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Abstract: The southern Appalachian forests have been threatened by several large-scale disturbances,
such as wildfire and infestation, which alter the forest ecosystem structures and functions.
Hemlock Woolly Adelgid (Adelges tsugae Annand, HWA) is a non-native pest that causes widespread
foliar damage and eventual mortality, resulting in irreversible tree decline in eastern (Tsuga canadensis)
and Carolina (T. caroliniana) hemlocks throughout the eastern United States. It is important to
monitor the extent and severity of these disturbances over space and time to better understand their
implications in the biogeochemical cycles of forest landscapes. Using all available Landsat images,
we investigate and compare the performance of Tasseled Cap Transformation (TCT)-based indices,
Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Disturbance
Index (DI) in capturing the spectral-temporal trajectory of both abrupt and gradual forest disturbances
(e.g., fire and hemlock decline). For each Landsat pixel, the temporal trajectories of these indices were
fitted into a time series model, separating the inter-annual disturbance patterns (low frequency) and
seasonal phenology (high frequency) signals. We estimated the temporal dynamics of disturbances
based on the residuals between the observed and predicted values of the model, investigated the
performance of all the indices in capturing the hemlock decline intensity, and further validated the
results with the number of individual dead hemlocks identified from high-resolution aerial images.
Our results suggested that the overall performance of NDVI, followed by TCT wetness, was most
accurate in detecting both the disturbance timing and hemlock decline intensity, explaining over
90% of the variability in the number of dead hemlocks. Despite the overall good performance of
TCT wetness in characterizing the disturbance regime, our analysis showed that this index has some
limitations in characterizing disturbances due to its recovery patterns following infestation.

Keywords: Hemlock Woolly Adelgid; fire; Landsat; Tasseled Cap Transformation

1. Introduction

Over the last century, due to climate change and human activities the eastern North American
forests have been affected by a number of large-scale disturbances, including wildfires, insect infestation,
frequent droughts, and human-induced deforestation [1–3]. Among these, non-native pests and
wildfires have been reported as two major forest disturbance agents in the southern Appalachian
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Mountains [4,5]. Hemlock Woolly Adelgid (Adelges tsugae Annand, HWA) is a non-native insect that
causes widespread foliar damage and potentially complete mortality [6,7] in eastern (Tsuga canadensis)
hemlock and Carolina hemlock (Tsuga caroliniana) (hereafter, “hemlocks” refers to both species).
Hemlocks are one of the key late successional species in this forest ecosystem which suppresses
hardwood regeneration due to the cool shaded environments under the canopy [8]. Hemlocks usually
occur in riparian areas and the moist coves of mixed forests in complex terrains [9], often co-occurring
with Rhododendron understories [6,10,11]. Since the initial outbreak of HWA in Virginia in the early
1950s [12–14], HWA expanded and recently it has caused widespread hemlock decline in the southern
Appalachians [7,9,15,16]. Due to the lack of natural controls such as predator insects and lethal cold
temperature [10,17], complete hemlock mortality usually occurs over 4 to 6 years after the initial
infestation in this region [12,18,19].

Fire regimes in the eastern US are characterized by frequent, low-intensity fires caused by both
humans and natural causes [20,21]. Historically, the fire regime has contributed to the dominance of
the fire-tolerant oak (Quercus) species in deciduous forests [22,23]. However, fire suppression since the
“Smokey Bear” era has promoted a gradual decline in fire-tolerant oaks and increase in fire-sensitive
mesophytic species (e.g., red maple and tulip poplar), often referred to as forest “mesophication” [20].

Altered by disturbances, the subsequent forest declines caused by fire, infestation, and recovery
have both long- and short-term impacts on the forest composition and associated ecohydrological
processes [7,24–26]. To better understand the implications of HWA infestation and fires in forest
landscapes, the spatial pattern and severity of these disturbances needed to be accurately monitored
over time [27]. Improvement in the monitoring of HWA defoliation and its progress in space and
time can provide forest managers with a better understanding of the decline patterns, as well as
post-defoliation restoration strategies [7,10]. However, the extensive scales of hemlock infestation
have limited ground-based assessment and necessitate the use of multi-temporal aerial and satellite
imagery for monitoring [19,28]. Remote sensing has been widely used to develop cost-effective and
accurate approaches to monitor the forest defoliation across the eastern United States at different spatial
scales [19,29–31]. Landsat imagery, in particular, provides the temporal and spatial information needed
for monitoring and characterizing forest disturbances at the regional to continental scales [32–39].

Traditionally, the spatial distribution of disturbances was estimated by comparing a limited
number of images before and after disturbances [15,27,40–42]. Forest disturbance outbreaks often
lead to a major reduction in foliar biomass and greenness. Therefore, spectral vegetation indices (VIs)
such as the Normalized Difference Vegetation Index (NDVI) [43,44] have been widely used in forest
disturbance studies [27,41,45–47]. However, some studies suggested that the performance of some VIs
could be limited by the rapid growth of co-occurring understory species and the regeneration of new
seedlings [15,27]. Net canopy loss often accompanies changes in the light and soil moisture available
for the recovery of new seedlings and faster growth of co-occurring species [3,10,48]. Therefore,
Tasseled Cap transformation (TCT) indices [49] were also used in vegetation monitoring, such as
fire, mortality, forest succession, and regeneration process, to detect the accompanying changes in
forest conditions [15,38,42,50–53]. TCT usually incorporates three orthogonal principal components
of brightness (TCB), greenness (TCG), and wetness (TCW) in a linear combination of multi-spectral
bands [49]. Studies suggested that TCW, a shortwave infrared-dominated index, could be a reliable
indicator of species health and structural complexity, highly correlated with the water content variation
in vegetation and soil [15,38,52,54,55]. For example, Jones et al. [15] used two Landsat TM images to
compare the NDVI and TCT indices’ performances, suggesting that the TCW differential index was
strongly correlated with hemlock decline. Using Landsat images, Healey et al. [42] developed the
Disturbance Index (DI), a linear combination of normalized TCT indices, to investigate stand-replacing
forest changes.
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There are still some limitations in using a small number of before- and after-disturbance images:
First, this method can limit the understanding of the disturbance progress and subsequent recovery
patterns over time [56]. Second, although this approach can be a good indicator of abrupt changes such
as wildfire, it may have limited capability in detecting gradual disturbances, such as gradual defoliation
or tree mortality [36]. Third, finding a pair of cloud-free near anniversary images to minimize the
incidental changes is often challenging [39]. With the availability of all Landsat archived images [57],
many studies used multi-temporal Landsat data to detect long-term changes in the land cover and
forest structures [36,58–60]. These studies showed that using dense time series Landsat images is a
powerful approach to characterize both abrupt and subtle disturbances [36–38,56,61–64].

However, it is not clear how well the dense time series of different spectral measurements
work for monitoring abrupt and gradual damage in forest ecosystems. In this study, we aim to
quantify the performance of different spectral indices derived from Landsat imagery in capturing the
spectral-temporal characteristics of both gradual and abrupt forest disturbances by HWA infestation
and fire. Our findings provide valuable guidance for future efforts monitoring forest ecosystem
disturbance using remote sensing, and the algorithm we developed here can be used as an efficient
tool for forest management, planning, and restoration.

2. Materials and Methods

2.1. Study Site

Linville Gorge Wilderness area is located on the eastern edge of the southern Appalachian
Mountains in North Carolina, USA (Figure 1). The study area has a rugged terrain with an elevation
ranging from 280 to 1300 m. This study focuses on the southern part of this wilderness area of
approximately 135 km2. Although the majority of wilderness area remains unlogged [65], two major
forest disturbances have occurred since the early 1990s. The first one is HWA infestation in the lower
Linville Gorge watershed ([66]; Figure 1), and the second is recurrent wildfires in the southern part of
the lower watershed [5,65,66]. Hemlock defoliation in this study site was first reported in the early
2000s [67], and prior to this the defoliation riparian area was dominated by hemlocks in the presence
of dense Rhododendron maximum shrubs in the understory [5]. Since the 1950s, this region had not been
subjected to large-scale fires until November 2000 [68], when about 4000 ha of the wilderness area was
burned by the Brushy Ridge human-initiated fire [5]. Two recent human-initiated fires, “Shortoff and
Linville Complex” and “Pinnacle”, were ignited in May 2007 and through June burned about 970 ha
and 2000 ha within the gorge area, respectively [5,66]. A large portion of the Pinnacle fire overlapped
with the 2000 Brushy Ridge fire [5,66]. Most recently, the White Creek fire burned the same area in
March 2017. However, visual interpretation of 10 June 2016, and 3 July 2018, National Agriculture
Imagery Program (NAIP) images (with a 1m resolution) showed that this fire was not as extensive as
the 2000 and 2007 wildfires.

2.2. Digitizing Dead Hemlock Trees

To evaluate and compare the performance of spectral indices in capturing the disturbance
intensity, the spatial distribution of the dead hemlocks was used. To delineate the dead hemlock
trees, classification methods such as Maximum Likelihood were tested; however, the accuracy of
these methods were not as high as expected. Therefore, to build a more accurate map for the
validation process of this study, all the dead hemlock trees were visually identified from aerial images.
We digitized all the dead or dying conifers exhibiting the white crown and branching structure
of hemlocks (Figures 2 and 3) using a high-resolution NAIP image taken on 5 July 2010 (Figure 1).
Where there was ambiguity, we also relied on a leaf-off Color-Infrared Digital Orthophoto Quarter
Quads (DOQQ) aerial image from 1998 to distinguish the evergreen hemlocks from deciduous trees in
these mixed forests. A total of 16,425 dead or dying trees were manually identified and digitized in our
study area (Figure 1). Note that this only captured dead overstory trees, and not those in the subcanopy



Remote Sens. 2020, 12, 2412 4 of 20

or understory. While all the digitized trees are not likely to be hemlocks, the dead trees conform to
known hemlocks’ habitats and observed declines during this period. Ground-based observations give
us confidence that the vast majority of the dead trees mapped in this area are hemlocks. We then
aggregated these digitized points to the Landsat resolution (30 m) by counting all the digitized dead
trees within a single pixel. In this study, the number of dead trees was used as a proxy of hemlock
decline intensity at each pixel.
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Figure 1. National Agriculture Imagery Program (NAIP) aerial image (5 July 2010) of the study site, 
Linville Gorge Wilderness Area, North Carolina, USA. Yellow points represent digitized dead 
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out with the red arrow. The blue square and the red boundary are sub-region 1 and 2, respectively, 
are selected for the further analysis. 

Figure 1. National Agriculture Imagery Program (NAIP) aerial image (5 July 2010) of the study site,
Linville Gorge Wilderness Area, North Carolina, USA. Yellow points represent digitized dead hemlocks.
The visible 2007 fire scars on this image, with light shades of grey and white, are pointed out with the
red arrow. The blue square and the red boundary are sub-region 1 and 2, respectively, are selected for
the further analysis.
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Figure 2. Photo of dead hemlocks taken from the western rim of the Linville Gorge on 10 July 2014. 
Early after mortality, the lichen-covered white branches show unique looks, often called “grey 
ghosts”. The recovery pattern of deciduous trees can also be seen in this photo taken by Steven P. 
Norman, US Forest Service. 

 
Figure 3. Examples of the digitized dead or dying hemlocks (yellow points) on the National 
Agriculture Imagery Program (NAIP) image (5 July 2010) at two sample sub-regions of the study site. 

  

Figure 2. Photo of dead hemlocks taken from the western rim of the Linville Gorge on 10 July 2014.
Early after mortality, the lichen-covered white branches show unique looks, often called “grey ghosts”.
The recovery pattern of deciduous trees can also be seen in this photo taken by Steven P. Norman,
US Forest Service.
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Imagery Program (NAIP) image (5 July 2010) at two sample sub-regions of the study site.
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2.3. Landsat Imagery

We downloaded all the available collection-1 level-2 pre-processed Landsat Thematic Mapper (TM)
(n = 822) and Operational Land Imager (OLI) (n = 210) scenes from 1990 to 2018 from the USGS Earth
Explorer website (https://earthexplorer.usgs.gov/). The surface reflectance products provided by level-2
Landsat TM and Landsat OLI are automatically atmospherically corrected using the Landsat Ecosystem
Disturbance Adaptive Processing System (LEDAPS) [69,70] and the Land Surface Reflectance Code
(LaSRC) [71] algorithms, respectively. In this study, the Landsat Enhanced Thematic Mapper Plus
(ETM+) images were not used due to the gaps caused by Scan Line Corrector (SLC) failure since 2003.
We masked out the cloud, cloud shadow, and snow pixels using Matlab scripts and the quality
assessment (QA) bands provided by the CFMask algorithm [72,73].

2.4. Temporal Trajectory of Spectral Indices

We integrated frequent Landsat images in statistical analysis and visual interpretation to compare
the performance of different spectral indices in (1) determining the temporal dynamics of major
disturbances processes, including timing and duration; and (2) capturing the hemlock defoliation
intensity, further cross-validated by fine-resolution imagery. We investigated the performance of eight
spectral indices—including three TCT indices, two TCT ratio indices, NDVI, Enhanced Vegetation
Index (EVI) [74], and DI trajectories (Table 1)—in monitoring the spectral-temporal patterns of forest
disturbances. The TCTs were developed by Kauth and Thomas [49] to reduce the dimensionality
of spectral data and compress the spectral variation from the original bands into a few principal
components [75,76]. We used the first three principal components: brightness (TCB), greenness (TCG),
and wetness (TCW). TCB was designed to capture the overall brightness, TCG represents the degree
of green vegetation vigor, and TCW shows the variation in the vegetation/soil moisture [52,75–77].
The TCT indices of Landsat TM and OLI scenes were calculated using the coefficient provided by
Crist et al. [75] and Baig et al. [77], respectively. To reduce the topographic illumination effects of the
TCT indices, we also tested the performance of “ratio” indices, such as TCB/TCG (B/G) and TCB/TCW
(B/W). The primary topographic effects, changes in solar illumination angle and subsequent surface
reflectance, are consistent for all the bands [55,78]; hence, we expected the TCT ratios, NDVI, and EVI
to cancel out the topographic effects to some degree [55,79–81]. We examined the performance of these
eight indices (summarized in Table 1) in highlighting the potential temporal information of disturbance,
such as complete tree morbidity, as well as in capturing the hemlock decline intensity. These indices
values were rescaled to the [0, 1] range to facilitate the comparison between them.

Table 1. List of the eight indices examined in this study.

Index Acronym Reference

TC Brightness index TCB Kauth & Thomas [49]
TC Greenness index TCG Kauth & Thomas [49]
TC Wetness index TCW Kauth & Thomas [49]

Normalized Difference Vegetation Index NDVI Rouse Jr et al. [43] Tucker [44]
Enhanced Vegetation Index EVI Huete et al. [74]

TC Brightness/TC Greenness ratio B/G
TC Brightness/TC Wetness ratio B/W

Disturbance Index DI Healey et al. [42]

2.5. Disturbance Detection Algorithm

To estimate the time series model of indices under stable conditions before the disturbances,
we separated the study period into pre-disturbance (1990 to 2000) and post-disturbance periods (2001
to 2018). To reduce the influence of outliers, mostly caused by missed clouds, cloud shadows, or snow,
the values lower than the 5th or higher than the 95th percentiles were removed from the further
analyses. A time series model (Equation (1)), used by Zhu and Woodcock [39] to develop the continuous

https://earthexplorer.usgs.gov/
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change detection classification (CCDC) algorithm, was used to separate low-frequency patterns (e.g.,
long-term patterns or disturbances) from high-frequency signals (e.g., seasonal phenology) at each
pixel [39].

p(t)i = ai + bi × cos
(2π

T
t
)
+ ci × sin

(2π
T

t
)
+ di × t, (1)

where i is the Landsat pixel number, p(t)i is the predicted index value for the Julian date t of pixel
i, t is the Julian date of clear observations in pixel i, and T is the number of days in a year (365).
This model has four fitted parameters: a—intercept; b and c—coefficients to model high-frequency
signals; and d—first-order coefficient to model low-frequency signal. High-frequency coefficients are
designed to capture seasonal phenology or intra-annual changes, while low-frequency coefficients
capture long-term linear trends. An iterative nonlinear least squares method was used to fit the time
series of the eight spectral indices at each pixel during the pre-infestation period using the Matlab nlinfit
function (MathWorks, Natick, MA, USA). The fitted models were then extended to the post-infestation
period to calculate the residuals between the observed and modeled values, being used to capture the
characteristics of disturbance and recovery at each pixel.

2.6. Maximum Disturbance Timing and Magnitude

For the time series of residual values at each pixel, we applied a moving average method with
one-year windows at every three-month time step. This moving average approach was applied (1)
to minimize the remnant effects of seasonal variation (e.g., inter-annual variation in phenology) and
(2) reduce the effect of outliers and possible short-term changes (e.g., snow or clouds) not filtered by
quality control. Note that there is an observational gap between 2012 to 2013 in our Landsat data due
to not using the Landsat ETM+ images, so the moving windows overlapping with this gap were not
considered in our analysis. From the temporal trajectory of the mean residuals, two metrics were
calculated at each pixel: (1) the year with the maximum absolute mean residual as the “maximum
disturbance timing”, and (2) the maximum absolute mean residual as the “maximum disturbance
magnitude” as an indicator of disturbance intensity. To evaluate if the post-disturbance changes in
a pixel are significantly different from the pre-disturbance conditions, a two-sample t-test was used.
The t-test was applied to the residuals of the pre-disturbance period and the residuals within the
1-year window with the maximum absolute mean residual. Pixels with no significant changes from the
pre-disturbance conditions were excluded for the further analysis.

Two sub-regions were selected for further evaluation. Sub-region 1, with a 5.7 km2 forested area
(80 × 80 Landsat pixels) including both HWA defoliated pixels and non-defoliated pixels, was selected
to investigate the capability of the indices in capturing the infestation timing and intensity (Figure 1).
No wildfire has been reported in this sub-region. Sub-region 2 with a 47.5 km2 area was located in
the southern Linville Gorge Wilderness area where most wildfires occurred (Figure 1). To compare
the performance of our metrics in capturing the fire disturbance timing, we also used the Linville
Gorge fire history map between 1980 and 2017, which has been mapped by the Wildland Fire Decision
Support System (WFDSS) (https://wfdss.usgs.gov). We compare the maximum disturbance timing
maps from the eight spectral indices in terms of the perimeters of fire and occurrence year of this map.

To evaluate the hemlock decline intensity estimated from the eight spectral indices, we compared
the maximum disturbance magnitude maps with the number of dead hemlocks per pixel (as a
representative of decline intensity) and their spatial distribution. To compare the indices’ performances,
the maximum disturbance magnitude maps of sub-region 1 with different dynamic ranges were
rescaled using the maximum and minimum values. To evaluate the performance of the indices, we first
produced boxplots of the scaled maximum disturbance magnitudes grouped by the number of dead
hemlocks. Then, a linear regression analysis was applied between the number of dead hemlocks and
the median maximum disturbance magnitude values of pixels with the same number of dead hemlocks.
Due to the small sample size, we grouped the pixels with 10 or more dead hemlocks into one group.

https://wfdss.usgs.gov
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3. Results

3.1. Temporal Dynamics of Indices Time Series

First, we show examples that give the spectral trajectories of TCW and NDVI in two Landsat
pixels: (1) a pixel with a fire occurrence in 2007 (Figure 4) and (2) an HWA-defoliated pixel with
12 dead hemlocks without fire (Figure 5). The fire in 2007 was characterized as an abrupt change in
the TCW (Figure 4a), NDVI (Figure 4b), EVI (Figure S1c), and B/G (Figure S1d). The hemlock decline,
however, was captured as more a gradual change in all the indices for the selected pixels (Figure 5
and Figure S2). Compared to the other indices, the TCB time-series is noisy with more inconsistent
seasonal patterns (Figures S1a and S2a). TCB slightly increased during the disturbances (Figures S1a
and S2a) because disturbed pixels might have a higher background reflectance than undisturbed ones.
TCG, TCW, NDVI, and EVI values, on the other hand, decreased due to defoliation, corresponding
dryness, and background color changes (Figures 4 and 5, Figures S1 and S2). Subsequently, the B/G
and DI values increased with forest disturbances (Figures S1 and S2), while the B/W values decreased
(Figures S1e and S2e). TCW (Figures 4a and 5a) had a smaller intra-annual variability during the
pre-disturbance period than the other indices.
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Figure 4. The spectral trajectories of (a) wetness (TCW) and (b) Normalized Difference Vegetation
Index (NDVI), their residuals (light grey lines), and the mean values within 1-year moving windows
with 3-month steps (solid black line with dots in lower panels) at a Landsat pixel with a fire in 2007.
The residuals were the difference between the observed and projected values (dark grey line) fitted by
Equation (1) before 2000. The maximum disturbance magnitude (red lines) and its timing (blue circles)
are shown in the mean residuals’ trajectories.
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Figure 5. The spectral trajectories of (a) TCW and (b) NDVI, their residuals (light grey line), and mean
values within 1-year moving windows with 3-month steps (solid line with dots in lower panels) at a
Hemlock Woolly Adelgid (HWA)-defoliated Landsat pixel with 12 dead hemlocks. The residuals were
the difference between the observed and projected values (dark grey lines) fitted by Equation (1) before
2000. The maximum disturbance magnitude (red lines) and its timing (blue circles) are shown in the
mean residuals’ trajectories.

Pixel-based observations indicate that the spectral trajectories of these indices have the potential
to provide temporal information regarding disturbance onset, maximum disturbance timing,
and subsequent sub-canopy recovery (Figures 4 and 5, Figures S1 and S2). The temporal patterns of
the HWA-defoliated pixel showed that the gradual declines of TCG, TCW, NDVI, and EVI, as well as
gradual increases of TCB, B/G, and DI began around 2003, and maximum forest disturbance occurred
between 2007 and 2010 (Figure 5 and Figure S2). This suggests that it took about 4 to 7 years for the
initial HWA outbreak to complete hemlock mortality.

The maximum disturbance timing maps are shown for sub-region 1 (Figure 6) and sub-region 2
(Figure 7). NDVI, B/G, and TCG detected the maximum disturbance timing more accurately and
consistently than the other indices, while TCB and B/W showed the weakest performance. Based on TCB
and B/W, the maximum disturbance for most of the pixels in sub-region 1 occurred before 2006, which
is unlikely to be based on the hemlock decline initial timing and duration of HWA defoliation [12,18,67].
Our result showed that in the maximum disturbance timing maps of NDVI and B/G, 66.24% and 62.35%
pixels of the 2007 fire boundary were accurately captured as 2007 or 2008, respectively. TCG, EVI, TCW,
and DI also captured about 57.1%, 54.2%, 38.2%, and 23.85% of the pixels of the 2007 fire boundary
as 2007 or 2008, respectively. For most of HWA-defoliated pixels, the maximum disturbance timing
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suggested by TCW was either 2008, 2009, or 2010, while those years identified by NDVI, B/G, and TCG
are mostly 2007 (Figure 6).
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The disturbance timing maps of sub-region 2 from TCG, TCW, NDVI, EVI, B/G, and DI generally
agree well with the WFDSS fire history map (Figure 7). The NDVI-derived disturbance timing was
slightly more accurate than the other indices (Figure 7e), where it captured the 2007 fire as the same
year and the 2000 fire with about a one-year delay. Although B/G, TCG, EVI, and TCW captured the
fire timing relatively well (especially the May 2007 fire), they showed slightly lagged responses in
some areas. The timing maps from these four indices indicated that the 2007 fire was detected as either
2007 or 2008, and the November 2000 fire was captured between 2000 and 2002 (Figure 7). The overall
performance of the brightness-related indices (TCB, B/W, and DI) in detecting this timing for pixels
with a wildfire history was lower than that of the other metrics (Figure 7).
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Figure 7. Spatial distributions of (a) 2000 and 2007 fire perimeters by the Wildland Fire Decision
Support System (WFDSS) fire history map, and the maximum disturbance timing maps derived
from eight spectral indices within sub-region 2 (Figure 1): (b) brightness (TCB), (c) greenness (TCG),
(d) TCW, (e) NDVI, (f) Enhanced Vegetation Index (EVI), (g) TCB/TCG (B/G), (h) TCB/TCW (B/W),
and (i) Disturbance Index (DI) (Table 1). The legend in map (b) applies to all the maps.
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3.2. Hemlocks Decline Intensity and Maximum Disturbance Magnitude

Comparisons of the maximum disturbance magnitude maps with the number of dead hemlocks
within sub-region 1 also demonstrate that TCW and NDVI were more in agreement with the dead
hemlock distribution than the other metrics (Figure 8). The TCB, TCG, EVI, B/G, B/W, and DI maximum
disturbance magnitude maps, on the other hand, did not match with the infestation intensity as well as
TCW and NDVI (Figure 8). For each index, the median maximum disturbance magnitudes for pixels
with the same number of dead hemlocks were extracted from the metrics’ boxplots (Figure S3) and
entered into the linear regression analysis. The relationships were statistically significant for all the
indices (p < 0.01), although the accuracy varied (Figure 9). TCW and NDVI were the best predictors of
the hemlock decline intensity (R2 = 0.98 and 0.924, respectively; Figure 9), while TCB, EVI, and B/W
showed the weakest performances.
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Figure 8. (a) Number of dead hemlocks digitized from the high-resolution aerial photos, and maximum
disturbance magnitudes within a sub-region 1 (Figure 1), estimated from eight spectral indices: (b) TCB,
(c) TCG, (d) TCW, (e) NDVI, (f) EVI, (g) B/G, (h) B/W, and (i) DI (Table 1). Grey pixels are the pixels
with no significant changes from the pre-disturbance condition.
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Figure 9. Linear regressions between the number of dead hemlocks and the median maximum
disturbance magnitudes for the eight spectral indices from the pixels with the same number of dead
hemlocks: TCB, TCG, TCW, NDVI, EVI, B/G, B/W, and DI (Table 1). All the regression lines are
statistically significant (p < 0.01).

4. Discussion

In this study, all the available Landsat images were used to explore the capability of eight spectral
indices to characterize the spectral-temporal dynamics of the forest fire and infestation disturbances.
Our results indicate that dense time series Landsat images enabled us to detect both the timing and
intensity of the disturbances accurately. Pixel-based interpretation showed that all eight indices
were able to capture the changes associated with the forest disturbances; however, their accuracy
in highlighting the characteristics varied. TCB had an inconsistent seasonal cycle, and the spectral
differences represented some extreme unexpected values (Figures S1a and S2a), which produced the
weakest overall performance in characterizing disturbances. The inconsistent patterns of TCB and TCG
are likely attributed to the sensitivity of these indices to the complex terrain [55] and the different sun
angles of images with different acquisition dates [82]. Based on pixel-based visualization, the detected
timing for TCB and B/G can be also explained by its post-disturbance pattern, where the TCB values
during recovery stage are as high as the disturbance period (Figures S1a and S2a). TCW also showed
a smaller seasonal variability compared to TCB during the pre-disturbance period, which is also
reported by another study [56]. Increasing or decreasing the pattern of the spectral indices during the
disturbances corresponded well with other studies [15,42,50,75].

4.1. Maximum Disturbance Timing

The initial timing of hemlock declines from the visual interpretation of trajectories aligns with
other studies, where the outbreak of HWA in North Carolina was reported in early 2000s [10,67].
TCW and NDVI, followed by TCG, B/G, EVI, and DI, have the most consistent performance in
identifying the maximum disturbance timing for infestation (Figure 6). The maximum disturbance
timing estimated by the spectral indices suggests that HWA takes about 4 to 7 years to complete stand
mortality. This is in agreement with other studies in this region, which documented 4–6 years for
complete hemlocks mortality [12,18]. For example, Ford et al. [10] reported that 6 years after the initial
outbreak of HWA in the southern Appalachian, more than 80% of the hemlocks were completely dead.
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B/G, TCG, and EVI performed well in detecting the maximum disturbance timing for fire (Figure 7),
which is in agreement with other studies [83,84] and may suggest that these indices perform better in
characterizing abrupt disturbances.

TCW identified the maximum disturbance timing with 1-year or more lags consistently for both
the infestation and fire, compared to NDVI (Figures 6 and 7). NDVI captured both the hemlocks’
decline and fire disturbance timing more accurately than the other indices (Figures 6 and 7). A possible
explanation could be the ability of NDVI to detect changes in vegetation density during the recovery
period. Based on the pixel-level observations of the TCW trajectory, no clear recovery was observed
(Figures 4 and 5). The lagged detection of the maximum disturbance timing was likely the result of
TCW producing large negative values (Figures 4 and 5) even after the subcanopy recovery verified in
field observations (Figure 2). The negative residuals and increased seasonal amplitudes in TCW during
the recovery influenced the mean residuals and produced the delayed maximum disturbance timing,
while NDVI showed steep increasing patterns at the initial stage of recovery. Another explanation for
the delayed responses of all indices for the 2000 fire event (Figure 7) may be because this fire occurred
late in the year (November); hence, in our moving average approach the maximum absolute mean
residuals could happen with at least a one-year delay (Figure 7). In addition, our analysis did not
detect the 2000 timing for many pixels within the perimeter, which might be explained by the fact that
the WFDSS map includes many lightly burned or even unburned areas. For example, the 2010 NAIP
image still showed that some hemlocks stands within the 2000 fire perimeter from the WFDSS map,
and it was very likely that the fire in 2000 lightly burned the study area.

4.2. Maximum Disturbance Magnitude

Although TCG was a good indicator of disturbance timing for both the infestation and fire
(Figures 6c and 7c), it was not a good predictor of the hemlock decline intensity (Figure 8c). It was
likely that the biased values in the TCG trajectory affected the maximum disturbance magnitudes.
Both the B/G and B/W ratios, designed to minimize the possible topographic effects, performed
better than TCB in capturing the disturbance timing and magnitude. However, these ratio indices
were sensitive to extremely small values in the denominator, and therefore produced quite unstable
time series. Although the maximum disturbance timing maps derived from B/G were reliable
(Figures 6g and 7g), the maximum disturbance magnitude did not match well with the number of dead
hemlocks (Figure 8g). The Disturbance Index (DI), introduced to accentuate the difference between
the disturbed and undisturbed forest conditions [42,85], did not perform better than TCW and NDVI
in detecting the maximum disturbance timing and hemlock decline intensity (Figures 6i, 7i and 8i).
The better performance of DI in detecting infestation intensity, compared to TCB and TCG, might be
explained by the usage of the normalized TCT values in its calculation, which would minimize the
effects of seasonality and variability due to bidirectional reflectance [85,86].

The maximum disturbance magnitudes of TCW and NDVI were relatively comparable with the
spatial distribution of the dead hemlock trees (Figure 8). In all the disturbance magnitude maps
(Figure 8), some pixels with no digitized dead hemlocks had large absolute disturbance magnitudes,
while some severely infested pixels had small absolute disturbance magnitudes. These unexpected
results might be explained in a few ways. First, the complex rugged terrain of the study area can limit
the performance of spectral indices, especially the ones that are more sensitive to topography variation,
such as TCB and TCG [55,87], leading to biased high or low relative residuals and inaccurate estimates.
Song and Woodcock [55] also reported that while TCB and TCG were sensitive to topographic effects
especially when the solar zenith angle was large, TCW and NDVI are less sensitive. While DI could
minimize the topographic effect by using normalized TCT, it can still be affected by topography,
inherited from the TCB and TCG variability. Studies also reported that although EVI can reduce
the effects of atmospheric conditions and vegetation saturation, compared to NDVI it is sensitive to
topographic and viewing illumination effects due to the presence of the soil adjustment factor in its
equation [80,88–90]. Second, there could be uncertainty in identifying the hemlock decline intensity
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at each pixel based on the number of dead hemlocks. HWA kills hemlocks across all ages and sizes
eventually [7], but their progresses are different based on their sizes [25]. Therefore, the number of
overstory dead hemlocks, as a proxy of hemlock decline intensity, without considering the projected
crown sizes, overlapping, and possible understory dead hemlocks, may either underestimate or
overestimate the infestation intensity within a single pixel, not even mentioning geometric errors.
Third, requiring clear remote sensing observations can produce small sample sizes in pixels with
persistent clouds or cloud shadows, thereby undermining the reliability and robustness of parameter
estimates in our regression models [39].

4.3. Post-Infestation Recovery

Another important information that can be retrieved is the recovery progress after the disturbances.
For example, the spectral trajectories of two example pixels (Figures 4 and 5, Figures S1 and S2)
indicated that all indices, except TCB and B/W, indicated onsets of recovery after 7–8 years of the
initial infestation (Figure 5), which also showed the stable seasonal patterns around 2014. While TCW
reliably identified the timing and magnitude of the disturbance, it has limitations in determining the
potential post-infestation recovery. The TCW residuals decreased toward negative values during the
entire period of infestation and recovery, and they never recovered, especially during the dormancy
seasons, to the pre-infestation level (Figure 5). The current evergreen hemlocks stands are being
replaced by deciduous trees, such as black birch (Betula lenta L.) and maple (Acer spp.) (Figure 2) [91].
Emerging leaf-off periods during this transition from evergreen to deciduous trees might indicate
that TCW might have limitations in detecting forest decline and following recoveries using image
difference [15]. Overall, our time series analysis also suggested that the seasonal dynamic of some
indices could be appropriate to characterize forest recovery following the disturbances. However,
such indices should be chosen more carefully, and the interpretation of the recovery patterns should
depend on subsequent species replacement. Future studies might be needed to validate the results
with ground-based observations in terms of recovery patterns.

4.4. Limitations of the Developed Method

Our method has some limitations. First, to fit the time series model during an undisturbed period,
it is necessary to have detailed historical information of the study area, such as the fire history and
perimeter, as well as high-resolution aerial photos. Therefore, in a region with frequent disturbances,
such as wildfires, defining a pre-disturbance period can be challenging. Second, in this study to evaluate
the performance of the indices we developed our algorithm to focus only on the maximum disturbance
events over the period of recording. However, it should be noted that this method could be adapted
to identify (local) maxima when the analysis of multiple disturbances is of interest. Our analysis on
pixels with both the 2000 and 2007 fires in the study site (Figure S4) showed that our approach could
be modified to detect multiple disturbances if we were to dig into several disturbance timings.

5. Conclusions

In this study, we examined the capability of eight spectral indices to capture the spectral and
temporal dynamics of fire and infestation disturbances in the southern Appalachian forest using all
available Landsat images. We estimated these disturbance characteristics in space and time based
on the residuals between the observed and predicted values of multi-frequency remote sensing
data, separating the inter-annual disturbance patterns (low frequency) and seasonal phenology (high
frequency) signals. In addition, we investigated the performance of these indices in capturing the
hemlock decline intensity, validated with the number of dead trees identified at each pixel. Our results
suggested that NDVI, followed by TCW, showed the most reliable performance in detecting the
temporal-spectral properties of forest disturbances in complex terrain, while TCB, B/W, and EVI have
the poorest performance in characterizing disturbances. Although TCW showed relatively consistent
results in capturing the disturbance regimes, it might have limitations in detecting recovery patterns.
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Our study highlights the value of using long-term Landsat imagery to monitor forest conditions over
space and time for forest disturbances and recovery.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/15/2412/s1,
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1-year moving windows with 3-month steps at a Landsat pixel with a fire in 2007. Figure S2: The spectral trajectory
of TCB, TCG, EVI, B/G, B/W, and DI; their residuals; and the mean values within 1-year moving windows with
3-month steps at a Landsat pixel with 12 dead hemlocks. Figure S3: Boxplots of indices’ maximum disturbance
magnitude as a function of the number of dead hemlocks in a pixel. Figure S4: The spectral trajectories of NDVI
for a Landsat pixel with both 2000 and 2007 fires.
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