-term variations have not
been well quantified yet. The LMAV is an ideal area to investigate the
LUC impacts on the regional environment and ecosystem services. The
significant changes in the LMAV cropland also provide a testbed for the
development of novel algorithms to reconstruct high-resolution crop-
land data.

A fine-resolution cropland dataset (< 100m) is needed in the
LMAV. Previous global and national land use datasets are associated
with coarse resolutions (such as half-degree and 5-min) (Klein
Goldewijk et al., 2011) and are difficult to be used at the landscape and
watershed scale. For example, the Big Sunflower watershed in the
LMAV has a total area of 10,488 km2 (Ouyang et al., 2018), which
contains only 3 half-degree grids or ∼116 5-min grids. Such coarse
resolutions limit their application as input data to drive ecosystem or
hydrological models to evaluate the long-term impacts of land use
change. A fine-resolution cropland dataset could be aggregated to
various resolutions and meet the needs of landscape-level and wa-
tershed-level research. In the LMAV, land use presents significant spa-
tial variations strongly controlled by local flooding regimes and topo-
graphy (Kaminski et al., 1989). A long-term cropland data with a fine
resolution can reveal the pattern of cropland location shift over the
historical period and be important to identify the underlying driving
factors.

Specific objectives of this study include: (1) Develop a machine
learning algorithm trained by contemporary cropland pattern to re-
trieve the historical cropland distribution; (2) Reconstruct a high-re-
solution (30m) cropland dataset from 1850 to 2018 constrained by the
county-level agricultural census; and (3) Reveal the historical patterns
of cropland expansion and abandonment in the LMAV.

2. Data and methods

2.1. Study domain

The LMAV is the major agricultural region in the Southern U.S.
residing along the Lower Mississippi River (Fig. 1). In this study, we
extracted its boundary from the United States Environmental Protection
Agency (EPA) Level III ecoregion data (Omernik, 1987). There are 115
counties (or parishes) completely within or partially included in the
LMAV. According to the USDA National Agricultural Statistics Service
(NASS) Cropland Data Layer (CDL) in 2010, the LMAV has a total land
area of ∼ 11.7× 104 km2, consisting of cropland (52.8 %), wetland
(35.5 %), developed area (5.1 %), grassland (3.4 %), and forest (3.2 %).
The landscape is relatively flat with an average elevation of 41m.
During 1991–2010, the average temperature was 17.6 °C, and the
average precipitation was 1363mm yr−1 (Yang et al., 2019).

2.2. Input datasets for cropland reconstruction

In this study, the cropland reconstruction algorithm (Section 2.3)
needs five types of input datasets, namely, county-level agricultural
census, satellite-based cropland distribution, topography, rivers and
streams, and population (Table 1).

2.2.1. County-level agricultural census
The definition of cropland diverges in the existing literature (e.g. Yu
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and Lu, 2018; Zumkehr and Campbell, 2013). In this study, we used the
term defined by USDA (https://www.ers.usda.gov/data-products/
major-land-uses/glossary/), in which cropland consists of five

sections: harvested cropland, crop failure, summer fallow, cropland
pasture, and idle cropland. The county-level cropland areas from 1850
to 2017 were collected from three census datasets (Table 1). Cropland

Fig. 1. The boundary of the Lower Mississippi Alluvial Valley and the cover type retrieved from USDA National Agricultural Statistics Service Cropland Data Layer
2010.
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areas in 2007, 2012, and 2017 were from the USDA Census of Agri-
culture (CA), and cropland areas between 1925 and 2002 were from the
USDA Census of Agriculture Historical Archive (CAHA). These data
were available in every four or five years. From 1850 to 1920, the
county-level improved farmland areas were available in every ten
years, obtained from the Historical, Demographic, Economic, and Social
Data: The United States, 1790 – 2002 (HDES-US) (Haines, 2010). Im-
proved farmland, as defined by the USDA Census of Agriculture (http://
usda.mannlib.cornell.edu/usda/AgCensusImages/1920/Farms_and_
Property.pdf), includes all tilled or mowed land, tilled pastureland,
fallow land, land in garden, nurseries, orchards, vineyards, and land
occupied by farm buildings. As the land area occupied by farm build-
ings was much smaller than the other farmland, we assumed that the
area of the improved farmland was comparable to the cropland area
defined by USDA. Historical cropland census data from the three
sources were merged, and the annual cropland area from 1850 to 2017
was linearly interpolated between two census periods. Fig. S1 shows the
inter-annual variations of the total cropland area in the 115 counties
from 1850 to 2017. Fig. 2 shows the spatial pattern of the county-level
cropland area in 1850, 1890, 1930, 1970, and 2010.

2.2.2. Satellite-based cropland distribution
The USDA NASS CDL product is a geo-referenced and crop-specific

land cover map (Boryan et al., 2011). The CDL was developed based on
the 30-m Landsat satellite imageries in conjunction with various ground
truth datasets. It represents the best cropland distribution product in
the U.S. and provides the most detailed spatial information for more
than 100 crop categories at a spatial resolution of 30m (Johnson,
2013). In this study, the LMAV cropland distribution during 2010–2018
was directly retrieved from the CDL product. The CDL 2010 cropland
distribution was used as the reference data to train the machine
learning algorithm.

2.2.3. Ancillary datasets
Elevation, slope, distance to rivers and streams, and population

were important parameters for the machine learning algorithm to es-
timate cropland probability at the pixel level (Sohl and Sayler, 2008).
The 30-m Digital Elevation Model (DEM) was obtained from NASA's
Shuttle Radar Topography Mission (SRTM) (Farr et al., 2007). Slope
was computed from the SRTM DEM using the spatial analysis tools in
ESRI ArcGIS 10.6. Rivers and streams were extracted from the USA
Rivers and Streams dataset (USA-RS) and the North America Rivers and
Lakes (NARL). For each 30-m pixel, distance to the nearest stream or
river channel was calculated through the spatial analysis tools in ESRI
ArcGIS 10.6. Additionally, water body pixels were extracted from the
NASS CDL 2010 dataset. Fig. S2 shows the maps of DEM, slope, distance
to the nearest river and stream, and water body in the LMAV.

Fang and Jawitz (2018) developed a 1-km population density da-
taset for the Continental U.S. from 1790 to 2010 using five population
models. In this study, we used the population data produced using the
most sophisticated model (M5), which considered natural suitability,
socioeconomic desirability, and inhabitability parameters. The decadal
population data (Fang and Jawitz, 2018) was downscaled into an an-
nual scale through a temporal linear interpolation and then to a 30-m
resolution through the bilinear spatial interpolation.

2.3. Workflow and algorithms

Fig. 3 illustrates the workflow and three major algorithms to de-
velop the LMAV cropland dataset from 1850 to 2018. The three algo-
rithms are: (1) a reconciliation algorithm to modify the county-level
agricultural census to be consistent with the CDL cropland area; (2) a
logistic regression-based machine learning algorithm to estimate an-
nual cropland probability; and (3) a land conversion algorithm using
cropland probability and the reconciled cropland area to guide the
placement of cropland expansion and abandonment.Ta
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2.3.1. Reconciliation between census data and remote sensing-based data
A gap existed between the county-level cropland area from the

Census of Agriculture and the cropland area estimated from the CDL
data. For example, for the 115 counties in 2012, the cropland area was
7.35×104 km2 in the census data, but 6.79×104 km2 in the CDL data.
To fill this gap, we used the reconciliation algorithm in Ramankutty and
Foley (1999b) to modify the county-level census. The reconciled crop-
land area was computed as a weighted average of the estimates based
on relative anomalies and absolute anomalies of the inventory data. The
reconciliation algorithm is,

= ⎡
⎣⎢

⎤
⎦⎥

+ − − −

A k α k A k
A k
A k

α k A k A k A k

( ) ( ) ( )
( )
( )

(1 ( ))[ ( ) ( ( ) ( ))]

reconciled
t

reconciled
t census

t

census
t

reconciled
t

census
t

census
t

2 1
2

1

1 2 1

(1)

where t1 is the current year; t2 is the previous year ( = −t t2 1 1);
A k( )census

t1 is the census-based cropland area in year t1 for the k th

county; A k( )census
t2 is the census-based cropland area in year t2 for the k

th county; A k( )reconciled
t1 is the reconciled cropland area in year t1 for the k

th county; and A k( )reconciled
t2 is the reconciled cropland area in year t2 for

the k th county. k is the county index in the range from 1 to 115. α k( ) is
the weight of the relative anomaly (A k

A k
( )
( )

census
t

census
t

2

1 ), while − α k1 ( ) is the

weight of the absolute anomaly ( −A k A k( ) ( )census
t

census
t2 1 ). α k( ) is para-

meterized as

= − −α k A k A k( ) min(1, exp( 0.5( ( )/ ( ) 1.1)))census
t

census
t2 1 (2)

The calculation started from 2010 ( =t1 2010). In 2010, the re-
conciled county-level cropland area A k( )reconsiled

t1 was retrieved from the
CDL 2010. The reconciled county-level cropland area from 2009 to
1850, A k( )reconciled

t2 , was computed iteratively by solving Eqs. (1) and (2)
with t1 moving from 2010 to 1851 by one year.

2.3.2. Reconstruction of historical cropland distribution
Cropland distribution from 1850–2009 was reconstructed according

to the reconciled county-level cropland area and pixel cropland prob-
ability-of-occurrence (cropland probability for short). The cropland
probability was estimated through logistic regression (Sohl and Sayler,
2008). In the LMAV, farmers tended to reclaim the forests and wetlands
with low economic and labor costs, and abandon the agricultural lands
with higher flooding frequency and lower crop production (i.e.,

Fig. 2. Cropland area (km2) in 1850, 1890, 1930, 1970, and 2010 from the county-level census datasets.
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marginal croplands) (Schoenholtz et al., 2001; Stanturf et al., 1998).
Based on these situations, we made the following three basic assump-
tions:

(1) Cropland probability in each pixel was determined by topography,
flooding regimes, distance to cropland edge, and population den-
sity.

(2) During cropland area increase years, the natural vegetation pixels
with higher cropland probability (e.g., flat topography, low
flooding frequency, and close to existing cropland) were converted
to cropland earlier than the natural vegetation pixels with lower
cropland probability (e.g., steep topography, high flooding fre-
quency, and far from existing cropland).

(3) During cropland area decrease years, the cropland pixels with high
cropland probability (e.g., flat topography, low flooding frequency,
and far from cropland edge) were abandoned later than the crop-
land pixels with lower cropland probability (e.g., steep topography,
high flooding frequency, and close to cropland edge).

Reconstructing the LMAV cropland consisted of the following five
steps.

Step 1. Develop and train a county-wise machine learning algo-
rithm in the form of logistic regression. The logistic regression model is
expressed as

−
= + + +

+

log
Prob

Prob
β β DEM β SLO β DIS

β NCP

1
k i
t

k i
t k k k i k k i k k i

k k i
t

10
,
1

,
1 0, 1, , 2, , 2, ,

3, ,
1

(3)

where Probk i
t
,
1 is the cropland probability between 0 and 1 for pixel i in

the k th county ( = ……k 1, 2, ,115); t1 equals 2010 in this step; DEMk i, ,
SLOk i, , and DISk i, are the DEM, slope, and distance to the nearest river
and streams for pixel i in the k th county; NCPk i

t
,
1 is the number of

cropland pixels in a pixel i centered circle with a radius of 90m in year
t1 ; and β k0, , β k1, , β k2, , and β k3, are four county-specific parameters in
the regression model. DEMk i, and SLOk i, are topography variables, and
DISk i, is a proxy for flooding frequency. NCPk i

t
,
1 is an indicator of

cropland edge, which was computed using the neighborhood operation
in ESRI ArcGIS 10.6.

We used NASS CDL cropland distribution in 2010 as training data to
fit the parameters. Additionally, we also used NASS CDL 2011, 2012,
and 2013 to fit the parameters in each county, which were similar to
that based on NASS CDL 2010. Therefore, we simply used the para-
meters derived from NASS CDF 2010. Cropland probability equaled 1
for cropland pixels ( =Prob 1k i

t
,
1 ) and 0 for non-cropland pixels

( =Prob 0k i
t
,
1 ). The General Linear Model (GLM) function in the Python

statsmodels library (Seabold and Perktold, 2010) was adopted to esti-
mate the parameters of β k0, , β k1, , β k2, , and β k3, in the logistic regres-
sion. The statistics had a relatively low variance inflation factor (VIF),
indicating the low collinearity among the four selected factors in the
logistic regression.

Step 2. Estimate the pixel-based cropland probability in year t1 (1
was 2010 at the first iteration).

= − + + + + +Prob 1 1/(1 10 )k i
t β β DEM β SLO β DIS β NCP
,
1 k k k i k k i k k i k k i

t0, 1, , 2, , 2, , 3, ,
1

(4)

Cropland probability (Probk i
t
,
1 ) was estimated using the four para-

meters (β k0, , β k1, , β k2, , and β k3, ) fitted in Step 1. NCPk i
t
,
1 was updated

annually based on the cropland distribution map in year t1. Probk i
t
,
1 was

set to 0 for the water body pixels. We assumed the pixels with a dense
population (usually urban area) had no space for crop cultivation, and
Probk i

t
,
1 was set to 0 for pixels with population density over 1000 people

/ km2.
Step 3. Determine the placement of cropland area changes between

the previous year ( = −t t2 1 1) and the current year (1, t1 was 2010 at
the first iteration). County-level cropland area difference between year
t2 and year t1 in the k th county ( →A kΔ ( )t t2 1 ) was calculated using the
reconciled cropland area,

= −→A k A k A kΔ ( ) ( ) ( )t t
reconciled
t

reconciled
t2 1 2 1 (5)

Positive →A kΔ ( )t t2 1 indicates cropland area decrease in the k th
county from year t2 to year t1, while negative value indicates cropland
area increase. The number of pixels in the k th county that experienced
land conversion between cropland and non-cropland ( →NPk

t t2 1) was
calculated as,

=→
→

NP round abs A k
Ap

( ( Δ ( ) ) )k
t t

t t
2 1

2 1

(6)

Fig. 3. Input datasets and workflow for the development of annual cropland dataset in the Lower Mississippi Alluvial Valley from 1850 to 2018.
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where Ap is the pixel area (= 900 m2), and the →NPk
t t2 1 is the nearest

integer to
→abs A k

Ap
( Δ ( ) )t t2 1

.

For the k th county in year t1, two sequences of cropland probability
were extracted from the Probk i

t
,
1 map calculated in Step 2. The first se-

quence was the cropland probability for all the cropland pixels, and the
second sequence was the cropland probability for all the non-cropland
pixels. Both sequences were sorted in ascending order.

We used the pixel value of 1 to indicate cropland ( =PV 1k i
t
,
1 ), and 0

to indicate non-cropland ( =PV 0k i
t
,
1 ). When >→A kΔ ( ) 0t t2 1 (cropland

area in t2 was larger than that in t1), →NPk
t t2 1 non-cropland pixels with

the highest cropland probability in the non-cropland sequence were
selected and changed to cropland pixels in year t2 ( =PV 1k i

t
,
2 ); the non-

cropland pixels that were not selected still had a pixel value of 0 in year
t2 ( =PV 0k i

t
,
2 ); and all the cropland pixels in year t1 were still cropland

pixels in year t2 ( =PV 1k i
t
,
2 ).

When <→A kΔ ( ) 0t t2 1 (cropland area in t2 was smaller than that in
t1), →NPk

t t2 1 cropland pixels with the lowest cropland probability in the
cropland sequence were selected and changed to non-cropland pixels in
year t2 ( =PV 0k i

t
,
2 ); the cropland pixels that were not selected still had a

pixel value of 1 in year t2 ( =PV 1k i
t
,
2 ); and all the non-cropland pixels in

year t1 were still non-cropland pixels in year t2 ( =PV 0k i
t
,
2 ). Through

this cropland conversion algorithm, locations of cropland changes were
determined and county-level cropland area in year t2 was distributed to
pixels.

Finally, cropland spatial pattern in the 115 counties in year t2 was
merged into one dataset to represent cropland spatial pattern in the
LMAV.

Step 4. Iterate the processes in Step 2 and Step 3 with t1 decreased
by one at each iteration until =t1 1851 and =t2 1850.

Step 5. Combine the reconstructed cropland data (1850–2009) with
the NASS CDL data (2018−2018). The final product is the LMAV
cropland distribution from 1850 to 2018 at a 30-m spatial resolution.

2.4. Tipping point detection

Piece-wise regression has been used to detect ecological and cli-
matological breakpoints (Toms and Lesperance, 2003; Wang et al.,
2011). In this study, we used this approach to identify the tipping point
in the time series of cropland area in each county and the entire LMAV.

= ⎧
⎨⎩

+ ≤
+ + − >y

γ γ x x α
γ γ x γ x α x α

,
( ),

0 1

0 1 2 (7)

where y is the annual cropland area, x is the year from 1850–2018, α is
the breaking point year, γ0, γ1, and γ2 are the parameters in the fitted
lines. The time series of cropland area was divided into two periods at
the breaking point, period I: 1850 to year α and period II: year α to
2018. The parameters γ0 and γ1 were estimated through the ordinary
least squares (OLS) regression in the period I, and γ2 was estimated
through the OLS regression in the period II. γ1 was the linear trend of
cropland area changes before the breaking point, and +γ γ( )1 2 was the
linear trend after it. The two fitted lines were joined at the breaking
point.

α moved from 1855 to 2013 by one in each step. The range of
1855–2013 for α was defined to avoid regression with too few data
points in the period I or period II (Wang et al., 2011). For each, we
estimated a set of γ0, γ1, and γ2, and computed the sum of squared re-
siduals (SSR),

∑= −
=

ˆSSR y y( )
i

i i
1850

2018
2

(8)

where ŷi is the fitted annual cropland area by the piece-wise linear
regression. In total, we calculated 159 SSR with α moving from 1855 to
2013. The tipping point was the breaking point with the least R. Ad-
ditionally, we used the student t-test to examine if the tipping point was
significant, i.e., if the changing trend before the tipping point (γ1) was
significantly different from the changing trend after it (i.e., +γ γ1 2) at
the 95 % confidence interval. The null hypothesis (H0) was =γ 02 .

According to the changing trends before and after the tipping point,
we defined six types of tipping point, which were Type 1: >γ 01 ,

+ >γ γ 01 2 , and > +γ γ γ1 1 2; Type 2: >γ 01 , + >γ γ 01 2 , and < +γ γ γ1 1 2;
Type 3: >γ 01 and + <γ γ 01 2 ; Type 4: <γ 01 , + <γ γ 01 2 , and

< +γ γ γ1 1 2; Type 5: <γ 01 , + <γ γ 01 2 , and > +γ γ γ1 1 2; and Type 6:
<γ 01 and + >γ γ 01 2 .
In this study, we simply used one tipping point to separate the time-

series of cropland area into two periods. From 1850 to 2018, most of
the LMAV counties experienced fast cropland expansion in the early
period followed by the decelerated cropland expansion or even crop-
land area shrinkage (King et al., 2006). We acknowledge that some
counties may have multiple tipping points in cropland area time-series,
and the SSR could include multiple local maxima. Nonetheless, to keep
it consistent, we used the global maximum to identify only one most
significant tipping point and break the time-series into two most con-
trasting periods for all the counties and the LMAV.

2.5. Cropland datasets for comparison

Four sets of global- or national-level cropland datasets developed
under the constraint of agricultural census (Table 2) were chosen to
compare with the LMAV cropland dataset in this study. The four da-
tasets were (1) global historic cropland dataset by Ramankutty and
Foley (1999a) (named RF dataset), (2) the History Database of the
Global Environment (HYDE 3.2) (Klein Goldewijk et al., 2017), (3)
historical U.S. cropland area by Zumkehr and Campbell (2013) (named
ZC dataset), and (4) another historical U.S. cropland area by Yu and Lu
(2018) (named YL dataset).

The RF and HYDE3.2 datasets provided global cropland fractions at
a resolution of 0.5° and 5-minute latitude/longitude, respectively. Both
datasets used an AVHRR-based cropland distribution (Loveland and
Belward, 1997) as the reference map and state-level census data to
constrain the state total cropland area. For the comparison purpose, we
downscaled the decadal HYDE data between 1850 and 2000 to an an-
nual scale through the temporal linear interpolation. ZC and YL datasets
provided historic cropland fraction in the Continental U.S. at a spatial
resolution of 5-minute latitude/longitude and 1 km, respectively. The

Table 2
Global- and national-scale cropland datasets for comparison.

Data name Period Time interval Extent Resolution Website

RF dataset 1700 – 1992 Annual Global 0.5 arc degree https://nelson.wisc.edu/sage/data-and-models/datasets.
php

HYDE 3.2 10,000 BC to 2017 AD Millennial between 10,000 BC and 0 AD Global 5 arc min ftp://ftp.pbl.nl/hyde/
Centennial between 0 and 1000
Decadal between 1000 and 2000
Annual between 2000 and 2017

ZC dataset 1850 – 2000 Annual Continental U.S. 5 arc min https://portal.nersc.gov/project/m2319/
YL dataset 1850 – 2016 Annual Continental U.S. 1 km https://doi.pangaea.de/10.1594/PANGAEA.881801
This study 1850–2018 Annual The LMAV 30m Will be uploaded to public platform for download
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ZC dataset was reconstructed from the DISCover cropland distribution
and county-level cropland area (Waisanen and Bliss, 2002), while the
YL dataset was developed from the NASS CDL 2010 data and state-level
census data.

2.6. Latitude vs. time plot

Latitude vs. Time plot of the cropland area was produced to show
temporal variations of cropland area across latitudinal bands. First, the
30-m cropland maps were aggregated to cropland fraction pixels at a
5000-m resolution and converted to the Geographic Coordinate System
at a resolution of 0.05° latitude/longitude. Next, cropland fraction in
each 0.05° latitudinal band was averaged to obtain the zonal-mean
cropland fraction. During this process, the three-dimensional cropland
dataset (time× latitude× longitude) was compressed into a two-di-
mensional cropland dataset (time× latitude). Last, the time series of
the zonal-mean cropland fraction in each latitudinal band was nor-
malized to the range between 0 and 1 by the minimum and maximum
annual cropland fractions during 1850–2018.

2.7. Definition of cropland expansion and abandonment

In previous literatures, abandoned cropland is defined as the crop-
land difference between the maximum cropland area in the historical
period and the cropland area in the most recent period (Zumkehr and
Campbell, 2013); while cropland expansion is defined as the cropland
difference between the beginning and end of the study period (Yu and
Lu, 2016). Following these definitions, we defines the pixel-level
cropland expansion and abandonment in this study: cropland expansion
over the entire period refers to the pixels that were non-cropland in
1850 but cropland in 2018, while cropland abandonment over the en-
tire period referred to the pixels that were cropland in any year during
1850–2017 but non-cropland in 2018. Expansion pixels in each decade
were a part of the expansion pixels over the entire period that experi-
enced a land conversion from non-cropland to cropland in that decade.
Abandonment pixels in each decade were a part of the abandonment
pixels over the entire period that experienced land conversion from
cropland to non-cropland in that decade.

It is noteworthy that the croplands, which were once abandoned but
converted back to croplands later, were not counted as cropland

Fig. 4. Reconstructed cropland distribution across the Lower Mississippi Alluvial Valley in 1850, 1890, 1930, 1970, 2010, and 2018.
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abandonment in this study. Therefore, the difference between cropland
expansion and abandonment over a certain period (for example, the
1860s) does not necessarily equal the net cropland area change during
that period estimated through the agricultural census data. The mag-
nitudes, occurrence periods, and locations of cropland abandonment
and expansion were retrieved from the reconstructed LMAV cropland
dataset.

2.8. Validation method

The National Land Cover Database (NLCD) provides a national-wide
land use and land cover dataset at a 30-m spatial resolution developed
based on the Landsat imageries (Homer et al., 2015). The latest NLCD
version 2016 provides a multi-temporal LUC dataset in the Continental
U.S. in every two to three years from 2001 to 2016 (https://www.mrlc.
gov/data/nlcd-2016-land-cover-conus). In this study, we used the land
cover map in 2001 from the NLCD version 2016 to validate the re-
constructed cropland dataset. For validation purposes, the 15 NLCD
land cover types were regrouped into cropland type and non-cropland
type. Then, we generated 5000 points randomly distributed in the
LMAV (Fig. S3) using ESRI ArcGIS 10.6 sampling tool. For these 5000
points, we extracted land cover types from the reconstructed raster
cropland dataset and compared them with those extracted from the
NLCD dataset. A confusion matrix was built to estimate the overall
accuracy, user’s accuracy, and producer’s accuracy for the re-
constructed dataset in the LMAV.

We also validated the reconstructed cropland distribution with the
NASS CDL in 2017. This year was selected because it is the last year of
the current USDA Census of Agricultural. The same 5000 points were
used to extract land cover types from our reconstructed data and NASS
CDL, and a confusion matrix was created to quantify data accuracy.

3. Results

3.1. Long-term variations in cropland area

Historical patterns of the LMAV croplands (Fig. 4) were re-
constructed through the new algorithms and county-level census data.
Our results suggest that the LMAV had a total cropland area of
0.78×104 km2 in 1850 with more croplands distributed in the south
part of LMAV. Louisiana (referring to the part of Louisiana included in
the LMAV, the same for the other states) made the largest contribution
(44.8 %) to the LMAV cropland area, followed by Mississippi (28.2 %)
and Arkansas (19.8 %) (Fig. 5). Notably, the cropland area in 1870 was
less than that in 1860 possibly due to the influence of the American
Civil War in the 1860s. After the 1870s, the cropland area showed a
continuous increase until the 1970s. Over the entire study period, the
maximum cropland area was 6.71× 104 km2 in 1978. In this year,
Arkansas, Mississippi, and Louisiana made the largest contribution to
the total cropland area, which was 42.4 %, 22.3 %, and 20.8 %, re-
spectively (Fig. 5). Between 1850 and 1978, the cropland area in-
creased by ∼17 times in Arkansas, ∼6 times in Mississippi, and ∼3
times in Louisiana.

Over the recent four decades, the LMAV cropland area presented a
declining trend. Cropland area in 2018 was 6.16× 104 km2, which was
∼8% less than that in 1978. Cropland area decreased by 13.9 % in
Mississippi, 10.5 % in Louisiana, and 6.6 % in Arkansas. Over the 169
years from 1850–2018, Louisiana’s contribution to the total LMAV
cropland area decreased from 44.8%–20.3%, and Mississippi’s con-
tribution decreased from 28.2%–20.9% (Fig. 5), whereas Arkansas’
contribution increased from 19.8%–43.1% and Missouri’s contribution
increased from 5.4%–13.3%.

The Latitude vs. Time plot shows that the cropland area presented
distinct temporal patterns across the latitudinal gradient (Fig. 6). In
southern LMAV (<31 °N), the peaked cropland area occurred before
the 1960s. In central LMAV (between 31 °N and 36 °N), the peaked

cropland area was in the 1970s, the 1980s, and the 1990s. In northern
LMAV (>36 °N), the peaked cropland area occurred in the 1990s and
the 2000s. The distinct temporal pattern along the latitudinal gradient
revealed that cropland expansion in central and northern LMAV lasted a
longer time until the recent decades, while cropland abandonment
started earlier in southern LMAV.

3.2. Tipping points

We fitted the piece-wise linear regression to the time series of the
LMAV cropland area (Fig. 7). The SSR reached its lowest value of
6.14×104 km4 when =α 1980, indicating the tipping point (Type-3)
was in 1980. The LMAV cropland area in this year was 6.64× 104 km2.
Cropland area increased at a rate of 0.048×104 km2 yr−1 ( =γ 0.0481 )
before the tipping point (i.e., 1850–1980), and decreased at a rate of
0.015×104 km2 yr−1 ( + = −γ γ 0.0151 2 ) after it (i.e., 1980–2018). Of
the seven states in the LMAV, five states had the Type-3 tipping point,
which were Louisiana ( =α 1992), Mississippi ( =α 1973), Arkansas
( =α 1980), Illinois ( =α 1915), and Tennessee ( =α 1969) (Fig. S4).
However, Missouri ( =α 1969) and Kentucky ( =α 1917) had the Type-1
tipping point, i.e., the cropland expansion slowed down after the tip-
ping point comparing to the periods before the tipping point.

Additionally, the tipping point detection algorithm was im-
plemented on the time-series of cropland area in the 115 counties
(Fig. 8). We found that 80 counties had the type-3 tipping point, and 20
counties had the type-1 tipping point. For these 100 counties, the initial
increasing trend of cropland area reversed or slowed down after the
tipping points. For the 80 counties with the Type-3 tipping point, 27
counties had a tipping point during 1971–1990, 15 counties had a
tipping point during 1951–1970, and 13 counties had a tipping point
during 1931 – 1950.

3.3. Cropland expansion and abandonment

From 1850 to 2018, the LMAV cropland area increased by ∼7
times. Cropland expansion primarily occurred in central and northern
LMAV (Fig. 9). Cropland expansion rate was 516 km2 yr−1 in the 1850s
but decreased to only 60 km2 yr−1 in the 1860s. Between the 1880s and
the 1940s, cropland expansion kept at a relatively high rate with an
average of 459 km2 yr−1. The most rapid expansion happened in the
1960s at a rate of 749 km2 yr−1. However, cropland expansion slowed
down in the 1970s and the 1980s. The slowest expansion was in the
1980s at 38 km2 yr−1. In the 1990s, the 2000s, and the 2010s (refers to
2011–2018 in this study), cropland expansion kept at a relatively low
rate with an average of 90 km2 yr−1. Over the entire period, 45.6 % of
the expanded cropland area were in Arkansas, 20.3 % in Mississippi,
17.6 % in Louisiana, and 14.1 % in Missouri (Figure S5).

Cropland abandonment in the LMAV remained at a relatively low
level from the 1850s to the 1930s (< 15 km2 yr−1). The abandonment
rate increased slowly from 21.5 km2 yr−1 in the 1940s to 46.5 km2 yr−1

in the 1960s and increased rapidly in the following five decades. The
most rapid cropland abandonment occurred in the 2010s when crop-
land was converted to other land cover types at a rate of 514 km2 yr−1.
From the 1850s to the 1960s, Louisiana contributed 63.6 % of aban-
doned croplands in the LMAV (Figure S6), indicating cropland aban-
donment occurred earlier in Louisiana than the other states. Over the
entire period, 1.5× 104 km2 croplands in the LMAV were abandoned,
of which 33.4 % were in Louisiana, 32.6 % in Arkansas, and 24.6 % in
Mississippi.

3.4. Validation and comparison

We used cropland maps from the NLCD in 2001 and NASS CDL in
2017 to validate the reconstructed cropland dataset (Fig. 10). The
comparison with NLCD shows that the overall accuracy of our re-
constructed in 2001 reached 92.6 %, and the user’s accuracy and the
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producer’s accuracy for the cropland category were both 92.7 % (Table
S1). The comparison with NASS CDL shows that the overall accuracy in
2017 was 94.2 %, the user’s accuracy was 95.5 %, and the producer’s
accuracy was 92.9 % (Table S2). The high accuracies indicate that our
reconstructed dataset captured the cropland distribution. However, due
to the lack of reliable reference data sources with a high spatial re-
solution before 2001, we did not validate data in the earlier period.

Compared to the other four datasets (RF, HYDE3.2, ZC, and YL), one

distinct feature of our LMAV cropland dataset is the high spatial re-
solution (30m). The LMAV dataset distinguished crop and non-crop
pixels, while the other four datasets provided cropland fraction in a
larger grid (see Fig. 11 for the cropland distribution in 1992). It is
apparent that the YL dataset (Fig. 11D) and our LMAV dataset
(Fig. 11E) provide more detailed spatial information than the other
three datasets and, therefore, are more appropriate for regional and
landscape-level applications. When aggregating to the same spatial

Fig. 5. Inter-annual variations of the LMAV cropland area (A) and the contributions of seven states to the total area (B).

Fig. 6. Latitude vs. Time plot of the normalized cropland area (cropland fraction was normalized to the range between 0 and 1 by the minimum and maximum annual
cropland fractions over the entire study period). The numbers of zero and one denote the least and the largest cropland area during 1850 – 2018 in each latitudinal
band.
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resolution as the other datasets (Figure S7), we found that cropland
distribution in our dataset is similar to that in HYDE, ZC, and YL.
However, the RF dataset has a significantly higher cropland area in the
Southern LMAV than our dataset and the other three.

In terms of temporal pattern, all the five datasets showed that the
largest LMAV cropland area occurred in the period around 1980
(Fig. 12). Specifically, it was 1978 for RF, ZC, and the LMAV dataset in
this study, 1980 for HYDE 3.2, and 1981 for YL. The RF dataset had a
larger cropland area than the others in most of the study period. For
instance, in the 1980s, the cropland area was 6.9× 104 km2 for RF,
6.5× 104 km2 for the LMAV dataset, 6.3× 104 km2 for YL and HYDE,
and 6.2×104 km2 for ZC. The most significant divergence in the
changing trend among these datasets occurred during the period be-
tween 1930 and 1960 (shaded area and the inset in Fig. 12). The three
datasets based on the state-level census (RF, HYDE 3.2, and YL) pre-
sented a declined cropland area during these 30 years, which was
0.8×104 km2 for RF, 0.5× 104 km2 for HYDE 3.2, and 0.7×104 km2

for YL. In contrast, the two datasets based on the county-level census
(ZC and the LMAV dataset) showed an increase in cropland area, which
was 0.9× 104 km2 for ZC and 1.3×104 km2 for the LMAV dataset. The
divergences in the 30 years led to substantial discrepancies in cropland
area magnitude for the period before the 1950s. In general, RF, HYDE
3.2, and YL had a larger area than the other two datasets. For instance,
in 1910, regional cropland area was 6.0×104 km2 for RH,
5.1×104 km2 for HYDE 3.2, and 4.6× 104 km2 for YL, but only
3.3×104 km2 for our LMAV dataset and 3.2× 104 km2 for ZC.

4. Discussion

4.1. Driving forces of land use change in the LMAV

At the global level, human’s reaction to economic opportunities, as
regulated by institutional factors, was recognized as the major driving
factors for LUC (Lambin et al., 2001). Historical changes of the LMAV
cropland area could be potentially explained by the government po-
licies and regional and national markets. We found that cropland ex-
pansion kept at a high level in the late 19th century and the early 20th
century. The Swamp Land Acts of 1849–1850 granted federal swamp-
lands to the states to encourage the land reclamation for agricultural
use, which was considered as a critical driver for the fast agricultural
expansion from the early 1800s to the 1930s (Stanturf et al., 2000). In
the 1960s, soybean, wheat, and corn prices reached an all-time high
and caused another round of fast cropland expansion in the LMAV
(Oswalt, 2013; Stanturf et al., 2000; Sternitzke, 1976).

In recent decades, cropland abandonment overweighed cropland

expansion in the LMAV. The significant cropland abandonment started
in the 1980s. Since then, afforestation on the marginal croplands has
been widely implemented under the support of multiple conservation
and wildlife habitat easement programs (Faulkner et al., 2011; King
et al., 2006). For instance, the Conservation Reserve Program (CRP)
and the Agricultural Conservation Easement Program (ACEP, formerly
Wetlands Reserve Program (WRP)) offer rental payments or cost-share
assistance to farmers who revert or convert agricultural land into forests
or wetlands (Hamdar, 1999; Oswalt, 2013). These programs supported
forest plantation on more than 270,000 ha of marginal farmland in the
LMAV between 1990 and 2013 (De Steven et al., 2015). Through the
administration of conservation programs, the government adjusted
cropland enrollment acreage according to crop prices and exerted
strong influences on the changes in cropland area at the regional and
national levels (Hendricks and Er, 2018).

Conservation easement programs are voluntary, in which land-
owners retire land from agriculture in exchange for rental payments
(https://www.fsa.usda.gov/programs-and-services/conservation-
programs/index). Although landowners participating in easement pro-
grams could be largely grouped into the categories of financial or-
ientation, ecological orientation, and residential orientation (Farmer
et al., 2017), the primary driving force is the declining agricultural
income relative to forest production (Napton et al., 2010). Therefore,
agricultural lands with low production and high flooding frequency
tend to be abandoned earlier than those in the upland area with a
shorter inundation period (Stanturf et al., 2000).

4.2. Advantages of the LMAV cropland dataset

As described in Section 3.4, cropland areas in the five datasets
showed significant discrepancies before the 1960s largely due to the
difference in the incorporated agricultural census data. Between 1930
and 1960, datasets using state-level census showed declining cropland
area, but datasets using county-level census showed the opposite. In
terms of the changing trend, we have more confidence in ZC and our
dataset as they included more detailed county-level census data. The
county-level forest survey data from the Forestry Inventory and Ana-
lysis (FIA) program showed that forest area in the LMAV decreased by
∼1.5× 104 km2 from 1930 to 1960 (identified from Fig. 5 in Oswalt
(2013)), which supported the increased cropland area in our dataset by
1.3×104 km2 over the same period. Therefore, we argue that using
state-level census data could introduce unrealistic changing trend and
temporal variations into the reconstructed regional cropland area.

Comparing to the ZC dataset (5 min), our dataset (30m resolution)
give finer spatial information. The coarse-resolution dataset has been

Fig. 7. Time series of the cropland area (black circle) in the Lower Mississippi Alluvial Valley from 1850 to 2018 and the detected tipping point (dash line). The green
curve is the sum of squared residuals (SSR) for the fitted piece-wise linear regression with α moving from 1855 to 2013. The fitted lines before and after the tipping
point are shown in red and blue, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article).
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Fig. 8. Tipping point for the county-level cropland area. (A) Types of the tipping points, (B) occurrence period of the tipping points, (C) number of counties for each
of the six types of tipping point, and (D) number of counties with the type-3 tipping point in eight periods. For the tipping points, changing trend of cropland area
before the tipping point is γ1, and changing trend after it is +γ γ1 2. Type 1: >γ 01 , + >γ γ 01 2 , and > +γ γ γ1 1 2; Type 2: >γ 01 , + >γ γ 01 2 , and < +γ γ γ1 1 2; Type 3:

>γ 01 and + <γ γ 01 2 ; Type 4: <γ 01 , + <γ γ 01 2 , and < +γ γ γ1 1 2; Type 5: <γ 01 , + <γ γ 01 2 , and > +γ γ γ1 1 2; and Type 6: <γ 01 and + >γ γ 01 2 .
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Fig. 9. Cropland expansion and abandonment in the Lower Mississippi Alluvial Valley. Spatial distribution and the periods of cropland expansion (A) and aban-
donment (B), and (C) decadal variations in the rates of cropland expansion and abandonment.
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found unable to represent land cover changes within the grid and tends
to underestimate the LUC impacts on ecosystem dynamics (Yu et al.,
2019). Therefore, our dataset would show better performance in eval-
uating the LUC impacts at the watershed, landscape, and county scales
in the LMAV.

Croplands in our dataset consisted of five major components (see
Section 2.2.1), while Yu and Lu (2018) defined the cropland as the
lands that crops are planted on, including harvested cropland, cover
crops, and crop failure. Cropland pasture and fallow were not con-
sidered as cropland in the YL dataset. The difference in cropland defi-
nition explained the slightly larger cropland area in our dataset than
that in the YL data from 2010 to 2016 (Fig. 12), although both in-
corporated NASS CDL over this period. We also noticed a drop in
cropland area from 2009 to 2010 in the YL dataset (5.9× 104 km2 in
2009 and 5.4×104 km2 in 2010) likely caused by the inconsistent
cropland record in the NASS CDL (2010–2016) and the census data
(Crop Production Historical Report, 1909–2016) used by Yu and Lu
(2018). This artificial gap was removed in our dataset according to a
reconciliation algorithm (section 2.3.1) through modifying the census
data, implying the necessity of area reconciliation when merging two or
more cropland datasets.

In the RF and ZC datasets, the total cropland area in one political
unit (county or state) was allocated to grids using the spatial pattern
observed by satellite in the contemporary period. HYDE 3.2 spatialized
the total cropland area through a more sophisticated algorithm by ar-
bitrarily setting the weights to satellite observations and other geo-
graphic parameters. In this study, we developed a machine learning
algorithm and used the CDL cropland pattern in 2010 to train this al-
gorithm. Through this approach, the most likely places for cropland
area change were automatically determined. Our study introduced the
combination of machine learning and county-level census to the long-
term cropland reconstruction at a high spatial resolution, which could
potentially improve the assessment accuracy of LUC impacts. This
methodology can also be transplanted to other regions or basins for the
long-term cropland reconstruction.

4.3. Potential applications of this dataset

In the LMAV, the current evaluation of the LUC impacts on eco-
system services was primarily conducted at the site level through in-situ
observations and measurements (e.g. Brye et al., 2016; Shoch et al.,
2009). We acknowledge that these site-level observations are instru-
mental in understanding ecosystem services offered by natural ecosys-
tems and agricultural lands. However, there is still a knowledge gap
regarding how the LUC affected the LMAV ecosystem services at the
regional and landscape scales over a long period. Process-based land
ecosystem modeling and hydrological modeling could potentially fill
this knowledge gap (e.g. Francesconi et al., 2016; Logsdon and
Chaubey, 2013; Schröter et al., 2005). Cropland dataset developed in
this study could be processed in conjunction with the potential vege-
tation map to produce a long-term land cover dataset (Liu et al., 2013;
Ramankutty and Foley, 1999a). Simulations of the process-based
models, driven by the LUC dataset in this study, could provide spatially-
explicit information regarding the impacts of cropland expansion and
afforestation on regional ecosystem services, such as ecosystem pro-
ductivity, carbon sequestration, land ecosystem GHG emissions, water
quality, groundwater storage, and soil erosion (e.g. Tao et al., 2014;
Tian et al., 2016; Zhang et al., 2017).

Additionally, our dataset could help to attribute the long-term river
discharge and water quality records (Green et al., 2014). USGS pro-
vided the hydrological observations for Mississippi and other states
(https://waterdata.usgs.gov/ms/nwis/qw). Data records in many sites
could date back to the early 20th century. For instance, river discharge
data for the site on the Big Sunflower River (USGS 07288500) in Mis-
sissippi started in 1936, and the water quality data started in 1964. Our
dataset could be employed to quantify the contributions of land con-
version and agricultural management to the time series of water quality
and river flow observation. The information on the magnitude of
cropland area and cropland distribution could be instrumental for social
economists to investigate how socioeconomic, geographical, and en-
vironmental factors controlled the regional land use patterns. This da-
taset is expected to aid in developing better managerial and policy

Fig. 10. Validation of the reconstructed cropland distribution in 2001 (A) and 2017 (B) against the National Land Cover Database dataset (NLCD) and the Cropland
Data Layer (CDL).
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Fig. 11. Spatial distribution of cropland in 1992 in the Lower Mississippi Alluvial Valley in five cropland datasets. All the datasets are projected into an Albers Equal
Area coordinate system.
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strategies for conserving natural resources and enhancing ecosystem
services.

4.4. Implications for stakeholders

To acquire financial support from national and state-level con-
servation programs and restore natural resources, many farmers in the
LMAV have a strong willingness to plant bottomland hardwoods on the
marginal agricultural lands (Faulkner et al., 2011; King et al., 2006).
The delineation of marginal agricultural land could provide useful in-
formation for landowners to determine the locations to retire croplands
and enroll their lands in easement programs. Eq. 4 considers topo-
graphical and hydrological factors to estimate cropland probability. In
conjunction with the spatially-explicit crop yield census data and sa-
tellite-based vegetation productivity, a machine learning approach
could be developed to estimate crop productivity (Chlingaryan et al.,
2018) and support landowners to make decisions on agricultural land
retirement and hardwood forest plantation.

The declined cropland area in recent decades (Fig. 5) indicates the
effectiveness of conservation easement programs in restoring natural
vegetation. With the emerging environmental issues in the LMAV, such
as groundwater overdraft, soil erosion, and water quality degradation
(Ullah and Faulkner, 2006; Yang et al., 2019), national and state ea-
sement programs are expected to play a more important role in miti-
gating the negative consequences caused by crop cultivation. The
cropland dataset developed in this study could be helpful to understand
to what extent the governmental policies and easement programs have
changed land use pattern in the LMAV.

4.5. Uncertainties and future needs

In this study, a logistic regression algorithm was used to estimate
cropland probability and determine the placement of LUC occurrence.
Although this method has been proved to be capable of reconstructing
the historical land use pattern (Sohl et al., 2016, 2012; Sohl and Sayler,
2008), our approach and dataset are subject to some uncertainties. One
source of uncertainty is the fitted parameters based on the satellite-
observed cropland distribution in 2010. The parameters were assumed
to be constant over the entire study period. Nonetheless, this assump-
tion may not hold in the early period, particularly the 19th century,
when the decisions on reclamation location might be different from the
contemporary period. We acknowledge that data accuracy would de-
crease with time back to 1850. Uncertainty may also come from the
annual cropland area changes. As the county-level census data could
only provide information on the net changes in the annual cropland
area, we assumed that, in one specific county, either cropland

expansion or abandonment equaled the net changes in the cropland
area. This assumption ignored the simultaneous occurrence of cropland
expansion and abandonment in one county between two census periods
and could lead to the underestimated rates in cropland expansion and
abandonment. According to the county chronologies in the Atlas of
Historical County Boundary (https://publications.newberry.org/
ahcbp/index.html), county boundaries in the LMAV remained roughly
stable after the 1850s. Therefore, we expected that the application of
contemporary county boundaries would not led to a significant un-
certainty in the data reconstruction.

Besides the logistic regression, other machine learning algorithms,
such as Random Forest (RF) and Artificial Neural Networks (ANN),
have also been implemented to model local and regional land use
change (e.g. Li and Yeh, 2002; Samardžić-Petrović et al., 2017). These
algorithms have the potential to be installed into the framework in this
study to determine the appropriate locations of land use change. In the
future work, we suggest reconstructing historical cropland patterns
though multiple machine learning algorithms and compare data accu-
racy.

5. Conclusions

Human activities have substantially changed global land surfaces
and ecosystem services. However, applications of the coarse-resolution
cropland dataset led to significant uncertainties when evaluating the
LUC impacts at the regional and landscape levels. To this end, we de-
veloped a novel framework to reconstruct a regional cropland dataset in
the LMAV through integrating remote sensing observations, county-
level census, and a machine learning algorithm. The major advantages
of the method and dataset reside in (1) the relatively high spatial re-
solution (30m) allowing its applications in investigating basin and
watershed-level land use change impacts on the long-term hydrological
and ecological processes; and (2) the integration of county-level census
data enhancing data accuracy of the long-term trend in cropland area,
particularly during the period before the 1960s. This dataset is expected
to reduce the uncertainties in evaluating the LUC impacts and provide a
sound scientific basis for the government and policy makers to develop
land use and management plans to enhance ecosystem services. The
framework developed in this study can also be used in other regions for
long-term high-resolution cropland reconstruction.

Data availability

Availability of all input data is described in section 2 “Data and
Methods”. The reconstructed land use dataset in the LMAV cound be
obtained upon reasonable request from the corresponding author.

Fig. 12. Inter-annual variations of the total cropland area from 1850 to 2018 in the Lower Mississippi Alluvial Valley in the five datasets. The inset shows the changed
cropland area between 1930 and 1960.
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