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A B S T R A C T

The objective of this study was to examine the impacts of urbanization on gross primary productivity (GPP) and
the interactions between carbon and water fluxes, including precipitation, evapotranspiration (ET), and water
yield (Q). A water-centric ecosystem model, Water Supply Stress Index model (WaSSI) that operates at the 12-
digit (81,900 watersheds) Hydrologic Unit Code (HUC) scale for the conterminous United States (CONUS) during
2000–2010, 2000–2050, and 2000–2100 was used. Linear regression and causal-based models were then applied
to identify key factors controlling urbanization impact on GPP. Simulations of GPP patterns compared favorably
with a global, 0.05-degree product of solar-induced chlorophyll fluorescence (SIF). We found that total CONUS
GPP declined from 8.68 Pg C yr−1 in 2000, to 8.54 Pg C yr−1 in 2010, to 8.36 Pg C yr−1 in 2050, and to
8.13 Pg C yr−1 in 2100. Total GPP decreased from 6.81 Pg C yr−1 to 6.26 Pg C yr−1 for those watersheds af-
fected by urbanization (~55,000). Total CONUS Q increased from 2.03 × 106 million m3 yr−1 in 2000, to
2.04 × 106 million m3 yr−1 in 2010, to 2.06 × 106 million m3 yr−1 in 2050, and 2.09 × 106 million m3 yr−1 in
2100, while Q increased from 1.68 × 106 million m3 yr−1 to 1.74 × 106 million m3 yr−1 for urbanized wa-
tersheds alone (~55,000). Although total CONUS ΔGPP was less than 0.55 Pg C yr−1, or< 8%, large changes
(ΔGPP>300 g C m−2 yr−1) were found in 245, 1984, and 5655 of the 81,900 watersheds by 2010, 2050 and
2100, respectively. Overall, the impacts of urbanization on GPP in the CONUS were influenced by background
climate, previous land cover characteristics, and the magnitudes of land use change. Effective integrated wa-
tershed management that attempts to minimize the negative ecological and environmental impacts of urbani-
zation must consider regional hydrologic differences and fit local climatic and watershed conditions.

1. Introduction

Urbanized land area accounts for a tiny portion of the earth’s ter-
restrial surface (< 3%) (Liu et al., 2014), but it contributes to 60% of
residential water use, 78% of carbon emission, and 80% of wood con-
sumption for industrial purposes (Grimm et al., 2008). Urbanization
substantially reduces vegetation cover as urban areas are typically
dominated by impervious surfaces. Rapid urbanization has significantly

altered ecosystem functions (Grimm et al., 2008; Wu, 2014) and
threatened ecosystem services such as clean water supply (Sun et al.,
2015a), climate regulation (Hao et al., 2018), and carbon sequestration
(Cui et al., 2017).

Gross primary production (GPP), one of the key ecosystem services
(Sun et al., 2011b), represents the total fixation of carbon by vegetation
through the photosynthesis process (Chapin et al., 2002; Beer et al.,
2010). GPP plays a critical role in both the terrestrial ecosystem and
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global carbon cycles (Cui et al., 2017; Sun et al., 2018). As estimated by
Xiao et al. (2010), the GPP of the conterminous U.S. was between 6.91
and 7.33 Pg C yr−1. Extreme climate events and disturbances such as
drought and fire reduced annual GPP at regionals scales (Xiao et al.,
2011; Sun et al., 2015c; Xiao et al., 2016). Permanent vegetation re-
moval due to urbanization, particularly the transformation from rural
land uses of agriculture or forestry to urban land uses characterized by
large impervious surfaces might also reduce annual GPP (Sun and
Lockaby, 2012). As evidenced, conversions of croplands or grasslands
to urban development dramatically reduced ecosystems’ carbon fixa-
tion ability up to 50% (Liu et al., 2018b; Nuarsa et al., 2018).

Few studies have quantified the impacts of urbanization on GPP
(Zhao et al., 2007). Existing results are mixed due to the complexity of
urbanization and diverse ecosystem responses to urbanization across
space. In general, urban land development has negative effects on GPP
at multiple scales, mainly due to the decrease in vegetation coverage
(McHale et al., 2017; Nuarsa et al., 2018; Seto et al., 2012; Sun et al.,
2019). However, positive effects were also observed in some regions
previously dominated by crops or deserts (Buyantuyev and Wu, 2009;
Zhao et al., 2007). As indicated by Miller et al. (2018), the urbanization
effects vary by biome. Urban area growth and vegetation change may
collectively cause an increase, a decrease or no change in GPP of urban
ecosystems through time (Cui et al., 2017). Our understanding of the
impacts of urbanization on the terrestrial carbon cycle is still limited
(Churkina, 2008; Romero-Lankao et al., 2014).

Accurate in situ measurements of GPP in urban ecosystems are rare
due to the complex urban landscape. Remote sensing and simulation
models have been used to estimate GPP response to human disturbances
in various regions (Gitelson et al., 2014; Jung et al., 2017; Monteith,
1972; Potter et al., 1993; Running and Zhao, 2015; Sun et al., 2011b;
Sun et al., 2019). Sun et al. (2019) categorized these models into four
types: 1) biophysical process-based, such as BESS (Breathing Earth
System Simulator) and BEPS (Boreal Ecosystem Productivity Simu-
lator), 2) vegetation-indexed based, such as VIM (Vegetation-indices
Model) and GRM (Greenness-Radiation Model), 3) light-use-efficiency
based such as CASA (Carnegie-Ames-Stanford Approach) and EC-LUE
(Eddy Covariance Light-Use Efficiency), and 4) machine-learning-based
models such as piecewise regression models, artificial neural network,
and random forest. However, urban areas were usually excluded in
regional studies due to the lack of parameters for urban ecosystems
(e.g., vegetation cover and type, water and light use efficiency) and the
heterogeneity of urban landscape (e.g., impervious surface, buildings,
vegetation) and management (Cui et al., 2017; Miller et al., 2018).

Carbon and water cycles are tightly coupled (Sun et al., 2011b; Sun
et al., 2019; Wu et al., 2016) as demonstrated by the close GPP and
evapotranspiration (ET) relationships (Law et al., 2002; Lei et al., 2014;
Zhang et al., 2016a; Proietti et al., 2019). ET is a key component of the
hydrological cycle, and a critical linkage to ecosystem carbon fluxes
(Sun et al., 2011a). Urbanization and climate change affect watershed
hydrologic and carbon fluxes mainly through altering the ET processes
(Sun and Lockaby, 2012). Indeed, the connection between ET and GPP
has been successfully used to estimate ecosystem carbon fluxes (Beer
et al., 2007; Sun et al., 2011b) or water flux (Zhang et al., 2016a) at a
national scale. The present study uses such type of water-centric eco-
system model (Water Supply Stress Index, WaSSI) (Sun et al., 2011b) to
estimate carbon fluxes from water fluxes. The WaSSI model has been
widely used to quantify effects of urbanization on water fluxes
(Caldwell et al., 2012) and the effects of drought on GPP and water
yield (Sun et al., 2015b; Sun et al. 2015c; Duan et al., 2016). We are not
aware of previous studies on the impacts of urbanization on GPP at a
national level in the U.S.

The overall goal of this study was to improve our understanding of
the coupled changes in water and carbon fluxes in the next 100 years
under a projected urbanization scenario across the U.S. Such knowledge
is essential for managing ecosystems (Mo et al., 2018) and mitigating
environmental problems caused by urbanization (Finzi et al., 2011) at a

national level. The objective of this simulation study was to quantify the
responses of watershed GPP, ET, and water yield to urbanization using
an integrated model. We examined changes in carbon and water under
various climate and land cover characteristics, and land use and land
cover changes (LULCC) through time at 12-digit, 8-digit, and 2-digit
Hydrologic Unit Code (HUC) watershed scales. The U.S. watersheds are
classified using several hierarchy levels, where lower hierarchy (e.g. 12-
digit) are nested within the higher hierarchy levels (e.g. 8-digit, 2-
digit).

We hypothesize that ‘responses of GPP to urbanization are not
created equal.’ Specifically, our hypotheses are: 1) The decreases of GPP
are due to both the urban area growth and reduction in evapo-
transpiration (Hypothesis 1-H1), and 2) The magnitude of GPP change
varies with background climate (i.e., high precipitation vs low pre-
cipitation), previous LULC (e.g. grassland, shrubland, or barren with
low biomass and forest with high biomass), and the magnitude of
LULCC (Hypothesis 2-H2).

2. Materials and methods

2.1. Water supply stress Index (WaSSI) model

2.1.1. WaSSI model description
The WaSSI model (Sun et al., 2011b; Caldwell et al., 2012) was

initially designed to estimate water and carbon balances and to de-
termine the watershed water stress and ecosystem responses to changes
in climate, land use and land cover, and human water demand. The
model simulates key ecohydrologic and carbon fluxes including water
yield, ET, and GPP, and Net Ecosystem Productivity (NEP). The model
has been tested in the U.S., Australia, China, Mexico, and African
countries for assessing forest management and climate change effects
on ecosystem services (Bagstad et al., 2018; Duan et al., 2016; Liu et al.,
2018a; Sun et al., 2011b). For example, Duan et al. (2016) and Sun
et al. (2015b, 2015c) evaluated the impacts of climate change and
drought on GPP and water yield in the U.S. National Forests.

For water cycle modeling, the WaSSI model simulates surface
runoff, baseflow, ET, infiltration, soil moisture storage, and snowpack
and melting by integrating built-in algorithms from Sacramento Soil
Moisture Accounting Model (SAC-SMA) and ancillary data (Table 1;
Sun et al., 2011b). The core of the WaSSI model is an ET model that
empirically estimates ET as a function of PET, leaf area index (LAI), and
water availability (i.e., precipitation, soil moisture) (Sun et al., 2011a).

As a water-centric ecosystem model, WaSSI estimates carbon bal-
ance from water fluxes using a water use efficiency (WUE) approach
(Sun et al., 2011b). GPP is determined as a function of ET and biome-
specific WUE that was derived from global eddy flux data
(GPP =WUE*ET) (Sun et al., 2011b). For urban ecosystems, in lieu of a
reliable WUE parameter, WUE for savanna ecosystem type reported in
Sun et al. (2011b) was used as a surrogate for vegetated urban areas.
GPP for impervious areas for any LULC type was assumed to be zero.

The WaSSI model simulates monthly water and carbon balance for
each of the 10 land cover types used in the model and results are ag-
gregated to the watershed level of 12-digit Hydrologic Unit Code
(HUC12) by an area-weighted average approach (Caldwell et al., 2012;
Sun et al., 2011b). Model outputs of ET, water yield, and GPP were
summarized to the annual level. The 18 HUC2, 2,100 HUC8, and about
81, 900 HUC12 level watersheds are defined by the Watershed
Boundary Dataset (Sun et al., 2011b). A few HUC12 watersheds that
represent coastal watersheds with missing land use data or waterbodies
were excluded from this analysis. More detailed descriptions and ap-
plications for the WaSSI model can be found in Sun et al. (2011b),
Caldwell et al. (2012), and Sun et al. (2015b, c).

2.1.2. WaSSI model input datasets
This study estimated GPP responses to urbanization in recent (2000,

2010), middle (2050), and long term (2100) time frame. WaSSI model
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requires five categories of input datasets (Table 1) including historical
climate of precipitation and air temperature (1961–2010), each of ten
land cover fraction and impervious surface fraction within each land
cover types in the four studied periods, STATSGO-based soil para-
meters, and mean monthly LAI data (2000–2012) by each land cover
type (Caldwell et al., 2012; Sun et al., 2011b). The impervious surface
fraction or LAI for each land cover type was derived by overlaying the
impervious surface layer or MODIS LAI layer with the land cover layer.
The ten LULC categories include deciduous forest, evergreen forest,
mixed forest, shrubland, grassland, cropland, waterbody, wetland,
urban, and barren land. However, because there is only one category
for forest in the ICLUS datasets, we divided the forest fraction equally
and reconstructed three forest covers with the same LAI value. Simu-
lations for 2010, 2050, and 2100 were compared to those for the
baseline year 2000 to determine the impacts of urbanization on GPP
and water yield.

This study does not intend to address ecosystem responses to cli-
mate change, and therefore a static historical climate (1961–2010) was
used for all the simulations. Similarly, we assumed that LAI would not
change over time, and the mean LAI dataset (2000–2012) was used for
all simulations.

2.1.3. WaSSI model validation
The WaSSI model has been applied worldwide and well-validated

with hydrologic measurements (US: Caldwell et al., 2012; Sun et al.,
2011b; Sun et al., 2016; China: Liu et al., 2013; Australia: Liu et al.,
2018a; Rwanda: Bagstad et al., 2018). Therefore, this study focused on
GPP validation using two data sources to ensure the quality of GPP
estimates and their potential bias for urban ecosystems.

Because most remote-sensing based GPP products do not include
urban areas, they are not appropriate for model validation purposes.
Thus, we validated WaSSI estimates for GPP using a proxy for GPP, the
Orbiting Carbon Observatory-2 (OCO-2) based solar-induced chlor-
ophyll fluorescence (GOSIF) products. Studies have found that SIF was
strongly correlated with GPP measured at flux sites across a wide
variety of biomes (Li et al., 2018c). In this study, we used a global,
OCO-2 based SIF product (GOSIF) that consists of 8-day, gridded SIF
estimates over the period 2000–2018 (Li and Xiao, 2019). GOSIF was
derived from three categories of datasets, including SIF soundings from
the OCO-2, data streams from the Moderate Resolution Imaging Spec-
troradiometer (MODIS), and meteorological reanalysis data. The da-
taset is proved to be highly correlated with flux tower-based GPP es-
timates (Li and Xiao, 2019).

As mentioned earlier (Section 2.1.2), the ICLUS datasets had only
one land-use type for forest. Therefore, we used the 2006 National Land
Cover Database (NLCD) for GPP validation. The original 16 land cover

types for NLCD were lumped into ten types to meet the requirements of
the WaSSI model. To be consistent with the NLCD products, we used the
impervious surface fraction from ICLUS V2.1 product, and LAI data
products in the same year of 2006 (Zhao et al., 2005). We aggregated
the SIF data from the GOSIF product (Li and Xiao, 2019) to both HUC12
and HUC8 watershed levels to compare the mean SIF values for
2000–2010 to the WaSSI GPP estimates in 2006. Similarly, we com-
pared an upscaled GPP product, EC-MOD (Xiao et al., 2014b) with the
SIF product (Li and Xiao, 2019) at both HUC12 and HUC8 watershed
levels. The EC-MOD GPP product was derived from eddy covariance,
MODIS, and meteorological reanalysis data using a data-driven ap-
proach (Xiao et al., 2008; Xiao et al., 2010) and consists of 8-day, 1 km-
resolution GPP estimates for North America over the period
2000–2012. This comparison only applies to non-urban areas because
urban lands were masked out in the EC-MOD GPP product (Xiao et al.,
2010).

2.2. Statistical analyses

2.2.1. Selection of independent variables
Based on our hypotheses and previous literature (As-syakur et al.,

2010; Awal et al., 2010; Cui et al., 2017; Miller et al., 2018; Nuarsa
et al., 2018), we chose 17 independent variables to examine their in-
fluences on the urbanization impacts on GPP. These 17 variables were
categorized into three groups: 1) background climate including pre-
cipitation (PPT) and temperature (TEMP), 2) previous land cover
characteristics expressed as the area fraction of impervious surface and
seven land cover types (i.e., forest, cropland, shrubland, grassland,
wetland, waterbody, and urban) within a watershed of the baseline year
2000, and 3) land use and land cover change (LULCC) expressed as the
absolute changes of a particular land cover fraction within a watershed
from 2000 to 2010, 2050, and 2100. All the previous land cover
characteristics and LULC changes were denoted by the first three or four
letters of the land cover type with the source year or time period at-
tached. For example, forest fraction in 2000 and its changes from 2000
to 2050 were denoted by For00 and For0050, respectively. In addition,
all the variables were standardized (i.e., mean 0, standard deviation of
1) to eliminate the effects of dimensions for further analyses.

2.2.2. Interactions between carbon and water fluxes
We compared both the spatiotemporal changes of gross primary

production (GPP), evapotranspiration (ET), and water yield (Q) for
48,000–55,000 HUC12 watersheds impacted by urbanization during
2000–2010, 2000–2050, and 2000–2100 to assess the interactions of
carbon and water fluxes. In addition, the linear regression of the
changes in GPP to changes in ET during 2000–2010, 2000–2050 and

Table 1
Summary of databases used for WaSSI model parameterization and validation of outputs.

Data Temporal and spatial
resolution

Data sources

Land cover and land use, impervious surface 2000, 2010, 2050, 2100;
90 m × 90 m

EPA; ICLUS version 2.1 (U.S. EPA, 2017);
ICLUS V2.1 uses a new spatial allocation model to calculate demand for each land use class in
relation to population density. It projected land use and impervious surface products for the
year 2050 and 2100 with global socioeconomic scenarios (SSPs; SSP5 scenarios chosen in this
study).

Historic climate (monthly precipitation,
temperature)

1961–2010; 4 km × 4 km Parameter-elevation Regressions on Independent Slopes Model (PRISM) (http://
www.prism.oregonstate.ed; Caldwell et al., 2012)

Leaf Area Index (LAI) 2000–2012; 1 km × 1 km Moderate Resolution Imaging Spectroradiometer (MODIS) (Zhao et al., 2005)

11 Soil parameters For SAC-SMA soil model;
1 km × 1 km

State Soil Geographic Database (STATSGO) (https://water.usgs.gov/GIS/metadata/usgswrd/
XML/muid.xml

Water use efficiency (WUE) parameters Annual by biome Derived from eddy flux sites (Sun et al., 2011b)

Upscaled GPP product for model validation 1 km × 1 km; 8-day interval EC-MOD GPP product for North America (Xiao et al., 2014b)
Satellite-derived solar-induced chlorophyll

fluorescence for model validation of GPP
0.05° × 0.05° grid; 8-day
interval

Global, OCO2- based SIF product (GOSIF) (Li and Xiao, 2019)

WaSSI model outputs: ET, water yield, and GPP Monthly, annual WaSSI model (Sun et al., 2011b)
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2000–2100 at both HUC12 and HUC8 scales were further conducted to
quantify their interactions.

2.2.3. The impacts of urbanization on GPP by linear regression analyses
Linear regression analyses were used to examine GPP responses to

urbanization and associated hydrological change, including ET (testing
Hypothesis#1-H1). Standardized stepwise regression was used to ex-
plore the relationships among GPP, background climate, previous land
cover characteristics, and LULCC to test Hypothesis #2 (H2). Prior to
the stepwise regression analysis, collinearity analysis was conducted to
remove the independent variables using thresholds of Variance
Inflation Factor (VIF) and Minimum Tolerance Values large than 5 or
less than 0.2, respectively. The importance of independent variables in
explaining GPP variations was ranked by the stepwise regression
coefficients because the independent variables were standardized.

2.2.4. The impacts of urbanization on GPP by a causal model
We further used a general causal model, the Directed Acyclic Graph

(DAG) is Absent (IDA), to determine the causation relationship between
the change in GPP and the selected environmental factors (Kalisch
et al., 2012) because correlations do not necessarily mean causation.
There are a few established methods, such as the Structural Equation
Model (SEM), that can be used to identify the causal effect between
variables from the observational data (Grace, 2006). However, such
methods are usually based on an unrealistic assumption that the po-
tential causal relationships between variables are known (Maathuis
et al., 2010). Unlike the previous mathematical models, IDA simulates
an intervention process of the system and predicts the causal effects of
the interventions without such prior causal knowledge (Maathuis et al.,
2010; Pearl, 1995). IDA has been well validated for a biological system
(Maathuis et al., 2010) and has been applied in many other research
fields such as soil contamination (Liu et al., 2017; Wang et al., 2018b)
and social science (Morgan, 2013).

The causal structure identification and causal effect estimation are
two modules for IDA and are computed with either the Peter-Clark (PC)
(Pearl, 1995) or Pearl’s do-calculus algorithm (Pearl, 2003). The causal
structure derived by PC algorithms is explicitly characterized by a
network with nodes (representing dependent and independent vari-
ables) and edges (direct causals) called a Directed Acyclic Graph (DAG)
(Pearl, 2003; Wang et al., 2018b). The PC algorithms initially identify
an undirected graph with nodes and edges, and then convert it to a
complete partially directed acyclic graph (CPDAG) by d-separation
(Pearl, 2003; Wang et al., 2018b). The CPDAG is in the form of nodes
and both directional and unidirectional edges based on the conditional
independence tests (e.g., gauss CI Test) at a certain significance level
(Kalisch and Bühlmann, 2007; Kalisch et al., 2012; Pearl, 2003; Wang

et al., 2018b). The edges are deleted if conditionally independent.
Otherwise they are retained. The PC algorithm creates one CPDAG and
the equivalence class of the DAGs (with the same skeleton, v-structures,
and equally valid conditional independence information) to char-
acterize the causal structure. The arrows might be in different direc-
tions in different DAGs in the equivalence class, meaning that the
possible causal effect is not a unique value but a set of causes. The
Pearl’s do-calculus algorithm was conducted on each equivalence class
of the DAGs by either global or local method. A multiset of possible
casual values was estimated, and we used the lower bound of the causal
effects as the final results. The PCalg package for R (version: R3.4.2)
was used to develop IDA (Kalisch et al., 2012).

3. Results

3.1. Validation of modeled GPP

The aggregated mean watershed-scale EC-MOD GPP (Xiao et al.,
2008; Xiao et al., 2011; Xiao et al., 2010) correlated well with GOSIF (Li
and Xiao, 2019) at both HUC12 and HUC8 watershed scales (urban area
not included) (R2 = 0.97–0.98, p < 0.05; Fig. 1). This demonstrates
the validity of GOSIF as a proxy of GPP at the watershed scale. We
further compared the mean GPP modeled by WaSSI with the GOSIF
product, both including urban areas. As indicated by Fig. 1, our mod-
eled mean GPP was also well-collated with mean GOSIF at both HUC12
and HUC8 spatial scales (R2 = 0.91–0.96, p < 0.05), confirming the
strength of the WaSSI model in modeling GPP for all LULC.

3.2. Change in urban areas

Among the 81,900 HUC12 watersheds, the mean fraction for urban
areas ranged from 11.7% to 20.6% in 2000, 2010, 2050, and 2100.
About 30%-40% of the watersheds did not show change in urbanization
(Fig. 2). We focused on the 48,000–55,000 watersheds experiencing
obvious changes in urban growth at both the HUC12 and HUC8 wa-
tershed scales. Among the 48,000–55,0000 watersheds experiencing
urban expansion, the urban growth rate increased dramatically over
time. The mean absolute change in the urban area fraction was 0.05,
0.08 and 0.13 during 2000–2010, 2000–2050 and 2000–2100, respec-
tively (Fig. 1-D). The number of watersheds with an increase in urban
area fraction greater than 0.5 accelerated from 201 during the
2000–2010 period, to 777 during 2000–2050, and to 2628 during
2000–2100 (Fig. 2-B). Similarly, mean relative changes in urban area
were 148%, 351% and 712% during 2000–2010, 2000–2050, and
2000–2100, respectively (Fig. 2-E). The number of watersheds with a
relative urban area increase of greater than 300% increased from 3933

Fig. 1. Scatter plot to show relationship between estimated gross primary productivity (GPP) in 2006 by the WaSSI model and mean OCO2- based solar-induced
chlorophyll fluorescence (GOSIF) from 2000 to 2012 (A), and (B) estimated GPP by Xiao et al. (2008, 2010, 2011) and GOSIF from 2008 to 2012.
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during 2000–2010, to 7830 during 2000–2050, and to 11,963 during
2000–2100 (Fig. 2-B). In addition, the CONUS urban area growth was
pronounced in the southern U.S. for areas such as Oklahoma (OK),
Arkansas (AR), Louisianan (LA) and Texas (TX) (Fig. 2-B, 2-C).

3.3. Modeled change in GPP

Among the 81,900 watersheds, total gross carbon uptake of the
CONUS was estimated to be 8.68, 8.54, 8.36 and 8.13 Pg C yr−1 in
2000, 2010, 2050 and 2100, respectively. This represented as a de-
crease in GPP of 1.61%, 3.69%, and 6.34% in 2010, 2050 and 2100,
respectively. The gross carbon uptake for only urbanized watersheds
(~55,000) decreased from GPP for the 6.81 Pg C yr−1 in 2000, to
6.67 Pg C yr−1 in 2010, to 6.49 Pg C yr−1 in 2050, and 6.26 Pg C yr−1

in 2100, with the decrease of 2.06%, 4.70%, and 8.08% in 2010, 2050
and 2100, respectively. Although the impact of future urbanization on
mean GPP (ΔGPP) was small at the national level, large changes
(ΔGPP > 300 g C m−2 yr−1) were found in 245, 1984, and 5655 of the
81,900 watersheds by 2010, 2050 and 2100, respectively. In contrast,
the total water yield (Q) at the CONUS level increased from 2.03 × 106

million m3 yr−1 in 2000, to 2.04 × 106 million m3 yr−1 in 2010, to
2.06 × 1012 million m3 yr−1 in 2050, and 2.09 × 1012 million m3 yr−1

in 2100; while increased from 1.68 × 106 to 1.74 × 106 for only ur-
banized watersheds (~55,000). The gross carbon uptake ability of the
CONUS ecosystems decreased through time and varied spatially among
the 18 water resource regions (WRRs). For example, the top four areas
with the greatest decreased GPP during 2000–2050 were WRR03
(Mean ± Standard Deviation, 11.5 ± 15.6 × 109 g C yr−1), WRR06
(8.8 ± 9.6 × 109 g C yr−1), WRR08 (11.6 ± 16.5 × 109 g C yr−1)
and WRR11 (10.3 ± 15.9 × 109 g C yr−1) in the southeastern U.S.
(Fig. 3). These regions are wet regions with high ET due to high pre-
cipitation and available energy. In contrast to a decrease in GPP, these

WRRs showed an increase in Q. The increase in total water yield vo-
lume for WRR03, WRR06, WRR18 and WRR12 during 2000–2050 was
10.2 ± 19.8 × 105 m3, 6.8 ± 9.8 × 105 m3, 6.6 ± 13.1 × 105 m3,
and 9.1 ± 21.2 × 105 m3, respectively due to reductions in ET (Fig. 3).
Changes in GPP and Q showed similar contrasting pattern during other
two time periods, i.e., 2000–2010 and 2000–2100 (not shown).

The modeled decrease in GPP from 2000 to 2100 varied greatly over
the US (Figs. 4, S1). For watersheds projected to increase in urban area
(total 48,000–55,000), the mean and standard deviations of annual
decrease in GPP were −31.0 ± 45.3, −67.0 ± 97.3 and
−108.6 ± 151.1 g C m−2 yr−1 during 2000–2010, 2000–2050 and
2000–2100, respectively (Fig. 5-A). Similarly, the absolute change in
GPP was most pronounced in the southeastern U.S., and coincided with
high GPP values of the baseline year 2000. However, the mean relative
change in GPP was most obvious in the dry regions, ranging from
−8.1% to −2.3% (Figs. 5-B, S1).

3.4. Interactions between carbon and water fluxes

By model design, the carbon (GPP) and water fluxes (ET) are in-
herently coupled, and thus GPP, ET and Q patterns followed each other
closely. Among the 48,000–55,000 watersheds with urbanization, GPP
and ET generally decreased while Q increased during the three time
periods (Fig. 6). The top four regions in change in Q (ΔQ) overlapped
with regions with decrease in carbon uptake (WRR03, WRR06, WRR08,
and WRR12; Fig. 3). Similarly, the absolute change in ET was most
obvious in eastern U.S. with mean annual changes ranging from −2.8
to−11.7 mm during the three time periods (Figs. 7, 8-A). However, the
mean relative change in ET ranged from −0.5% to −2.1% with high
values mainly located in western U.S. (Fig. 8-B, S2). Although modeled
GPP was estimated to be directly proportional to ET by biome in this
study, the relationship between changes in GPP and changes in ET rates

Fig. 2. The percentage of urban area in 2000 (A), watersheds with urban area fraction increased by greater than 0.5 (B), watersheds with relative urban area
increased by greater than 300% (C) and box-charts of change in urban fraction and relative change in urban area (D) during 2000–2010, 2000–2050 and 2000–2100
at 12-digit Hydrologic Unit Code (HUC12) watershed scale. The square is the mean value of the change, while the solid line is the median. The lower and upper
whisker represents the 5th percentile and 95th percentile of the change, respectively.
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were not linear at the watershed level as indicated by the low adjusted
R2 values at both the HUC12 and HUC8 watershed scales during the
three time periods (Fig. 9).

3.5. Relationships between GPP and urbanization

3.5.1. GPP responses to urbanization determined by linear regression
models

The change in GPP (ΔGPP) was linearly correlated with the increase
in urban areas at both watershed scales when data were pooled for all
time periods (R2 = 0.81–0.94, p < 0.05; Figs. 10, S3). However, the
impacts of urbanization on ΔGPP varied greatly among watersheds that

have different watershed size, baseline land cover, background climate,
and magnitude of land cover change (Figs. 11–13, S4–S6). The ΔGPP for
watersheds at the HUC8 scale is larger than that at the HUC12 scale.
The ΔGPP data for HUC12 watersheds were more scattered, indicating a
higher variability than the larger HUC8 watersheds. The differences at
the two spatial levels suggested that the urbanization effects became
more variable as the watershed sizes decreased. ΔGPP values were
generally high for the watersheds previously dominated by wetland,
cropland, and forest and urban land compared with those of grassland
and shrubland, as indicated by the steeper slopes of the relationships
(Fig. 11, S4). Similarly, the mean GPP for watersheds in wet regions
was more sensitive (R2 = 0.90–0.94; regression model

Fig. 3. Simulated effects of urbanization on gross primary productivity (GPP) and water yield (Q) by 18 waters resource regions (WRR) from 2000 to 2050.

Fig. 4. Simulated gross primary productivity (GPP) in 2000 (A) and the absolute change in GPP during 2000–2010 (B), 2000–2050 (C), and 2000–2100 (D) at HUC12
watershed scale. Blank means no urbanization.
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slope = −990–−650) than that in dry regions (R2 = 0.78–0.94;
slope = −547–−468) (Fig. 12, S5). As determined by the standardized
stepwise regression coefficients, the magnitude of urbanization (i.e.,
changes in urban area) and the changes in grassland area were the two
most influential factors controlling ΔGPP during the three time periods
(Fig. 13, S6). In contrast, background climate and previous land cover
types contributed little to ΔGPP.

3.5.2. GPP responses to urbanization as determined by the causal model
The IDA analysis showed that the changes in urban area from 2000

to 2050 (Urb0050) and grassland (Gras0050) were the direct causes of
ΔGPP during 2000–2050 with the causal effect size of −3.72 and 0.55,
respectively (Fig. 14). This means that when Urb0050 and Gras0050
increase or decrease by 1 standard unit, ΔGPP decreases or increases by
3.72 or 0.55 standard unit, respectively. Previous land use types of
cropland (Crop00) and forest (For00) and changes in forest (For0050)
were the indirect causes of ΔGPP with GPP changes with effect size of
0.06,−0.09 and 0.65, respectively. Although with directed edges to the
dependent factor, historical climate of PPT and TEMP and changes in
cropland (Crop0050) and impervious surface (IMP0050) were not
considered as the causes of ΔGPP due to their small effect size of 0.
Similarly, during 2000–2010, the land use change of Urb0010 and
Gras0010 were the direct and indirect causes of ΔGPP with effect size of

−1.76 and 0.94, respectively (Fig. S7). During 2000–2100, the land use
change of Urb00100 was the direct cause of ΔGPP with effect size of
−2.96 (Fig. S8). Previous land use types (Crop00, For00, Gras00,
Shru00, Urb00) and land use change of Crop00100 and For00100 were
the indirect causes with effect size ranged from −0.15 to 0.65 (Fig. S8).

4. Discussion

4.1. Complex interactions between responses of GPP and water to
urbanization at the watershed scale

As expected, we found that ΔGPP closely followed the increase in
urban area and the impacts varied across the CONUS over time. WaSSI
appeared to be effective for projecting the negative impacts of urbani-
zation on GPP, consistent with what were widely reported by previous
individual studies (Diem et al., 2006; Imhoff et al., 2004; Seto et al.,
2012; Trusilova and Churkina, 2008). The validation of the modeled
GPP using the SIF product (Li and Xiao, 2019) showed that WaSSI
reasonably captured GPP patterns under urbanization. The success was
presumably because the WaSSI model considered the key controls on
carbon and water balances including climate (water, energy) and ve-
getation (LAI, WUE) as identified in recent studies (Jenerette et al.,
2009; Messori et al., 2019; P. Sun, 2019; Z.Y. Sun, 2019; Zhou and Xin,

Fig. 5. The box-chart of absolute change (A) and relative change (B) in gross primary productivity (GPP) for 48,000–55,000 HUC12 watersheds impacted by
urbanization during 2000–2100. The square is the mean value of the changes in GPP and the solid line is the median. The lower and upper whisker represents the 5th
percentile and 95th percentile of the changes, respectively.

Fig. 6. Simulated mean changes in gross primary productivity (GPP) (g C m−2 yr−1), evapotranspiration (ET) (mm yr−1), and water yield (Q = Precipitation-ET)
(mm yr−1) for 48,000–55,000 HUC12 watersheds impacted by urbanization during 2000–2010, 2000–2050, and 2000–2100.
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2019). For example, Chen et al. (2019) identified precipitation, tem-
perature and LAI as the three key drivers of ecosystem carbon fluxes at
a global scale. As a water-centric model, WaSSI used the same three
variables to estimate ET, a direct integrated variable, to estimate GPP.
However, we found that urbanization caused an increase in GPP for
108–297 watersheds mainly in arid or semi-arid regions. Such results
were coincided with findings of Zhao et al. (2007) and Buyantuyev and
Wu (2009) who suggested that urbanization resulted in an increase in
vegetation cover due to artificial greening.

Furthermore, we found that ΔGPP varied by watershed size, pre-
vious land use and cover types, and local climate. First, larger water-
sheds have larger ΔGPP than smaller ones, because larger watersheds
can reduce more vegetation when the urban sprawl rate is equal (i.e.,
increase in urban area in each watershed area unit). However, the ur-
banization effects become more variable as the watersheds become

smaller. Second, ΔGPP was more sensitive for watersheds dominated by
wetlands, forest, cropland, and urban land. The probable reason was
that high-water use efficiency (WUE) and change in ET for those land
covers compared to grassland and shrubland. The changes in ET for
wetlands is the highest among all the land uses due to their high levels
of PET and large ET reduce capacity when converted to impervious
surfaces (assumed to be close to zero in this study). Watersheds domi-
nated by vegetation coverage with deep roots such as forest, generally
have higher evapotranspiration rates (ET/PPT) (Deng et al., 2015; Li
et al., 2018b), and the changes in ET is relatively high compared to
other land use conversions. In addition, different land uses have various
WUE (Cropland > Forest > Grassland > Shrubland, Savanas, and
Wetland) (Sun et al., 2011b). Thus, watersheds dominated by wetland,
forest, and cropland would have higher change in WUE or ET, therefore
ΔGPP, as a result of urban area expansion. Similarly, urban dominated

Fig. 7. Modeled annual evapotranspiration (ET) in 2000 (A) and the absolute change in ET during 2000–2010 (B), 2000–2050 (C), and 2000–2100 (D) at the HUC12
watershed scale.

Fig. 8. The box-chart of absolute change (A) and relative change (B) in evapotranspiration (ET) for 48,000–55,000 HUC12 watersheds impacted by urbanization
during 2000–2100. The square is the mean value of the changes in ET and the solid line is the median. The lower and upper whisker represents the 5th percentile and
95th percentile of the changes, respectively.
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watersheds generally have greater urban area growth rates than non-
urban (i.e., forest, shrubland, and grassland) dominated watersheds,
and thus have larger ΔGPP when removing vegetations by urbanization.
Previous studies also found that hydrological responses of urban
dominated watersheds were more sensitive to urbanization than the
non-urban dominated watersheds (Kumar et al., 2018; Putro et al.,
2016; Rouge and Cai, 2014). Third, ΔGPP in wet regions was more
sensitive to urbanization due to large coverages of forest and wetland in
wet regions. Wet and forested areas had large changes in WUE and ET
when they were converted to other land uses. All these results support a
previous study conclusion that urbanization effects varied by vegetation
type and biome (Miller et al., 2018).

The ΔGPP at the watershed scale did not linearly follow the ET
changes by LULC as originally surmised. The main reason was that the
WUE (GPP/ET) differed among land cover types (Ekness and Randhir,
2015; Li et al., 2018a; Sun et al., 2011b) and the watershed land use
compositions including impervious surface fraction patters were com-
plex, resulting in a nonlinear relationship between ET and GPP at the
watershed level. The complex interactions between carbon and water at
a large scale was also noted in Cheng et al. (2017). They found that the
changes in terrestrial carbon uptake did not proportionally follow the
changes in ET but rather followed changes in WUE. However, the inter-
annual ET-GPP coupling in semi-arid regions appeared to be rather high
(Biederman et al., 2016; Zhang et al., 2016b).

Fig. 9. Linear regression of the change in gross primary productivity (GPP) to change in evapotranspiration (ET) during 2000–2010, 2000–2050 and 2000–2100 at
both HUC12 (A) and HUC8 (B) scale.

Fig. 10. Scatter plot to show relationship between the absolute change in gross
primary productivity (GPP) and the absolute change in urban area fraction
during 2000–2050 at both HUC12 and 8-digit Hydrologic Unit Code (HUC8)
watershed scales.

Fig. 11. Scatter plot to show relationship between the change in gross primary
productivity (GPP) and the absolute change in urban area fraction during
2000–2050 for watersheds previously dominated by forest, urban, shrubland,
grassland, cropland, water and wetland lands of the base year 2000 at HUC12
scale.

Fig. 12. Scatter plot to show relationship between the change in gross primary
productivity (GPP) to the absolute change in impervious surface for both wet
(PPT/PET >= 1) and dry (PPT/PET < 1) climate during 2000–2050. PPT
and PET denote precipitation and potential evapotranspiration, respectively.
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4.2. Urbanization impacts across time and space

Our modeling analysis suggested that both the previous land cover
characteristics, and historical climate and land cover changes influ-
enced ΔGPP through time, which supported Hypothesis #2. Among
these controlling factors, changes in urban area and grassland played
the most important role. However, correlation does not necessarily
imply causation. The IDA results further demonstrated that urban area
growth was the direct cause of the changes in GPP through time. In
contrast, previous LULCC of non-urban lands were identified as indirect
causes of ΔGPP. In general, our findings are consistent with previous

individual studies (Buyantuyev and Wu, 2009; Diem et al., 2006; Imhoff
et al., 2004; Seto et al., 2012; Trusilova and Churkina, 2008). The
present study represents a novel integration of various findings at a
national scale.

4.3. Implications for watershed ecosystem management

This study suggested that that there was a tradeoff between water
yield and GPP. Reduction in ecosystem GPP may cause concerns of
organic matter inputs to urban aquatic ecosystems and thus negatively
affect fauna habitats, biodiversity, and aquatic ecosystem productivity

Fig. 13. Standardized stepwise regression coefficients of the change in gross primary productivity (GPP) to the selected controlling factors during 2000–2050 at
HUC12 watershed scale.

Fig. 14. Causal networks and causal effects among change in gross primary productivity (GPP0050; green circle) and the controlling factors (blue and orange circles)
during 2000–2050 derived from IDA. Orange circles denote controlling factors which are causally related to water yield change and red directed edges denote the
causal relations. The causal relations and effect (in numbers) are shown at the right corner of each network. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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(Sun and Lockaby, 2012). The increase of water yield from a watershed
can be beneficial (i.e., reduced water stress) or harmful (increased
overland flow and stormflow, erosion and sedimentation). At the na-
tional scale, carbon–water tradeoffs should be considered in developing
policies for reducing carbon emission and maintaining stream water
supply and water quality. For example, similar to previous findings
(Boggs and Sun, 2011) and (Oudin et al., 2018), the WRR03, WRR06,
WRR08 and WRR12 in the wet regions in the southeastern U.S. are
projected to have pronounced increase in water yield but large decrease
in GPP. However, the amplification of water quantity by urbanization
often causes water quality problems and cautions are needed to con-
sider the likely negative effects of GPP decline (Sun and Lockaby,
2012). Maintaining forest coverage and thus GPP during urbanization
in the watersheds in southeastern U.S. is essential to mitigate the ne-
gative impacts of urbanization on watershed ecosystem health. Forest
maintenance and restoration is a way in preventing a drastic decrease in
GPP (Nuarsa et al., 2018). One important finding from this study and
others (Miller et al., 2018) was that the impacts of urbanization on GPP
varied among watersheds under different climate and watershed char-
acteristics (i.e., previous land cover type, and land use and cover
changes). Therefore, effective integrated watershed management stra-
tegies must be designed to fit local climatic and watershed conditions.

4.4. Uncertainty

As for any modeling results, uncertainty comes from both the model
itself and from input data driving the model (Xiao et al., 2014a; Zheng
et al., 2018). The WaSSI model algorithms for estimating GPP is biome
based. Unfortunately, very few urban flux sites existed and GPP and ET
data are limited to derive urban ecosystem WUE. In this study, we
lumped three types of forest (i.e., deciduous forest, evergreen forest,
mixed forest) into one category of forest due to the limitation of ICLUS
data. We set the same impervious fraction and LAI values per land use
of the three subtypes of forest. Thus, GPP reported here may have bias
for some watersheds, either overestimated or underestimated.

The uncertainty of models could be reduced by improving model
inputs such as refined land use and cover and MODIS-based LAI data-
sets. As demonstrated by other studies (Kimball et al., 2018), refined
land cover and climate dataset inputs increased the accuracy of MODIS-
based GPP estimates. Similarly, improved climate data for urban areas
will improve modeling result accuracy.

Climate is a key factor controlling ET and GPP at a broad scale
(Chen et al., 2019; Messori et al., 2019) and confirmed by the current
study. However, this study mainly focused on the sensitivity of urba-
nization assuming a static climate conditions through time. Future cli-
mate change including the rise of CO2 concentration is likely to affect
vegetation dynamics and carbon fixation (Golladay et al., 2016; Sun
et al., 2018; Wang et al., 2018a), ET, WUE, and GPP. However, the
climate change projections are highly uncertain and its impacts on
ecosystem structure and functions are extremely variable (Mankin
et al., 2019). Precipitation was found to exert positive impacts on
ecosystem productivity in semiarid regions, while warming may have
negative effects (Zhao et al., 2019). The impacts of climate change and
other factors such as nitrogen deposition, CO2 fertilization, and urban
heat island effects on WUE remains controversial (Mankin et al., 2019).

Future global climate change and local urban meteorological
change such as ‘Urban Heat Island (Zhou et al., 2019) or ‘Urban Dry
Island’ (Hao et al., 2018) may overwhelm the LULCC effects on water
fluxes as recently demonstrated by Martin et al. (2017). At a global
scale, climate factors including rising CO2, temperature and water
conditions generally had positive impacts on GPP. Sun et al. (2018)
demonstrated that LULCC had a negative impact on global GPP, espe-
cially in regions with high rates of forest loss, which is consistent with
our findings. Thus, climate change and LULCC driven by urbanization
are often coupled, and they should be addressed together to fully
quantify the tradeoffs between GPP loss and water yield rise in

watersheds.

5. Conclusions

The effects of urbanization on gross primary productivity (GPP) and
water yield across the continental United States (CONUS) were quan-
tified by integrating a water-centric ecosystem model (WaSSI), histor-
ical climate (1961–2010) and both historical, and projected future
LULCC at both 12-digit and 8-digit Hydrologic Unit Code watershed
scales. We found that the total amount of CONUS carbon uptake de-
creased through time and varied across space. Watersheds with a large
decrease in GPP were found in warm and wet regions of the south-
eastern U.S., overlapped with regions of large water production. The
trade-offs and coupling between carbon and water fluxes (i.e., GPP, ET,
water yield) at the watershed level were complex, and were affected by
climate, vegetation structure, and watershed landcover compositions.
In addition, the impacts of urbanization on GPP varied among water-
sheds with different background climate, previous land cover types, and
the magnitude of LULCC. LULCC, especially urban growth in watershed
dominated by urban uses, played the most important role in controlling
the variations of GPP in future periods.

Water and carbon fluxes are closely coupled, and our study supports
the hypothesis that “GPP responses to urbanization vary across the
space” through time as affected by water and energy availability. We
conclude that effective environmental management measures and
strategies must be designed to fit regional and local watershed condi-
tions. To reduce impacts of urbanization on ecosystems including ter-
restrial and aquatic components of the watersheds, it is important to
maintain vegetation covers and hydrological functions in urbanizing
watersheds through conserving forests and wetlands or developing
other ‘green infrastructure’.

The current study examined the GPP sensitivity to potential urba-
nization at the CONCUS scale and how this potential change interacted
with water availability (i.e. the balance of precipitation and ET). Our
study provides a benchmark on the likely impacts of urbanization alone
on ecosystem water and carbon fluxes. Future studies should evaluate
urbanization effects under a changing climate because urbanization
may aggravate or offset the effects of climate change on GPP depending
on future climate and management conditions.
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