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A B S T R A C T

The spatial pattern of surface fuelbeds in fire-dependent ecosystems are rarely captured using long-standing fuel sampling methods. New techniques, both field
sampling and remote sensing, that capture vegetation fuel type, biomass, and volume at super fine-scales (cm to dm) in three-dimensions (3D) are critical to
advancing forest fuel and wildland fire science. Such scales are particularly important for some computational fluid dynamics fire behavior models that operate in 3D
and have implications for wildland fire operations and fire effects research. This study describes the coupling of new 3D field sampling data with terrestrial laser
scanning (TLS) data to infer fine-scale fuel mass in 3D. We found that there are strong relationships between fine-scale mass and TLS occupied volume, porosity, and
surface area, which were used to develop fine-scale prediction equations using TLS across vegetative fuel types, namely grasses and shrubs. The application of this
novel 3D sampling technique to high resolution TLS data in this study represents an advancement in producing inputs for computational fluid dynamics fire behavior
models that will improve understanding fire-vegetation feedbacks in highly managed fire-dependent ecosystems.

1. Introduction

Capturing the processes that influence fire propagation across
fuelbeds is an important linkage between wildland fire behavior and
post-fire effects (Dixon, 1966; Green, 1981; Morvan and Dupuy, 2001;
Linn et al., 2005; Hiers et al., 2009; Dupuy et al., 2011). Yet, char-
acterization of both energy release and fire effects at multiple and ap-
propriate scales remains elusive in providing mechanistic linkages
(O’Brien et al., 2018). Capturing multiscale variation in vegetation and
representing this complexity as fuel that drives coupled fire-atmo-
spheric interactions remains an unknown challenge.

In general, we know that the spatial patterns of vegetation impacts
fire behavior, directly and indirectly. At finer scales (< 1m2) fuel ar-
rangement, biomass, and type affect fire spread patterns and heat re-
lease rate (Fahnestock and Key, 1971; Hiers et al., 2009; Loudermilk
et al., 2012) and at coarser scales (> 1m2) surrounding vegetation
structure and continuity influences air resistance, turbulence
(Cochrane, 2003; Pimont et al., 2016), and wind flow throughout the
surface fuels and across a stand (Finnigan, 2000; Mayaud et al., 2016;
Parsons et al., 2017).

Fuels are traditionally represented as two-dimensional abstractions
of mass, bulk density, particle density, and surface area that require
assumptions that oversimplify fuel elements particularly at scales< 1

ha (Hiers et al., 2009). Brown et al. (1982), describe traditional surface
fuel measurements that were developed to support coarse grain and
point-based fire behavior modeling. Though the methods are robust,
they did not include a full range of variability, specifically spatial non-
uniformity typical of vegetative communities (Hardy et al., 2008).
These approaches were designed to report unit averages that give broad
landscape-scale assessments of load (Ottmar et al., 2016a; Ottmar et al.,
2003). Measuring surface fuels is inherently difficult because they are
small–often less than 1-m tall–with litter found below 10 cm (Ottmar
et al., 2003). Moreover, shrubs and trees have complex architecture
that can influence flow and fire behavior (Parsons et al., 2017).

Traditional measurements of surface fuelbeds include both direct
and indirect efforts to supply stand level inputs to large scale fire be-
havior prediction tools. Common direct measurements are tallies of
down woody fuels along planar transects (Brown, 1974) coupled with
destructive biomass sampling, or “clip plots” (Brown, 1981). Indirect
methods include visual cover estimates in plots or comparisons with
photographs of known fuel loads or types (Keane and Dickinson, 2007;
Ottmar et al., 2003). These methods provide estimates of gross char-
acteristics—such as fuel load, bulk density, and packing ratios— that
are used for predicting fire behavior at the stand or landscape level
(Wendel et al., 1962; Hough and Albini, 1978; Burgan and Rothermel,
1984; Reinhardt et al., 1997; Andrews et al., 2005). They inherently
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require unrealistic assumptions regarding specific bulk densities for
grasses and shrubs (Van Wagner, 1968), and are of limited utility for
estimating fine-scale fuel heterogeneity that is important for simulating
within-stand fire behavior (Linn et al., 2013) or fire effects (Hiers et al.,
2009; Loudermilk et al., 2012; Loudermilk et al., 2018; O’Brien et al.,
2018).

Current operational vegetation data are represented as fuel models:
a set of fuel parameters that characterize a broad spectrum of surface
fuelbed properties that are less than 1.83 m in height (Rothermel, 1972;
Scott and Burgan, 2005). These fuel models drive the current cadre of
operational fire behavior models in the United States (e.g., FARSITE;
Finney, 1998; FLAMAP; Finney, 2006; BEHAVEPlus: Andrews et al.,
2005). Varner and Keyes (2009) discuss the inherent errors associated
with using these fuel models for assessing fuel treatment effectiveness.
Noonan-Wright et al. (2013) compared customized fuel models with the
existing standard fire behavior fuel models (Scott and Burgan, 2005)
and found no clear advantage for fuel model customization due to
uncertainty of using uncalibrated custom models. Another challenge
with the fuel model approach is that fuels are represented as uniform,
when in reality they are more accurately described as patchy, especially
where fuel manipulation through treatments has been performed
(Varner and Keyes, 2009). To fully understand and model fire behavior
(fluid flow, turbulence, flaming front interactions) as a function of fire-
atmospheric interactions that function three-dimensionally requires
detailed and accurate accounting of fuels also in three-dimensions
(Dupuy et al., 2011; Mell et al., 2013; Pimont et al., 2016). Three-di-
mensional representation of forests characteristics is particularly re-
levant to surface fire regimes (Hiers et al., 2009; Loudermilk et al.,
2012), where fine-scale variation in fuel characteristics have been
shown as the important link between structure and function in the U.S.
(Glitzenstein et al., 1995; Mitchell et al., 2009; Rebertus et al., 1989;
Williamson and Black, 1981) and in similar ecosystems globally
(Dalgleish et al., 2015; Moreno and Oechel, 2012; O'Brien et al., 2008).
In these systems, fire behavior and effects are spatially correlated with
vegetation structure and patterns at relatively fine scales (< 0.25 m2;
(Hiers et al., 2009; Loudermilk et al., 2012; O'Brien et al., 2016). Pre-
vious studies have suggested that this relationship is due to variations in
ignition and combustion characteristics of different vegetation types
and their influence on the ambient and fire induced wind flows
(Fernandes et al., 2004; Hoffman et al., 2016; Linn and Cunningham,
2005; Linn et al., 2013). These fire-atmosphere interactions have tra-
ditionally been assessed in isolation or at inappropriate scales required
to advance fundamental understanding of how various factors control
fine scale variability in fire behavior and effects. Most managers are
trained to use the aforementioned modeling tools (e.g., BEHAVE, FFE-
FVS, FCCS) where forest structure and fuels are overgeneralized
(Andrews et al., 2005) and ignore the spatial complexity of the fuels
and fire-atmospheric feedbacks. Computational fluid dynamic (CFD)
fire behavior models, such as FIRETEC (Linn et al., 2005) and the
Wildland Fire Dynamics Simulator (Mell et al., 2009), operate on 3D
representations of vegetation and provide new opportunities to un-
derstand the underlying mechanisms and interactions driving complex
fire behavior. For example, recent studies have utilized these models to
gain new insight into the dominant controls of fire spread (Linn and
Cunningham, 2005; Mell et al., 2009), energy release (Linn et al., 2002;
Linn et al., 2005), 3D canopy-mediated flow (Dupuy et al., 2011), and
spatial patterns of fuel consumption (Parsons et al., 2011). These de-
tailed physics-based models perform optimally when the three-dimen-
sional nature of the entire fuels complex is represented within the
model. It is now possible to characterize finer scale aggregation of in-
teracting vegetation types as discrete 3D “wildland fuel cells,” (sensu
Hiers et al., 2009) which can be mapped within the surface fuelbed of
CFD models.

In the past decade, there have been numerous advances character-
izing direct measurements of fuel mass using terrestrial laser scanning
(TLS) (Newnham et al., 2015). TLS data excels at measuring fine-scale

fuel structure (< 0.25 m2 grainsize) for primarily producing estimates
of fuel mass and bulk density. These instruments have the ability to
collect 3D structural information on objects with sub- centimeter ac-
curacy and precision, which provide a data richness that out-performs
typical field methods. Their measurements are used to produce precise
fine-scale volumetric estimates that correlate well with biomass and
leaf area (Greaves et al., 2015; Loudermilk et al., 2009; Olsoy et al.,
2014; Rowell et al., 2016b), are linked to fine-scale fire behavior
(Loudermilk et al., 2012), and are used to create fuel height models for
fine-fuel types, such as grasses, shrubs, and litter (Rowell and Seielstad,
2012; Rowell et al., 2016b). There are examples of the integration of
TLS data with airborne laser scanning, structure from motion, and as
supplemental training data for improved landscape estimates of fuels
(Cooper et al., 2017; Greaves et al., 2017; Rowell et al., 2016a). An-
other study demonstrated the inadequacy of summary point statistics in
predicting biophysical variables of chamise and sagebrush (Seielstad
et al., 2015) and concluded that TLS was an important linking me-
chanism for shape and position parameters used in fractal-based shrub
simulations (Prince et al., 2014). These approaches now allow for di-
rect, spatially explicit, and quantifiable estimates of local and landscape
scale fuel estimates that can be used for fuels planning and eventually
operational physics-based fire behavior modeling.

A key limitation in TLS-based fuels characterization to date has been
the use of traditional two-dimensional field data for validation; this
approach precludes the ability to compare directly from remotely
sensed 3-D data. Measuring biomass and structure of surface fuels is
complex because neither field measurements nor remote sensing in-
strumentation have been able to estimate both the 3D distribution and
mass of intermixed fuel types. And although coupling field data (fuel
types, biomass) with remotely sensed data (TLS: volume) would seem to
provide the information needed, the disconnect lies in the need for the
3D mass and volume of each fuel type within a fuel patch at the ap-
propriate scale (Hiers et al., 2009). Two-dimensional biomass clip plots
(1 m2) do not link well to structural estimates captured at finer 3D
scales (1 cm3). Even with spectral information, the data are limited to
fuel types found in the sensor’s field of view (Loudermilk et al., 2014),
where obstruction biases towards the taller vegetation. Coupling these
datasets to estimate, for example bulk density (mass per unit volume),
limits the scale of output information to the size of the clip plots, and
limits the quality of the outputs by the complexity of the fuelbed matrix
(Hiers et al., 2009).

The objective of this study was to integrate a novel fine-scale 3D
field sampling technique with TLS-based measurements to better
characterize surface fuels, with the assumption that 3D field data
should better link with 3D laser data. First, we assessed the variability
in fuel mass as a function of fuel type and height class, understanding
that currently there are no fuel types associated with the laser data but
we can infer distributions of fuel mass if other structural fuel char-
acteristics are known. Secondly, we provide an analysis of TLS-derived
fuel metrics to assess the relationships between fine-scale mass and
structural metrics, including fuelbed occupied volume, porosity, and
surface area.

2. Methods

2.1. Study area

Field measurements and TLS data were collected at the 1,222-ha
Pebble Hill Plantation (PHP) in the Red Hills region of southern
Georgia, USA (30° 35′N, 84° 20′W, elevation 60–85 m above sea level)
as part of a series of prescribed fires conducted through the Prescribed
Fire Science Consortium. The Red Hills region has a temperate sub-
tropical climate of warm to hot, humid summers and short, mild win-
ters with mean monthly temperatures ranging from 26.8 °C in July to
10.4 °C in January (Arguez et al., 2010). Mean annual precipitation
(recorded 21 km to the south at Tall Timbers Research Station,
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1878–2010) is 1,359 mm. PHP was utilized as a cotton plantation and
open grazing land until 1896 when the property then proceeded to be
managed for hunting of the northern bobwhite quail (Colinus virginianus
L.), which included allowing most agricultural fields to succeed to old-
field pine-grasslands and maintaining fire intervals that are typically
every one to two years (Robertson and Ostertag, 2007). The old-field
pine-grassland communities are dominated by shortleaf pine (Pinus
echinataMill.) and loblolly pine (Pinus taeda L.), where the understory is
a continuous layer of grasses, forbs, and hardwoods maintained in a
shrub state through frequent fire (Ostertag and Robertson, 2007). In
sites where no previous farming or tilling occurred, approximately one-
third of PHP pinelands, native longleaf pine (Pinus palustris Mill.) with a
wiregrass (Aritistida stricta Michx.) understory is found and is classified
as Clayhill Longleaf Woodlands (Carr et al., 2010; Ostertag and
Robertson, 2007).

In March and April of 2017, a total of 20 clip plots were distributed
among four burn units at PHP. The plot locations were stratified based
on year of previous burn, with the A units representative of one and two
year fire return intervals and the C units representative of a three year
fire return interval. Plots were distributed randomly to represent an
untilled vegetation matrix, namely wiregrass, pine needle dominated,
and shrub dominated fuel types characteristic of a Red Hills longleaf
pine woodland. The northwest corner of each plot was monumented
with a 1.5 m tall metal pole wrapped with highly reflective tape. After
TLS was conducted and before prescribed burning, the plots were
sampled and harvested for 3D biomass measurements using the most
recent 3D fuels sampling protocol (Hawley et al., 2018). This approach
uses a voxel sampling framework, which employs an adjustable 3D
rectangular sampling frame that allows fuels data to be collected in the
field at three different scales—entire plot (0.25 m3), stratum
(0.025 m3), down to individual voxels (0.001 m3). The 3D sampling
frame outlines the sampling area that is 0.5 m in width by 0.5 m in
length by 1 m in height. The frame is subdivided into ten 10 cm vertical
sampling strata and each 10 cm stratum contains twenty-five 10 cm3

cells, totaling 250 voxels that are distributed over the frame’s sampling
volume of 250,000 cm3 or 0.25 m3.

Within each plot, starting at the highest stratum that contained
vegetation, each voxel was sampled for presence/absence of fuel type.
Specific to a longleaf pine woodland, the fuel types included 1–10 h
fuels, 100–1000 h fuels, general pine litter (e.g., shortleaf and/or lo-
blolly pine), wiregrass/bunchgrass, other graminoids, shrubs, volatile
shrubs, forbs, pine cones, deciduous oak litter, evergreen oak litter, and
longleaf pine litter (see Hawley et al., 2018). Each voxel had the po-
tential to encompass multiple fuel types. Heights of fuels were collected
as a function of voxel cell position. Once the fuel types were recorded
for each voxel within a stratum, all biomass within the stratum was
destructively harvested by clipping and bagging the material. The oc-
cupied voxel sampling and biomass collection method was repeated
every 10 cm down the frame until mineral soil was reached.

The collected biomass was dried at the United States Department of
Agriculture Forest Service, Southern Research Station, Forestry
Sciences Laboratory, located in Athens, GA at 70 °C until the weight of
the sample no longer changed. For most material, this required 48 h of
drying time. Some of the heavier fuels required 72 to 96 h of drying
time.

2.2. Terrestrial laser scanning

Terrestrial laser scanning was conducted using a RIEGL VZ2000 to
collect three-dimensional point clouds at ~5 mm point spacing at 15 m
range. The VZ2000 is a near infrared eye safe laser that is capable of
scanning objects at up to 1000 m. Laser scanner collection points were
established on the four corners of the rectangular burn units, set back a
minimum 2.5 m from the unit edge. A single 360° scan was collected in
the center of the burn unit. Scan parameters were set to sample points
at 0.023° frequency at a scan rate 550 kHz per scan. Individual scans

were geospatially located using the onboard GNSS L1 GPS receiver that
automatically places all points into the desired spatial reference (UTM
16 N, NAD83). Data were exported to a LAS file format using the
proprietary software RiSCAN Pro (RIEGL, Austria). Fine-scale correc-
tion between scans was performed using the freeware CloudCompare
(http://www.cloudcompare.org), where identifiable features between
multiple scans were used to “stitch” individual scans to the best accu-
racy possible (~1cm RMSE). Final merged datasets were projected to
real world coordinates based on GPS monuments at the corners of burn
units and at the NW corner of each sampled plot to produce a final
georeferenced data product. In CloudCompare, all scans were merged
into a single dataset and exported into an ASCII text format, with scan
variables of x,y,z, and reflectance intensity included.

2.3. Voxelization of TLS data

Distillation of the three-dimensional TLS point data to relevant scale
and metrics used for fuel mapping required conversion into three-di-
mensional voxel space. For ease and replication, we employed the VoxR
package (Lecigne et al.., 2014) in R, where voxel domains are estab-
lished and modeled over relatively large areas at low computational
cost to the user. Voxel cell domains were defined as 10 cm3. This do-
main size is substantially aggregated enough to derive important me-
trics for assessing fuel characteristics and sufficiently fine-scale to
capture large gaps and variability in the fuelbed. From the voxel ana-
lysis, we calculated an occupied volume per plot, following Rowell,
2017. Additionally, we calculated a porosity and surface area metric for
each 10 cm3 voxel cell using a sub-voxel approach. These metrics are
further explained in the following sections.

2.4. Surface fuel porosity

Fuel porosity derived from TLS data is a metric similar in practice to
packing ratio or as porosity as defined by Anderson (1969). Packing
ratio is defined as the fuel load of similar density divided by the fuelbed
depth. This metric serves as an estimate of compactness that is critical
to explaining how fire propagates through a porous medium. This
compactness represents the expected movement of air that affects re-
sidence time and combustion intensity (Anderson, 1969). The concept
of porosity (Anderson, 1969) or packing ratio (Rothermel, 1972) are
terms to describe fuelbed compactness. To replicate this concept, we
evaluate the potential of a porosity metric using TLS, we use the defi-
nition of porosity as described in Anderson (1969):

= −
−λ V V

σ V
1

a

1 2

2 (1)

where, porosity (λ ft ft, /3 2) is expressed as a function of fuel be volume
(V1), fuel particle volume (V2), and fuel particle surface to area volume
ratio (σ). For our purposes, we distill the TLS model for porosity as a
simple ratio of total available space in a 10 cm3 voxel (1000 cm3) with
the occupied volume derived from the TLS data at 1 cm3 voxel cells for
the same voxel domain. We do not include a surface area to volume
value for this study, as we are looking to identify metrics that can be
directly obtained from the TLS. We expect that calculation of TLS-de-
rived porosity would be well correlated with measured fuel mass.

To test this hypothesis, we calculate TLS-based porosity using Eq.
(1):

= −
∑

λ
OV

Volume
1

10cm
1cm

3 (2)

where, porosity (λ) is the relative proportion of open space resulting
from the occupied volume (OV) divided by the total volume of the
10 cm3 voxel. This assumes that omission and commission errors are the
same across voxels. We calculated this definition of fuelbed porosity for
the 0–10 cm and 10–20 cm stratum only, as these strata represent
where the highest proportion of compact fuels and fuel mass that
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typically occur in a frequently burned fuelbed (Rowell et al., 2016a,b).

2.5. Voxel-based surface area

For fuels sampled above 10 cm, we calculated surface area within
each occupied voxel. To estimate surface area of fuel elements at the
10 cm voxel domain, the points within each voxel were subset and
recalculated using a 3D kernel density estimate via the kde3d function
included in the misc3d package in R (Tierney, 2015). The kernel density
function weights distributions of points to subsequently estimate better
isosurfaces that can be used to predict surface area (Feng and Tierney,
2008). We used the vcgIsosurface function as part of the Rvcg package
in R (Schlager, 2017) that represents constant densities of the kernel
density function over the limits of the voxel domain. This method used
the marching cubes algorithm (Lorensen and Cline, 1987), that created
a surface through intersecting edges of a volume grid with a volume
contour. Where edge intersections occur, a vertex was created. The
surface area of the fuel element for the voxel domain was calculated
using the vcgArea function within Rvcg, which calculates the surface of
the triangular mesh from the isosurface.

2.6. Statistical analysis

We compared estimates of occupied volume from the voxel sam-
pling method and the TLS-based method with each other and tested the
predictive power of each method to estimate total fuel mass for the
plots using a leave-one-out-cross-validation (LOOCV) method in the
caret package for R (Kuhn, 2013). We also analyzed the relationship
between measured fuel mass by stratum with maximum porosity for the
0–10 cm and 10–20 cm surface fuel characteristic, and produced a
multiple linear model with the max porosity from both strata using
LOOCV. We selected the maximum porosity metric as our focus metric,
as there was a wider range of estimates of porosity over the mean
porosity metric, which is less sensitive to inflections that correspond to
variability within the fuelbed (e.g., pine cones, coarse woody debris).
Across all strata (1–100 cm heights), we analyzed the relationship be-
tween measured fuel mass by stratum and total surface area per stratum
and produced a linear model relating fuel mass with total surface area
per stratum using the LOOCV method. While investigating the perfor-
mance of porosity and surface area for predicting fuel mass, it became
apparent that porosity was a stronger metric lower in the fuel bed and
surface area was stronger higher in the fuelbed. Following systematic
testing, we utilized the porosity metric for the 0–10 cm and 10–20 cm
height strata and the surface area metric above 10 cm. We then com-
bined the predictions from the maximum porosity and surface area
models to produce a new estimate of total fuel mass per plot and pro-
duced a linear model between measured and combined fuel mass using
LOOCV. From results described in Rowell et al. (2016a), we expect that
lower in the fuelbed where litter mass is found, porosity will better
differentiate between empty and filled space due to the more uniform
distributions of litter.

For all model estimates we assessed accuracy using root mean
square error (RMSE) and reported both RMSE and relative RMSE (r
RMSE) of the fuel mass. We also tested the equivalence of the estimates
and the measured fuel mass using the equivalence package in R
(Robinson and Robinson, 2016). The equivalence test was assessed
based on a null hypothesis of dissimilarity. Robinson et al. (2005) de-
scribe the advantages of the equivalence test as a lumping process that
tests similarity of means and between individual observations and
predictions to prove that similar populations are being compared.
Traditional statistical tests assume that there are no differences between
the model and the population. Fig. 1 outlines the relevant TLS and field
observed metrics used to build the relationships for this study.

3. Results

3.1. Occupied volume and mass from TLS occupied volume

Total occupied volume, the sum of all occupied voxels for each plot,
was correlated with the measured (observed) dry weighed mass, ex-
plaining 85% of the variability (Adj. R2 = 0.85, Fig. 2A) with an rRMSE
of 16% (RMSE = 0.014 m3). To assess the variability at a stratum level,
laser estimated occupied volume was compared with observed occupied
volume in each stratum resulting in laser-based OV explaining 86% of
the variability (Adj. R2 = 0.86, Fig. 2B). Error associated with per
stratum analysis was a rRMSE of 41% overall (RMSE = 0.003 m3) with
the mid-values of occupied volume encompassing the greatest range of
uncertainty.

Measured occupied volume was also correlated to total fuel mass
(Adj. R2 = 0.27; p-value = 0.033; Fig. 3A) with a somewhat stronger
relationship found between laser estimated occupied volume and
measured fuel mass (Adj. R2 = 0.44; p-value = 0.005; Fig. 3B), with
associated rRMSE of of 33% (RMSE = 43.43 g cm3) and 28.5%
(RMSE = 37.69 g cm3), respectively.

3.2. Fuel mass from TLS porosity and surface area

Fuelbed maximum porosity was linearly correlated with dry-weight
biomass in the 0–10 cm and 10–20 cm strata and a multiple linear
model explained 89% of the variability (Adj. R2 = 0.90, Fig. 4). The
porosity modeled predictions of mass produced a rRMSE of 20%
(RMSE = 32.0 g cm3) and bootstrap tests of equivalence rejected the
null hypothesis of dissimilarity (P = 0.025). For fuel features between
10 and 100 cm strata, total surface area for each stratum was correlated
with dry-weight biomass for wiregrass plus litter fuels (Adj. R2 = 0.69,
Fig. 5A) and shrub fuels (Adj. R2 = 0.52, Fig. 5B). The model for grass
plus forbs fuels yielded an rRMSE of 90% (RMSE = 3.58 g cm3) and an
rRMSE of 54% (RMSE = 8.28 g cm3) for shrub dominated fuel strata.
Bootstrap tests of equivalence did not reject the null hypothesis of
dissimilarity.

3.3. Total biomass using a combined model

The combined model for total biomass (the sum of the porosity and
surface area-based predictions of fuel mass) had a strong relationship
with total observed fuel mass including coarse woody debris (Adj.
R2 = 0.91, Fig. 6). This model yielded an rRMSE of 16.5%
(RMSE = 32.64 g cm3) and bootstrap tests of equivalence rejected the
null hypothesis of dissimilarity (P = 0.025).

4. Discussion

In this study, we demonstrated the integration of a new approach
for measuring three-dimensional wildland fuels in the field with coin-
cident and highly resolved TLS-based fuel parameters. To our knowl-
edge, this study represents the first effort at directly comparing 3-D
field data with 3-D TLS data for surface and ground fuels and one of the
first for describing fine-scale distributions of biomass three di-
mensionally in surface fuel layers.

We quantify fuel mass for the 0–10 cm surface fuels using a new
version of the fuel metric porosity. The porosity metric was created
because ground layer fuels have been the most difficult to characterize
with TLS, yet illustrate the most available fuel mass. For our site, this
stratum of fuel accounts for 76.8% (stdev = 21.5%) of the available
fuel mass in measured plots and the fuel stratum most likely to con-
tribute to active combustion in prescribed fire environments (Ottmar
et al., 2016b). We also quantify fuel features for height strata from 10 to
100 cm using 10-cm3 estimates of surface area that represent a com-
pendium of grasses, forbs, and shrub type fuels. Collectively, these
elements affect nearly all aspects of surface fire behavior in the longleaf
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3D Sampling Metrics

Occupied 
Volume

All Strata
0-10  cm
10-20 cm
20-30 cm
30-40 cm
40-50 cm
50-60 cm
60-70 cm
70-80 cm
80-90 cm
90-100cm

Mass 0-10 cm

Mass 10-20 cm
20-30 cm
30-40 cm
40-50 cm
50-60 cm
60-70 cm
70-80 cm
80-90 cm
90-100cm

TLS-based Metrics

Occupied 
Volume

All Strata
0-10  cm
10-20 cm
20-30 cm
30-40 cm
40-50 cm
50-60 cm
60-70 cm
70-80 cm
80-90 cm
90-100cm

Porosity 0-10 cm
10-20 cm

Surface
Area

10-20 cm
20-30 cm
30-40 cm
40-50 cm
50-60 cm
60-70 cm
70-80 cm
80-90 cm
90-100cm

Multiple linear model to 
predict mass 0-10cm

Sum of surface area per
strata compared against 

mass per strata

Comparison of individual 
strata occupied volume

All volume for entire plot

Fig. 1. A list of TLS and 3D voxel sampled metrics that are used to produce the regression models for comparing occupied volume and converting porosity and surface
area into estimates of mass for plots and 10 cm strata.

A B

Fig. 2. Scatterplots of the TLS-based occupied volume (Predicted OV) with measured occupied volume (observed OV) from the 3D sampling protocol at the plot (A)
and stratum (B) level, across all 20 plots. The line illustrates a 1:1 relationship, gray depicts the conditional means of the linear model. Note the differences in scale in
both axes between A and B.
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pine ecosystems sampled in this study, including fluid flow of air that
influences fire spread and intensity. Finally, we integrated these in-
dependent estimates of fuel mass into a combined model with strong
correlations (Table 1).

4.1. Estimates of fuel mass from occupied volume

We expected that occupied volume as an independent metric would
explain more variability in the fuelbed stems because of successful ex-
ecution of a similar model in the RxCADRE experiments at Eglin Air
Force Base, FL, USA (Ottmar et al., 2016a). Although Rowell, 2017
found strong relationships between voxel-based occupied volume and
two-dimensional fuel mass from clip plots within grass/shrub fuelbeds,
this current study shows that the 3D voxel field sampling estimates of
occupied volume were not as strongly related to total fuel mass in

forested sites. Ultimately, the TLS provided more detailed information
on fuel volume distribution than the field estimates. This may be par-
ticularly important in the lower strata because of the fine-scale
(< 100 cm3) variability and large amount of mass found in these layers.
The main difference between these two studies are the scale at which
the field data were collected for the analysis (2D:1 m2 vs. 3D:0.025 m3).
Other differences include discrepancies between the Eglin and Pebble
Hill sites and their representative species. The primary grass species at
Pebble Hill is wiregrass (Aristida stricta), as opposed to a broader mix of
grasses at Eglin. Shearman et al. (2019) reported that basal volume of
the grass tussock was a strong predictor of total aboveground biomass
of wiregrass clumps, also describing a local range of biomass at fine
scales (both live and dead) at approximately ± 200 g. From our re-
sults, we hypothesize that biomass density is more variable than sug-
gested by occupied volume estimates. Therefore, there is a need to
evaluate these fuels at a finer grain and with a more sensitive metric,
such as our TLS-derived porosity, than overall occupied volume. Our
results also suggest that the occupied volume estimates from TLS are
insensitive to variability in the litter layer. As previously mentioned,
this lowest 0–20 cm stratum accounts for most of the fuel in these
systems but is often most poorly characterized using remote sensing
(e.g. Smith et al., 1989).

4.2. Estimates of fuel mass by strata

The segmentation of the plots into 10-cm strata served as an optimal
approach to assess within plot variability, particularly when the TLS
was used to describe porosity in the lower litter layers. The layers are
described not as a true penetration of the litter strata, but rather as
characterization of surface roughness variability. Using the 3D field
sampling protocol (Hawley et al., 2018), all plots exhibited 100% oc-
cupancy for all the 0–10 cm strata and voxels therein. The porosity
metric was therefore developed to characterize variation in this com-
pact stratum. The porosity metric could be used to represent a pseudo-
packing ratio value (Rothermel, 1972), where the range of open space
within the 10-cm3 voxels increased sensitivity to fuelbed mass varia-
bility. The use of both the 0–10 cm and 10–20 cm maximum porosity
proved advantageous, because from the field data, we found that litter
and downed debris is predominantly found up to 20 cm (unpublished

Fig. 3. Scatterplots from the 3D sampling protocol at the plot (A) showing the relationship from occupied volume based predicted mass with measured dry weight
mass of each plot (A) and TLS-based occupied volume estimates of mass (Predicted Mass) with measured dry weight mass (observed mass) (B) level, across all 20
plots. The line illustrates a 1:1 relationship and gray depicts the conditional means of the linear model.

Fig. 4. Predicted fuel biomass of the 0–10 cm stratum using the multiple linear
model (maximum porosity for 0–10 cm and 10–20 cm) in relationship to the
observed fuel biomass for the same stratum. Gray depicts the conditional means
of the linear model.
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data). Moreover, the use of ‘maximum’ porosity provided a broader
range of porosity not encompassed in the mean porosity metric, though
the models for both maximum and mean porosity performed equally
well, with a slightly steeper regression slope for mean porosity.

Moreover, we found that porosity was a strong predictor of litter fuel
mass across a range of fuel types including pine needles, deciduous
litter, pine cones, and coarse woody debris. Leaf litter in particular is
difficult to characterize explicitly. For example, Hudak et al. (2016)
calculated fuel mass at 5 m × 5 m grain size from airborne laser
scanning and identified fine fuels as being most problematic to char-
acterize due to the coarse sampling grain of airborne laser systems.
Newer TLS systems overcome this problem through advanced proces-
sing capabilities that provide for more precise–and likely more accu-
rate–estimates to distinguish between true ground and the surface litter
layer.

Surface area was more variable as a predictor of fuel mass most
likely due to its tendency to depict the outer hulls of the sub-voxel fuel
elements and not specifically describing the intra canopy dynamics of
stems and twigs that have differing fuel densities than the outer leaves.
This effect was most pronounced at the lower strata because TLS-based
surface area generally underestimates observed fuel mass, while the
inverse occurs at the higher strata (Fig. 3).

5. Conclusions

Increasingly, it is recognized that advances in our understanding of
how wildland fire drives ecological fire effects is dependent on me-
chanistic connections of fuels, energy release, and future vegetation
(Mitchell et al., 2009; O’Brien et al., 2018). The application of novel 3D
sampling techniques to high resolution TLS data in this study represents
a major advancement in representing critical variation of fuel char-
acteristics that drive these fire-vegetation feedbacks. The ability to
predict both the distribution of mass and 3D structure of surface fuels
will allow emerging fire behavior models (Linn et al., 2019) to create
more realistic scenarios for fire planners and fire managers to predict
desired fire effects. A next step is to separate these 3D fuel beds into
surface or ground fuels (litter, coarse woody debris, grasses) and shrub
layers because these two types of fuel affect fire propagation and in-
tensity differentially. This is because fuel elements in the litter stratum
are comprised of combustible materials that carry fire and the shrub
objects generally represent objects that produce wind flow drag. In CFD
fire behavior models such as HIGRAD\FIRETEC, shrubs are modeled as
independent objects that are treated as small trees with a homogenized
mesh architecture. The advancement in understanding the variability of
fuel mass of shrubs at fine-scales (10 cm3) allows for improvements in
representing understory features from the object perspective, thus
adding heterogeneity to the object models used in the CFD fire behavior
models. The inclusion of more heterogeneous fuel properties into these

A B

Fig. 5. Predicted fuel biomass from surface area of the grass plus forb-dominated plots (A) and shrub-dominated plots (B) with observed fuel mass for all strata. Gray
depicts the conditional means of the linear model.

Fig. 6. Predicted fuel biomass in relation to observed fuel biomass using the
combined estimates of the porosity and surface area models with total observed
fuel mass. Gray depicts the conditional means of the linear model.

Table 1
Linear regression model coefficients predicting pre-fire fuel mass from porosity,
surface area, and combined models described in this study.

Predictor Estimate Std. Error t-value Pr(> |t|) Significance

All 0–10 cm Biomass
(Intercept) 457.8 33.5 13.65 3.1e-08 ***
Porosity 0–10 −213.6 55.0 −3.89 0.00254 **
Porosity 10–20 −196.2 40.5 −4.85 0.00051 ***
All Strata Biomass (Above 10 cm)
(Intercept) 0.718 1.566 0.46 0.65
Surface Area 1.353 0.203 6.68 3.9e-09 ***
Total Biomass (Combined Model)
(Intercept) 38.765 16.446 2.35 0.0362 *
Combined Predictions 0.740 0.066 11.174 1.07e-07 ***

Statistical significance for p-value: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.
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CFD models is expected to improve characterization of fluid flow that
affect fire intensity and spread, as well as resulting fire effects
(Loudermilk et al., 2018; O’Brien et al., 2018).
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