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In forest inventory, traditional ground-based resource assessments are often expensive and time-consuming
forcing managers to reduce sample sizes to meet budgetary and logistical constraints. Small area estimation
(SAE) is a class of statistical estimators that uses a combination of traditional survey data and linearly related
auxiliary information to improve estimate precision. These techniques have been shown to improve the precision
of stand-level inventory estimates in loblolly pine plantations using lidar height percentiles and thinning status
as covariates. In this study, the effects of reduced lidar point-cloud densities and lower digital elevation model
(DEM) spatial resolutions were investigated for total planted volume estimates using area-level SAE models. In
the managed Piedmont pine plantation conditions evaluated, lower lidar point-cloud densities and DEM spatial
resolutions were found to have minimal effects on estimates and precision. The results of this study are promising
to those interested in incorporating SAE methods into forest inventory programs.

Introduction

Accurate, precise and up-to-date forest resource assessments
are important for informed management decisions. Foresters
have often relied on design-based surveys using fixed- and
variable-radius sample plots to estimate parameters for the
areas of interest (Burkhart et al., 2019). Traditional, ground-based
forest inventory provides reliable, unbiased estimates assuming a
properly executed, valid sample design. In many cases, however,
budgets and logistical issues limit the sample intensity leading
to an estimate that does not meet the precision specified in the
original design. In recent years, advances in remote sensing,
computing capability and statistical methods have afforded
many new options for resource evaluation (Coops, 2015). Small
area estimation (SAE) is a class of statistical estimators that
can leverage auxiliary information derived from, for example,
remote sensing products to be used in a composite estimator
with ground-based samples for increasing inventory precision.
In the southeastern US, loblolly pine (Pinus taeda L.) is the
most widely planted and intensively managed commercial tree
species (Baker and Langdon, 1990). Improving the efficiency and
reliability of loblolly pine forest inventory is important due to the
increasing frequency of land ownership changes (Fox et al., 2007;
Jokela et al., 2010; Green et al., 2019) and interest in estimating
stand characteristics for both commercial and ecological con-
siderations (Andreu et al., 2008; Zhao et al., 2016; Green et al.,
2019). For areas where loblolly pine is grown for commercial use,

auxiliary data such as lidar or photogrammetrically derived point
clouds are often available that can be used with SAE techniques.

Point-cloud elevation products

Point clouds are three-dimensional spatial data that characterize
an area both horizontally and vertically. Light detection and rang-
ing (lidar) is an active sensor often used to generate point clouds
that contain elevation information (Campbell and Wynne, 2011).
Advances in software and computing resources have made point
clouds generated through photogrammetric techniques opera-
tionally possible and comparable with lidar (Goodbody et al.,
2019).

The use of point clouds requires ground elevation models to
normalize the canopy characterized by the three-dimensional
data. Generally, elevation models generated from lidar data have
been found to be accurate compared with other standard models
such as the United States Geological Survey (USGS) 30- and 10-
m products (e.g. Reutebuch et al., 2003; Hodgson and Bresnahan,
2004) and well suited to use in forest inventory applications (e.g.
Tinkham et al., 2012). To our knowledge, no study has assessed
the effects of elevation model spatial resolution for normalizing
lidar point clouds when used as auxiliary data in SAE.

Point clouds vary in density depending on acquisition param-
eters such as flight altitude and sensor specifications. There have
been multiple reports in the literature that lower point density
lidar results in similar estimates as higher density point clouds
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in area-based analysis. Holmgren (2004) found small differences
in prediction errors for tree height, basal area and stem volume
using lidar with point densities ranging from 0.10 to 4.29 pulses
m~2. Similar results were found in an investigation of plot-level
volumes with point densities ranging from 0.13 to 12.7 pulses
m~2 (Maltamo et al., 2006). In a model-assisted framework,
Strunk et al. (2012) found minimal losses in estimate precision
of basal area, volume, biomass, stem density and Lorey’s height
with point densities as low as 0.13 pulses m=2 compared with
3 pulses m~2. In a study investigating a variety of stand vari-
ables including basal areaq, height, volume, biomass and crown
attributes in Pinus radiata D. Don, point densities ranging from
0.5 to 9 pulses m~2 were found to provide comparable model
precision (Gonzdlez-Ferreiro et al., 2012). Gobakken and Naesset
(2008) found that the point density required for an operational
inventory in Sweden could be reduced to as low as 0.25 pulses
m~2 without a significant increase in estimate uncertainty of
height, basal area and volume. Some studies have pointed to
reduced precision with thinned point clouds. Magnussen et al.
(2010) found reliability ratios decreased for common inventory
attributes when predicted with progressively more thinned point
clouds. In a study investigating the effects of plot size and point
density, the strength of prediction models of forest structure
attributes was found to be greatest with the highest density point
clouds and largest plots; however, the impact of plot size was
found to have more impact on predictions (Ruiz et al., 2014).

Small area estimation

SAE models can be broadly classified as either ‘area-level’ or
‘unit-level’. Area-level models relate estimates of the area of
interest to area-level covariates derived from the auxiliary data.
Unit-level models relate sample unit direct estimates to the
corresponding sample unit auxiliary data (Rao and Moling, 2015).
SAE has been demonstrated to improve inventory precision in
the forestry literature through both area-level (Goerndt et al.,
2011; Magnussen et al., 2017; Green et al., 2019) and unit-level
(Breidenbach and Astrup, 2012; Goerndt et al., 2013; Green et al.,
2019) approaches. Comparisons between the two SAE methods
have found that while unit-level models offer similar or greater
increases in precision (Mauro et al., 2017; Breidenbach et al.,
2018), area-level models are flexible and can be widely applied
using a variety of data sources (Breidenbach et al., 2018). In linear
formulations of both unit- and area-level models, the strengths
of the correlations between the auxiliary data and parameters
of interest are strongly related to their ability to reduce estimate
uncertainty. To our knowledge, the effects of auxiliary data reso-
lution on this relationship in managed plantations have not been
explored in the SAE context.

Research objectives and questions

While high-resolution elevation products are generally effective
for characterizing forest conditions, there are several disadvan-
tages that often limit their practical application: (1) High resolu-
tion data comes at the expense of time and budgetary resources.
For example, the cost of high density lidar may be prohibitive
due to longer, lower altitude flights. (2) Auxiliary data such as
photogrammetric point clouds require complementary ancillary

information (digital elevation models (DEMs) in the case of pho-
togrammetric point clouds) for their use. In some situations,
these data may not be available. (3) High resolution data are
cumbersome. Despite modern computational resources, lower
resolution products are easier to store, transfer and analyze. The
advantages of incorporating auxiliary data must outweigh their
costs and computational demands.

The overall objective of this work was to expand the investi-
gations into the area-level SAE methods reported by Green et al.
(2019) with regard to the following research questions:

1. What are the impacts on area-level SAE derived estimates
and precision using DEMs with lower spatial resolution than
those derived from lidar?

2. What are the impacts on area-level SAE derived estimates
and precision using lidar point clouds with reduced point
density?

These objectives broadly seek to provide guidance regarding
the impacts of using lower resolution auxiliary data in the SAE
framework. If lower resolution data can be used with similar
efficacy as higher resolution data, SAE methods can potentially
be more broadly applied.

Data and methods

Study locations

This study focused on investigating the effects of auxiliary data
precision in areas that loblolly pine is grown commercially. Forty
managed loblolly pine plantations located in three Virginia State
Forests were used for this study (Figure 1). These stands are
managed with silvicultural prescriptions common for the region
with a goal of sustainably producing a mixture of fibre and solid
wood products. Stands ranged in age from 9 to 43 years old. Of
the 40 stands, 14 had been operationally thinned at least once.
The selected stands cover a wide range of growing conditions
and management scenarios typical for the region. For additional
detail regarding the management and spatial distribution of the
stands evaluated, readers are directed to Green et al. (2019).

Ground data

In the winter and early spring of 2019, temporary inventory plots
were installed in every stand. One sample unit per 1.2 ha with a
minimum distance of ~70-80 m between plot centers was used
to produce an assumed equal probability, simple random sample.
Time constraints limited the sample intensity in some stands.
0.13 ha fixed-radius plots were used in unthinned stands and
0.02 ha fixed-radius plots were used in thinned stands. Unthinned
stands with excessive natural regeneration were sampled using
0.01 ha fixed-radius plots.

On each sample unit, every living, planted stem was tallied
and diameter at breast height (DBH) was measured using a diam-
eter tape. A subset of trees per plot was measured for total height
(Ht) using either a laser hypsometer or an electronic clinometer.
Height trees were selected across the diameter distribution and
at least one height per plot was measured. A minimum of 25
height trees per stand was targeted. All living natural trees with
DBH> 7.62 cm were tallied and measured for DBH. A subset
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Figure 1 Locations of state forests used for study.

Table 1 Sources of allometric equations used to estimate total stem volume.

Species or species group

Reference

Planted Pinus taeda

Natural P. taeda, Pinus virginiana and Pinus echinata > = 12.7 cm DBH
Natural P. taeda, P. virginiana and P. echinata < 12.7 cm DBH
Hardwoods, no measured total height

Hardwoods, measured total height

Tasissa et al. (1997) (unthinned coefficients)
Tasissa et al. (1997) (unthinned coefficients)
Warner and Goebel (1963)

Clark et al. (1986) (coefficients from table 10)
Clark et al. (1986) (coefficients from table 14)

Adapted from Green et al. (2019).

of heights across the diameter distribution was measured for
natural loblolly pine, Virginia pine (Pinus virginiana Mill.), and
shortleaf pine (Pinus echinata Mill.). In addition, a subset of hard-
wood heights was measured. All pine (both planted and natural)
heights not measured in the field were predicted using the model
form in equation (1). Heights of planted pines were predicted
using stand-level relationships while natural pine heights used
a pooled, ‘region-wide’ relationship developed from all the field
measured total heights.

In (Ht) = by + by (DBH’l) 1)

Plot-level information including thinning status, competing
vegetation and other notes were also recorded. For all trees, vol-
ume was estimated using the allometric equations presented in
Table 1. All ground data processing was performed using R (R Core
Team, 2018). Additional packages used include the following: xlsx
(Dragulescu and Arendt, 2018) and reshape?2 (Wickham, 2007).

Auxiliary information

For the entire study areq, lidar and the associated 1-m DEMs
are available from the United States Geological Survey (USGS).
The 2015 ‘Chesapeake Bay’ lidar collection encompassed
Appomattox-Buckingham (ABSF) and Cumberland (CUSF) State
Forests while the 2014 ‘Sandy’ collection covers the Prince
Edward-Gallion State Forest (PESF). These data were delivered
in ~1.5 x 1.5 km, non-overlapping tiles and were merged using
the LAStools (LAStools, 2018) lasmerge function. This was to
account for stands that overlapped multiple tiles. Details of the
lidar collections are summarized in Table 2.

Lidar and the associated DEM processing was performed with
a combination of R (R Core Team, 2018), FUSION (McGaughey,
2018) and LAStools (LAStools, 2018). Additional R packages
used for spatial data processing include: Raster (Hijmans, 2019),
sp (Pebesma and Bivand, 2005; Bivand et al., 2013) and rgdal
(Bivand et al., 2019). This study evaluated the impact of three
levels of reduced density point clouds. Using the lasthin function
in the LAStools suite, the original point clouds were randomly
sampled once to 50 per cent, 10 per cent and 1 per cent of
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Table 2 Lidar specifications for the Chesapeake Bay and Sandy projects

Chesapeake Bay mission

Sandy mission

Lidar collection dates

Lidar sensor Riegl 680i
Scan angle (degrees) 60

Lidar density (pulses % m~2) 2.3
Nominal pulse spacing (m) 0.66
Flight line overlaps 55%
Pulse rates (kHz) 200

15 November 2015-30 March 2016

24 March 2014-21 April 2014
Leica ALS60 or Leica ALS70
Not available

Not available

0.7

30% (ALS60) or 20% (ALS70)
154.3 (ALS60) or 301.6 (ALS70)

Adapted from Green et al. (2019).

the original point density using the ‘keep_random_fraction’
argument. The lasthin function places a uniform grid over the
point cloud and thins to the desired percentage in each cell.
This helps ensure that areas with different point density (e.g.
overlapping and non-overlapping flight areas) are all thinned
to the specified fraction. The spatial distribution of points in
the thinned point cloud will be proportionally similar to the
original, unthinned point cloud. In this manner, thinned point
clouds can be compared with their unthinned counterparts. The
elevation products (USGS, 2017c) and associated lidar used to
generate them (USGS, 2017d) are distributed through the USGS
National Map (as of July 2019: https://viewer.nationalmap.gov/
basic/). Lidar 80", 90, 95" and 99™ height percentiles were
investigated.

In addition to lidar-derived height percentiles, stand thinning
status was used as a covariate in the SAE models. Thinning
status was obtained from stand records and confirmed dur-
ing field visits. No distinction was made between stands that
received one thinning treatment and those that had received
multiple.

Additional USGS elevation products

In place of lidar derived, 1-m DEMs, this study evaluated the
effects of using lower resolution elevation models. The USGS
distributes both 30-m (USGS, 2017a) and 10-m elevation data
(USGS, 2017b) for the continental US. These data are also avail-
able on the USGS National Map and are produced from a variety
of sources. The same pre-processing tools and steps used for the
1-m DEM were used for these lower resolution elevation models.

Small area estimator

The SAE model, considered for this work (equation 2), was first
described by Fay and Herriot (1979)

0 =2]B+byvi+e (2)

where z; is a vector of area-specific covariates, B is the vector
of regression coefficients, b; are positive constants (assumed
to equal 1 in this study), v; are area-specific random effects
assumed iid N(0,02) and e; are individual random errors iid
N(O, ¥).

The empirical best linear unbiased predictor (EBLUP) is a
weighted estimate based on the sampling estimate variance
() and the random error variance (aAVZ). As the direct estimate
(i.e. the ground sample) becomes more reliable, the estimate
is weighted towards it. Conversely, the EBLUP weights more
towards the synthetic estimate for unreliable (i.e. relatively high
sample variance) samples. The form of the estimator utilized is:

Of = b+ (1-7) 2B (3)

where 7; is the weight that uses both sources of error (¥; and o)
and is given by equation (4).

7 =g/ (o + ) )

The area-level SAE models were fit using the SAE package in
R (Molina and Marhuenda, 2015) using the ‘mseFH’ function. The
REML method was used with all default parameters. Details of the
REML procedure can be found in Rao and Molina (2015). In the
SAE package (Molina and Marhuenda, 2015), the mean squared
error (MSE) of an EBLUP is estimated with equation (5):

MSE (9}”) =g (cfvz) + i (a}z) +29; (t;vz) (5)
where
g () = ©

T
gn (€;\,2) =(1- ?i)zz,-T ((}:ZZ) Z) z; (7)
OV
: 2

— (o) ®

where Z is an I x m matrix of z/for each domain and p is an I-
dimensional vector of y; for each domain. Datta and Lahiri (2000)
provide a detailed description of the MSE estimation.
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Table 3 Direct estimate summary for the 40 stands evaluated

Stand parameter Min Max Mean SD
Planted trees per hectare 177.9 2693.4 899.0 511.7
Planted basal area (m?2 x ha™}) 8.7 46.8 26.4 9.9
Planted total volume (m3 x ha™?) 42.0 353.2 194.4 81.4
Planted dominant height (m) 9.3 252 159 3.6

Results

The stands evaluated covered a wide range of conditions encoun-
tered in operational forest inventory in the southeastern US in
managed loblolly pine plantations (Table 3). It is common for the
first operational inventory to occur at the time of crown-closure
(~10-years old) followed by an inventory immediately pre- and
post-thinning (~14-20-years old for first thinning and for any
thinning following the first). A final inventory is common at the
time preceding final harvest (usually > 25-years old).

For the comparisons between the precision of models and
direct estimates, 1-1 scatterplots of relative error ratios (RER)
were constructed. Any point falling below the 1-1 line indicates
greater precision (i.e. smaller variation) for the RER on the y-axis.
For SAE models the RER for small area i is

/MSE (EBLUP;)

RER: O6) = ""EpLUp,

* 100 (9)

and the RER for the direct estimate is

RER; (%) = 7 100 (10)
where
nj
é,’ :yi = n,._l Zyu (11)
j=1
and
—\2
5 _ 3 12 Vi —Y)"
¥ = Var (9,) =0T (12)

In addition, estimates were compared using 1-1 scatterplots.
Points falling below the 1-1 relationship indicate a lower y-axis
prediction compared with the x-axis prediction. Points falling
above the 1-1 line indicate a higher y-axis prediction compared
with the x-axis prediction.

The lidar height percentiles evaluated resulted in very sim-
ilar SAE models. Due to the similarities, only results using the
80™ percentile lidar height are presented. As reported in Green
et al. (2019), area-level SAE models using both lidar and thin-
ning status often improved the total volume estimate precision
(Figure 2a). While bias cannot be directly assessed because the

true population values are not known, there are no patterns
suggesting a systematic under or over prediction by the SAE
model evaluated (Figure 2b). The effects on the total volume
estimate and its precision from reducing the spatial resolution
of the DEM were minimal. As can be seen in Figure 3a,b, both
the 30- and 10-m DEM resolutions resulted in very similar preci-
sion compared with the lidar-derived 1-m DEM when using the
original, unthinned point cloud. In addition, the estimates are
essentially unchanged using either the 30-m (Figure 4a) or 10-m
(Figure 4b) DEM. When compared with the full point cloud using
the 1-m DEM, thinned point clouds using either the 30- or 10-
m DEM resulted in similar or slightly improved precision in most
cases (Figure 3c-h). In addition, the estimate remained similar in
most cases (Figure 4c-h).

Discussion

The similar estimate precision using thinned point clouds does
not agree with our initial expectation of lower estimate precision
with lower density point clouds. The findings of this study are
promising for the future of using point-cloud data from a variety
of sources in area-based forest inventory. A common difficulty
with using lidar in operational forest inventory is the cost of
acquisition (McRoberts et al., 2018). Point-clouds derived from
DAP have emerged as a promising, lower cost alternative with
a growing body of literature demonstrating their potential (e.g.
White et al., 2013; Goodbody et al., 2019). DAP generates point
clouds that characterize the outer canopy envelope necessi-
tating the need for an elevation model generated from other
sources. It has been commonly assumed that lidar derived DEMs
were necessary to effectively use DAP point clouds in operational
settings (White et al.,, 2013). The results of this work suggest
that in areas without significant topographic relief such as the
southeastern US Piedmont, a DEM with lower spatial resolution
will generate similar estimates with comparable precision in the
SAE framework. Further, the results from this work suggest sparse
point clouds are useful for improving the precision of inventory
estimates. This is not to say that lower resolution point clouds
are ‘better’, rather, they provide similar results using the methods
described in the conditions evaluated. Past research investigating
the effects of point density (e.g. Gobakken and Naesset, 2008;
Strunk et al., 2012), support this finding. In planning future lidar
missions, common constraints such as cost could be reduced
by higher collection altitudes. It is unlikely that similar results
would be found ifindividual tree detection methods were utilized.
Increased point-cloud density has been shown to be important
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full point cloud and 10-m DEM with 1 per cent point cloud. Relative RMSE is calculated as: 100*(RMSE/EBLUP) where RMSE is the RMSE for the model

estimate and EBLUP is the model estimate.

for accurate tree delineation and calculation of lidar cover met-
rics (Jakubowski et al., 2013).

An essential requirement when using SAE is a sufficient linear
relationship between the variable of interest and the ancillary
information (Rao and Molina, 2015). The strength of this rela-
tionship based on the coefficient of variation (R?), was found
to remain similar, or even slightly improve, as auxiliary data
resolution decreased (Table 4). The strength of these linear rela-
tionships is major contributors to the similar SAE results found

amongst the data evaluated. Additionally, the reduction of auxil-
iary data resolution did not significantly increase the contribution

to the MSE estimation (equation 5) through g (s2)and gig(cfvz)
(equations 7 and 8).

Conclusions

This work demonstrated the effects of using lower resolution ele-
vation models and lower density lidar point clouds as covariates
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10-m DEM with 50 per cent point cloud, (e) 1-m DEM with full point cloud and 30-m DEM with 10 per cent point cloud, (f) 1-m DEM with full point
cloud and 10-m DEM with 10 per cent point cloud, (g) 1-m DEM with full point cloud and 30-m DEM with 1 per cent point cloud and (h) 1-m DEM with

full point cloud and 10-m DEM with 1 per cent point cloud.

Table &4 Comparison of strength of linear relationship between levels of
auxiliary data precision and total planted volume using linear model
form that includes the lidar 80t" height percentile and thinning status

Auxiliary data R?

1-m DEM, full point cloud 0.64
10-m DEM, 50% of original point cloud 0.63
10-m DEM, 10% of original point cloud 0.65
10-m DEM, 1% of original point cloud 0.69
30-m DEM, 50% of original point cloud 0.64
30-m DEM, 10% of original point cloud 0.66
30-m DEM, 1% of original point cloud 0.69

in loblolly pine plantations SAE models. To specifically address
our research objectives and questions: (1) DEM resolution had
minimal effects on estimates and their precision using the SAE
methods evaluated and (2) Reduced lidar point-cloud densities
resulted in similar total volume estimates and precision. Lower
density point clouds were as useful as the full density point clouds
evaluated. The results from this work are promising to inventory
managers interested in using SAE techniques in loblolly pine plan-
tations and indicate that lower resolution auxiliary information
can be utilized with confidence in area-based SAE applications
for the conditions evaluated in this study. The benefits of incorpo-
rating these lower resolution data may outweigh the acquisition
and analysis costs leading to similar or lower estimate uncer-
tainty at lower or similar costs respectively. Future work should

investigate the implications of using lower resolution elevation
products in areas with greater topographic diversity and with
unit-level model forms. Further, elevation products derived from
photogrammetric methods should be explored.
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