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Abstract
Aim: A historically benign insect herbivore, Matsucoccus macrocicatrices, has re‐
cently been linked to dieback and mortality of eastern white pine (Pinus strobus L.). 
Previous reports indicated that its native range was restricted to New England, USA 
and southeastern Canada. Now, the insect occurs throughout an area extending from 
the putative native range, southward to Georgia, and westward to Wisconsin. Our 
goal was to evaluate whether its current distribution was due to recent introduc‐
tions consistent with invasion processes. We considered two hypotheses: (a) if recent 
expansion into adventive regions occurred, those populations would have reduced 
genetic diversity due to founder effect(s); alternatively (b) if M. macrocicatrices is na‐
tive and historically co‐occurred with its host tree throughout the North American 
range, then populations would have greater overall genetic diversity and a population 
structure indicative of past biogeographical influences.
Location: Eastern North America.
Methods: We developed nine M. macrocicatrices‐specific microsatellite markers de 
novo and genotyped 390 individuals from 22 populations sampled across the range 
of eastern white pine in the USA. We assessed genetic variability, relatedness, and 
population structure.
Results: There were no signatures of founder effects. The only differences in genetic 
diversity occurred latitudinally, where the number of rare alleles and observed het‐
erozygosity was highest in the southern range extent. Analyses of population struc‐
ture indicated three distinct genetic clusters separated by the Great Lakes and the 
Blue Ridge Mountains.
Main Conclusions: The seemingly sudden ecological shift from benign herbivore to 
significant pest led us to suspect that M. macrocicatrices was non‐native. However, 
our findings suggest that this insect is native and has likely co‐occurred with its host 
tree since the last glacial maximum. Our study demonstrates the importance of his‐
torical biogeographical reconstruction to inform how to approach an emergent pest.
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1  | INTRODUC TION

Non‐native species lack the long evolutionary history that native 
species have within a local community, and hence communities can 
suffer greater damage from non‐natives due to naiveté (Paolucci, 
MacIsaac, & Ricciardi, 2013; Salo, Korpimaki, Banks, Nordstrom, & 
Dickman, 2007; Simberloff, Souza, Nunez, Barrios‐Garcia, & Bunn, 
2012). However, endemism does not preclude a species from devel‐
oping pestiferous behaviours. Although rarer, native species can be‐
come pests within their native ranges similar to non‐native species 
through expansion into adventive ranges (Dodds et al., 2018; Hassan 
& Ricciardi, 2014; Simberloff et al., 2012).

Unifying all organisms causing serious ecological and economic 
damage is the release from evolutionary constraints and/or the ex‐
ploitation of new niche opportunities (Carey, Sanderson, Barnas, 
& Olden, 2012). For instance, the absence of co‐evolved natural 
enemies (Keane & Crawley, 2002) or host/prey defenses (Gandhi 
& Herms, 2010; Paolucci et al., 2013) can allow non‐natives to es‐
tablish and thrive in novel environments, but for a native species, 
these constraints on their populations generally remain intact (Tong, 
Wang, & Chen, 2018). Instead, the reasons certain native species 
elevate to pest status are often multi‐faceted, sometimes involving 
positive population responses to climate change (Nackley, West, 
Skowno, & Bond, 2017), anthropogenic habitat alterations (Carrete 
et al., 2010) and/or host‐shifts following other non‐native introduc‐
tions (Lefort et al., 2014). Reconstructing the historical origin of an 
emergent pest species can provide an evolutionary context to its 
contemporary interactions (Richardson & Ricciardi, 2013; Sakai et 
al., 2001), an important first step in control and conservation efforts.

In this study, we evaluated the population genetic variability and 
distribution of the eastern white pine bast scale, Matsucoccus mac‐
rocicatrices Richards (Hemiptera: Matsucoccidae), a small sap‐suck‐
ing insect currently associated with the novel dieback phenomenon 

of eastern white pine (Pinus strobus L.) in North America (Costanza, 
Whitney, McIntire, Livingston, & Gandhi, 2018; Mech et al., 2013; 
Figure 1a,b). This insect creates deep feeding wounds during its sec‐
ond‐instar cyst stage, which is hypothesized to facilitate subcortical 
infection of trees by pathogens, primarily the native Caliciopsis pinea 
Peck (Schulz et al., 2018). This fungus requires an entry point, such 
as a bark fissure or insect feeding site, to successfully colonize a host 
(Funk, 1963). Once established in the cambium, it causes the for‐
mation of cankers on the bark (Figure 1c), which leads to hallmark 
symptoms, including the girdling of stems in young trees and the bot‐
tom‐up branch dieback in older trees (Figure 1d; Asaro, Chamberlin, 
Rose, Mooneyham, & Rose, 2018; Costanza et al., 2018). The patho‐
genic effects of C. pinea have long been known (Ray, 1936), but the 
severity and scope of the current symptoms are unprecedented 
(Costanza et al., 2018). A similar scenario to beech bark disease in 
American beech (Fagus grandifola Ehrh.) may also be occurring in 
eastern white pine, where the feeding behaviour of a non‐native 
sap‐sucking insect has allowed fungal pathogens to infect and kill 
host trees at an increased rate (Houston, 1994). Although a causal 
mechanism has not yet been identified, recent research has found 
the incidence of M. macrocicatrices, Caliciopsis cankers and dieback 
symptoms in eastern white pine to be highly correlated (Schulz et al., 
2018; Whitney et al., 2018).

Prior to 2011, M. macrocicatrices was considered a benign her‐
bivore with a limited distribution. The only recorded specimens 
were collected from eastern white pine in the northeastern USA 
(Massachusetts, New Hampshire, and Vermont) and southeastern 
Canada (New Brunswick, Nova Scotia, Ontario, and Quebec; Mech 
et al., 2013; Richards, 1960; Watson, Underwood, & Reid, 1960). 
However, it has now been observed throughout the North American 
range of eastern white pine linked to host‐tree damage and mortal‐
ity (Mech et al., 2013; Schulz et al., 2018). Other Matsucoccus spp. 
have become pests outside their native ranges, such as the Japanese 

F I G U R E  1  The insect‐pathogen complex associated with eastern white pine dieback. The eastern white pine bast scale (Matsucoccus 
macrocicatrices) is an insect with (a) a sexually dimorphic adult stage lasting mere weeks and (b) a second‐instar cyst stage lasting 1–2 years. 
As a juvenile cyst, which resembles a small, black pearl, M. macrocicatrices will colonize and feed on tree sap within branch nodes, under 
lichen and in bark crevices (inset), where feeding wounds are hypothesized to facilitate infection by (c) Caliciopsis pinea (inset shows the 
characteristic “eyelash‐like” fruiting bodies), which drive canker development and leads to bottom‐up branch dieback and mortality (d). 
Photo credit: Joe O’Brien (USDA Forest Service, d)

(a) (b) (c) (d)
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pine bast scale (Matsucoccus matsumurae Kuwana), maritime pine 
bast scale (Matsucoccus feytaudi Ducasse) and Israeli pine bast scale 
(Matsucoccus josephi Bodenheimer et Harpaz; Bean & Godwin, 1971; 
Kerdelhúe, Boivin, & Burban, 2014; Mendel, 1998). In these cases, 
release from natural enemies and/or host defenses were attributed 
as the cause for invasion (Jactel et al., 2006; Mendel, 1998). Whether 
M. macrocicatrices has similarly expanded its range to enemy‐free 
areas with naïve host provenances or has become pestiferous within 
its native range due to abiotic or biotic shifts, remains unknown.

Microsatellites are frequently used in population genetic 
studies to identify the origin of pest arthropods (e.g. Havill et al., 
2016; Zemanova, Knop, & Heckel, 2016; Zhang, Edwards, Kang, & 
Fuller, 2012). As M. macrocicatrices is now well‐established south 
of Massachusetts and west of Lake Erie, where no records existed 
prior to 2011 and 2015, respectively (Mech et al., 2013; Michigan 
Department of Natural Resources, 2015), we developed microsatel‐
lites de novo to learn if this insect species was new to regions out‐
side its putative native range. We tested two competing hypotheses: 
(a) if populations of M. macrocicatrices established outside of its pur‐
ported native range (New England) are the result of recent introduc‐
tion(s) and colonization, then we expected to observe reductions in 
genetic diversity consistent with founder events. Alternatively, (b) if 
M. macrocicatrices has historically co‐occurred with its host outside 
its purported native range, then we expected to observe similar lev‐
els of genetic diversity. This hypothesis assumes that, like its eastern 
white pine host, the insect existed in Southern Appalachian refugial 
populations during the last glacial maximum, recolonized northward 
as glaciers receded, and re‐accumulated genetic diversity over thou‐
sands of years (Nadeau et al., 2015). Furthermore, we also expected 
to observe prominent population structure where geographical bar‐
riers, such as the Great Lakes, may have limited M. macrocicatrices 
gene flow over time.

2  | MATERIAL S AND METHODS

2.1 | Sample collection

We sampled 22 sites throughout the range of eastern white pine for 
M. macrocicatrices in the USA (Table 1). Immature cysts were col‐
lected between 2015 and 2018 during the winters and springs when 
the insects are near the end of their second‐instar, relatively large 
(0.5–1.0 mm), and easiest to locate when sessile and embedded in 
tree bark (Figure 1a). Sampling occurred in one of two ways: (a) for 
14 of the 22 sites, branches and stems of eastern white pine trees, 
sized 1–12 cm diameter at breast height (DBH), were shipped over‐
night to the University of Georgia (Athens, Georgia, USA; Table 1). 
Individual scale insects were then located with a stereo microscope 
and immediately preserved in 95% ethanol at −20°C. (b) For the re‐
maining 8 of 22 sites, individual cysts were located and removed in 
situ from eastern white pine bark, preserved in 95% ethanol imme‐
diately, and stored at −20°C within 3  days of collection (Table 1). 
Sites were separated by ≥25 km. We sampled 11–20 individual M. 
macrocicatrices from between one and nine trees per site (referred 

to as population, hereafter). For one Michigan population (n = 8) and 
the Wisconsin population (n = 6), sampling was conducted in June 
2018, narrowly after most of the insects had already moulted. We 
instead collected the voided cuticles (i.e. exoskeletons) in lieu of live 
cysts. Cuticles that produced adequate genomic DNA purity and 
yield were used for microsatellite analyses. Insects were confirmed 
as M. macrocicatrices by amplifying and sequencing the 28S barcode 
region (Appendix S1).

2.2 | Molecular analysis

2.2.1 | DNA extraction

All DNA extractions of individual M. macrocicatrices cysts and cu‐
ticles were performed with the Qiagen DNEasy® Blood and Tissue 
Extraction Kit (Qiagen Inc.) following the manufacturer's protocol 
with two minor modifications: (a) we pierced each M. macrocicatrices 
cyst with a flame‐sterilized insect pin and proceeded with overnight 
lysis, which allowed us to retain the cuticles for vouchering and still 
achieve adequate genomic DNA yield and (b) we decreased final 
DNA volumes for each sample to 100 µl total (two elution steps of 
50 µl).

2.2.2 | Microsatellite amplification

The microsatellite marker discovery procedure using shotgun se‐
quence reads, as well as polymerase chain reaction conditions are 
detailed in Appendix S2. We developed 12 robust primer pairs spe‐
cific to M. macrocicatrices (Table S2.1 in Appendix S2), which we am‐
plified for all 390 total individuals. Amplicon sizes were determined 
on a 3,730 capillary sequencer (Applied Biosystems) at the Arizona 
State University DNA Core Lab using GeneScan LIZ 500 size stand‐
ard (Applied Biosystems). Allele sizes were scored using the micros‐
atellite plugin for Geneious version 10.2.3 (Biomatters).

2.3 | Statistical analysis

2.3.1 | Genetic diversity

All microsatellite loci for each population were tested for the fol‐
lowing in Genepop version 4.2 (Raymond & Rousset, 1995): linkage 
disequilibrium with the probability test, deviations from Hardy–
Weinberg equilibrium with exact tests, and null allele frequency 
with the Brookfield (1996) method. Genetic diversity was estimated 
using effective number of alleles (AE), mean frequency of private al‐
leles (AP), mean number of locally common alleles (≥5%) occurring in 
≤50% of populations (ALC), observed heterozygosity (HO) and unbi‐
ased expected heterozygosity (HE) in Genalex version 6.503 (Peakall 
& Smouse, 2006, 2012). Rarefied allelic richness (AR) and inbreeding 
coefficients (FIS) were calculated in the R package ‘hierfstat’ (Goudet, 
2005). Generalized linear models were conducted in R version 3.5.1 
(R Core Team, 2018) to evaluate the association between latitude 
and longitude with genetic diversity. Latitude and longitude were 
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included in the models simultaneously as covariates. To specifically 
test for clinical decays in genetic diversity according to geographical 
distance from the putative native range, we created a Euclidean dis‐
tance (km) matrix among all populations from one population in New 
Hampshire (NH1). We assigned a value of 0 km to the four popula‐
tions located within the insect's putative native range (NH1, NH2, 
NH3 and ME). Regressions were then conducted on the indices as 
stated above. All models included the number of genotyped individ‐
uals as a covariate to control for uneven population sizes. All indices 
met the assumptions of normality except for AR, FIS and ALC, which 
were log‐transformed.

The program Bottleneck (Piry, Luikart, & Cornuet, 1999) was 
used to detect if signals of recent bottleneck/founder event(s) ex‐
isted within in our dataset. This program tests for deviations from 
mutation‐drift equilibrium with the assumption that allelic richness 
decreases faster than heterozygosity in shrinking populations. All 22 
populations were tested separately, permuted 1,000 times. We used 
the single‐step mutation model (SMM) and the two‐phase model 
(TPM) with 95% single‐step mutations and 5% multi‐step mutations 
(Piry et al., 1999). Significant excesses in heterozygosity for each 
population were determined with the one‐tailed Wilcoxon signed‐
rank test.

2.3.2 | Population structure

We used the Bayesian clustering algorithm structure version 2.3.4 
(Pritchard, Stephens, & Donnelly, 2000) to infer subgroup assign‐
ments for M. macrocicatrices. For all simulations we did not use a 
location prior, and we assumed an admixture model with allele fre‐
quencies correlated among groups (Falush, Stephens, & Pritchard, 
2003). Each run utilized 25,000 burn‐in, followed by 50,000 Markov 
Chain Monte Carlo (MCMC) iterations, replicated 20 times for each 
number of clusters assumed (K).

Hierarchical groupings of individual M. macrocicatrices were sim‐
ulated in separate structure runs as follows: (1) the entire dataset of 
22 populations, with K ranging from 1 to 22; (2) simulations to eval‐
uate substructure within resulting major clusters, including (2a) the 
Southern Appalachians (“SApps”; 7 populations in Georgia, Tennessee 
and North Carolina) with K = 1 through 7, (2b) the Northeast (“NEast”; 
11 populations in Virginia, West Virginia, Pennsylvania, New 
Hampshire, and Maine) with K  =  1 through 11, and (2c) the Great 
Lakes (“GLakes”; 4 populations in Michigan and Wisconsin) with K = 1 
through 5. Optimal K, or the most likely number of clusters for each 
grouping, was determined by the Evanno, Regnaut, and Goudet 
(2005) method implemented in structure harvester (Earl & Vonholdt, 
2012). Populations were assigned to the cluster with the highest cor‐
responding mean posterior probability of ancestry.

We also inferred optimal population structure from analyses of 
molecular variance (AMOVA) using Arlequin version 3.5 (Excoffier & 
Lischer, 2010) to determine the hierarchical partitioning of genetic 
variance using pre‐defined population structure from structure re‐
sults. We conducted six AMOVAs with 10,000 permutations to test: 
(a) no genetic structure, (b) genetic structure where K = 2, (c) genetic 

structure where K = 3, (d) NEast populations only, (e) SApps popula‐
tions only, and (f) GLakes populations only.

We performed multiple principal coordinates analyses (PCoA) 
using Nei's unbiased genetic distances (Nei, 1978) in Genalex. We 
also calculated pairwise FST (Weir & Cockerham, 1984) and Slatkin’s 
(1995) linearized pairwise FST values in Arlequin to evaluate ge‐
netic differentiation between populations. The pairwise FST matrix 
was used to generate an unrooted neighbour‐joining tree with the 
‘neighbour’ package in Phylip version 3.695 (Felsenstein, 1989). The 
linearized FST matrix and a pairwise matrix of log‐transformed geo‐
graphical distances (km) were also used in a Mantel test (Mantel, 
1967) to detect isolation‐by‐distance (IBD). Mantel tests may falsely 
detect IBD in instances of hierarchical structure with distinct bar‐
riers to gene flow (Meirmans, 2012), so we conducted additional 
Mantel tests within clusters. We also performed a partial Mantel 
test controlling for cluster assignment with a covariate matrix con‐
taining binary values for each pairwise relationship: 0 for pairs of 
populations belonging to the same cluster and 1 for those belonging 
to separate clusters. In another partial Mantel test, we examined the 
association between genetic distance and cluster assignment, using 
the geographical distance matrix as a covariate. All Mantel and par‐
tial Mantel tests were performed with 100,000 permutations in the 
R package ‘vegan’ (Oksanen et al., 2018).

Based on the finding of a potential barrier to gene flow existing in 
the Blue Ridge mountains (see Section 3), we further evaluated the 
link between eastern white pine density and the genetic connectiv‐
ity of M. macrocicatrices by assessing the least‐cost paths between 
populations in Georgia, North Carolina, Tennessee, Virginia, and 
West Virginia. We sought to test tree‐host connectivity through the 
application of circuit theory (McRae & Beier, 2007) for the purpose 
of comparing pairwise genetic distances but not for modelling gene 
flow. Remote sensing data of eastern white pine from forest inven‐
tory and analysis (FIA, USDA Forest Service) were used to create a 
relative density raster in R where each pixel (size = 250 m) holds a 
value equal to the percentage of eastern white pine comprising the 
total composition of trees ≥12.7 cm DBH. We created a cost‐surface 
raster with each pixel holding a resistance value based on its corre‐
sponding tree density value. Pixels with 0% eastern white pine were 
assigned a high resistance value of 200 and all other pixels were 
assigned resistance values of 1–100, inversely proportional to their 
relative density of host trees (100%–1%). We assessed the least‐cost 
paths of the cost‐surface raster between the 11 populations adja‐
cent to the Blue Ridge geographical barrier in the R package ‘gdis‐
tance’ (van Etten, 2017). We conducted another partial Mantel test, 
controlling for cluster assignment as above, to assess the correlation 
between linearized FST and pairwise least‐cost distance.

3  | RESULTS

3.1 | Microsatellite loci quality

All loci had null allele rates of less than 0.1 averaged across all pop‐
ulations except for three, which we then removed from all further 
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analyses (Table S2.1 in Appendix S2). Of the 198 locus‐population 
combinations, exact tests revealed a significant departure from 
Hardy–Weinberg equilibrium in 47 pairs, but with no clear con‐
centration in any particular locus or population. None of the nine 
remaining loci showed significant linkage disequilibrium. Every indi‐
vidual M. macrocicatrices had a unique multilocus genotype and no 
individual was homozygous across all loci, which negates the possi‐
bility M. macrocicatrices has haplodiploid sex‐determination.

3.2 | Genetic diversity

Estimated indices of genetic diversity for each population (AE, AR, AP, 
ALC, FIS, HO and HE) are summarized in Table 1. Our analyses found 
some evidence of latitudinal, but not longitudinal clines, with mean 
number of locally common alleles (ALC; R2 = 0.41, df = 18, t = −2.78, 
p = .01) and observed heterozygosity (HO; R2 = 0.33, df = 18, t = −2.57, 
p = .02) both decreasing as latitude increased. Linear models showed 
no correlation between distance from the putative native range 
(the four populations in New England) and genetic diversity, except 
for ALC, which as observed to increase with distance from our New 
Hampshire reference population (NH1; R2 = 0.25, df = 19, t = 2.12, 
p = .047).

No signatures of bottleneck were detected in any of the pop‐
ulations we sampled according to one‐tailed Wilcoxon tests (Table 
S3.1 in Appendix S3). Heterozygote deficiency, however, which can 
be indicative of population expansion, was detected in 13 of the 22 
populations and in all three pooled groups according to two‐tailed 
Wilcoxon tests for at least one of the two models (SMM and TPM).

3.3 | Population structure

3.3.1 | Range‐wide population structure

The optimal number of clusters for all M. macrocicatrices (N = 390) 
in the USA was K  = 3 (Figure 2a). Although ΔK indicated optimal 
K = 2 from structure results, the plateau in the ln Pr(X|K) curve was 
strongest when K = 3 (Figure S3.2 in Appendix S3). Furthermore, the 
clear clustering visualized in the PCoA (Figure 3), as well as results 
from AMOVAs (Table 2: tests A–C), Mantel tests, and pairwise FST 
(Table 3), all support a three‐cluster model (K = 3). The three clusters 
were regionally distinct and were designated as follows: populations 
located in (a) Virginia and northward were defined as the “NEast” 
cluster, (b) those located in North Carolina and southward were de‐
fined as “SApps” cluster, and (c) those from Michigan and Wisconsin 
were defined as “GLakes” (Figure 2a).

AMOVAs resulted in significant genetic differentiation between 
defined groups (Table 2). Range‐wide tests using cluster assignment 
priors inferred from structure accounted for more overall differenti‐
ation (FST = 0.325 for K = 2, 0.324 for K = 3) than the test assuming 
no population structure (FST = 0.253 for K = 1). The two‐cluster and 
three‐cluster AMOVA tests resulted in nearly the same FST, but ge‐
netic variation was partitioned differently. Twice as much variation 
was partitioned between groups (FCT = 0.235) as among populations 

within groups (FSC  =  0.116) for the three‐cluster model, whereas 
there was only 1.3 times as much genetic variation partitioned be‐
tween groups (FCT  =  0.201) as among populations within groups 
(FSC = 0.155) for the two‐cluster model. Standard and partial mantel 
tests revealed that the association between overall pairwise genetic 
and geographical distance was significant (R = .509, p < .001) but not 
when controlling for clustering assignments (R = .046, p < .30). There 
was also an association between genetic distance and cluster assign‐
ment, controlling for genetic distance (R = .653, p < .001).

Corresponding with the three‐cluster model, pairwise FST re‐
vealed abrupt changes in genetic distance (a) isolating all four 
GLakes populations from the rest of the dataset, and (b) dividing 
the NEast and SApps populations in the Blue Ridge Mountains 
(Table 3). Host‐tree connectivity could not explain the presence of 
this second potential barrier to gene flow, as pairwise FST between 
populations in Georgia, North Carolina, Tennessee, Virginia and 
West Virginia was not associated with pairwise least‐cost distance 
based on eastern white pine density (Table S3.2 in Appendix S3), 
according to a partial Mantel test controlling for cluster assignment 
(R = .179, p = .882).

The pooled population heterozygosity of the SApps individuals 
was highest among the three clusters (HO = 0.549, HE = 0.700), fol‐
lowed by NEast (HO = 0.458, HE = 0.567), and lastly GLakes individu‐
als (HO = 0.397, HE = 0.528). There was significant genetic distance 
between each of the clusters, as informed by pairwise FST values 
(Table S3.3 in Appendix S3). The neighbour‐joining tree (Figure S3.4 
in Appendix S3) grouped the NC2 population with the NEast pop‐
ulations, but otherwise corroborated the three‐cluster model. The 
NEast and GLakes populations shared a node, which was joined with 
the remaining populations, indicating they arose from a common 
SApps ancestor.

3.3.2 | Regional population structure

Results from within‐cluster structure runs are shown in Figure 2b. 
Within the NEast cluster, we found the optimal K = 2 (Figure S3.3 
in Appendix S3), where the three Virginia and single West Virginia 
populations comprised one subgroup and populations from 
Pennsylvania, New Hampshire and Maine comprised the other sub‐
group. Within the SApps cluster, we found the optimal K = 3 (Figure 
S3.3 in Appendix S3), with the first subgroup consisting of the three 
populations in northeastern Georgia and western North Carolina 
(populations GA3, GA4 and NC1), the second subgroup consisting of 
the three populations in the northwestern Georgia and southeastern 
Tennessee (populations: GA1, GA2 and TN), and the third subgroup 
consisting solely of individuals from the population NC2. Within the 
GLakes cluster, we found the optimal K = 4 (Figure S3.3 in Appendix 
S3), but every population appeared to be of a mostly mixed ancestry.

The AMOVAs conducted within each cluster revealed that ge‐
netic differentiation was partitioned similarly and was overall compa‐
rable in both the NEast cluster (FST = 0.150, FCT = 0.091, FSC = 0.065) 
and the SApps cluster (FST = 0.158, FCT = 0.095, FSC = 0.069). The 
GLakes cluster had comparatively lower genetic differentiation 
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(FST = 0.071). Among pairwise populations, FST values were all sta‐
tistically significant except for four: two among New Hampshire 
populations and two among Michigan populations (Table 3). The 

NC2 population from North Carolina was the most highly differen‐
tiated, with pairwise FST values ranging from 0.230 to 0.533. Mantel 
tests revealed significant IBD within each cluster (NEast: R =  .335, 

F I G U R E  2   structure results for Matsucoccus macrocicatrices sampled across its USA range: (a) run including all samples; (b) runs including 
only populations from each of the three inferred clusters: “NEast” (Maine, New Hampshire, Pennsylvania, Virginia, and West Virginia), 
“SApps” (Georgia, North Carolina, and Tennessee), and “GLakes” (Michigan and Wisconsin)

(a)

(b)
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p =  .005; SApps: R =  .833, p <  .001; and GLakes: R =  .835, p =  .04; 
Figure S3.1 in Appendix S3).

4  | DISCUSSION

Non‐native and native species that become pestiferous often do so 
by escaping different evolutionary constraints, such as exploiting an 
enemy‐free or defense‐free space. Determining whether M. macro‐
cicatrices is new outside its purported native range in New England 
may offer perspective into its sudden association with novel dieback 
symptoms and mortality of its host tree. Based on evidence pre‐
sented herein, we propose the insect is native throughout the North 
American range of eastern white pine and that the two organisms 
have likely co‐occurred since the last glacial maximum.

4.1 | Evidence for nativity

The genetic landscape of M. macrocicatrices was not consistent 
with that of an exotic species recently introduced to a new range. 

Source populations are usually genetically rich, whereas founder 
populations are usually genetically depauperate (Nei, Maruyama, 
& Chakraborty, 1975). We found high levels of global genetic di‐
versity (e.g., HE = 0.43–0.68), especially when compared to a con‐
gener, M. feytaudi, where there are both source populations and 
recent, non‐native founder populations in Europe (e.g., HE = 0.25–
0.58; Kerdelhúe et al., 2014). There was no evidence of a recent 
bottleneck in any population, nor was there a longitudinal cline 
in genetic diversity despite the most easterly populations being 
within the purported native range (New Hampshire and Maine). 
We also did not find the expected decay in genetic diversity when 
assessing Euclidean distance from these populations. In fact, the 
most southerly populations tended to be the most genetically rich, 
as both the mean number of locally common alleles and the ob‐
served heterozygosity per population were negatively associated 
with latitude. Glacial history may provide some context to our 
resulting patterns. Both palynological and molecular phylogeo‐
graphical evidence indicate that refugial populations of eastern 
white pine survived in the mid‐Atlantic and at the southernmost 
portion of the Appalachian Mountain range during the last glacial 

F I G U R E  3  Principal coordinates analysis (PCoA) based on Nei's unbiased genetic distances of (a) all Matsucoccus macrocicatrices 
populations sampled in the USA, (b) “NEast” populations (Maine, New Hampshire, Pennsylvania, Virginia, and West Virginia), (c) “SApps” 
populations (Georgia, North Carolina, and Tennessee), and (d) “GLakes” populations (Michigan and Wisconsin)

(a)

(b) (c) (d)
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maximum (Davis, 1983; Nadeau et al., 2015). If M. macrocicatrices, 
being obligate on its host tree, co‐occurred during northward re‐
colonization following glacial thaw, then the southernmost popu‐
lations would likely have retained more ancestral genetic variation 
(Hewitt, 1999).

The patterns of genetic differentiation also failed to substanti‐
ate that M. macrocicatrices is non‐native outside of New England. In 
addition to restricted genetic exchange and genetic drift, sufficient 
time is required for populations to differentiate, and thus, our results 
consistently suggest M. macrocicatrices is well‐established within 
its entire, current distribution. Populations were highly structured 
overall and delineated into three distinct, regional and genetic clus‐
ters: NEast, SApps and GLakes. structure had high support for clus‐
tering SApps and GLakes together, but with only 44 total individuals 
analyzed from four populations in the Great Lakes region, uneven 
sampling may have influenced the results. structure analysis tends to 
merge distinct, but small, subpopulations together when sampling is 
biased (Puechmaille, 2016). However, results from AMOVA (Table 2) 
and pairwise genetic distances (Table 3) strongly suggest SApps and 
GLakes are separate groups.

4.2 | Barriers to gene flow

The limited dispersal ability of M. macrocicatrices may help to explain 
their overall high genetic differentiation. The main dispersal stage 
for this species is the first‐instar “crawler”, capable of walking short 
distances and being wind‐dispersed longer distances (Costanza et 
al., 2018). Congeners can stay airborne for up to 0.5  km (Bean & 
Godwin, 1955) and could theoretically exceed 85 km in passive flight 
given optimal conditions (Hanks & Denno, 1998). Arthropods evolv‐
ing in heterogenous landscapes with frequent patches of unsuitable 
habitat tend to avoid passive, aerial dispersal, due to the high risk 
of mortality (Bonte et al., 2012; Bonte, Vandenbroecke, Lens, & 
Maelfait, 2003). Matsucoccus spp. are no different, with <20% of in‐
dividuals observed to disperse from their natal trees (McClure, 1977; 
Stephens & Aylor, 1978; Unruh & Luck, 1987). As a host tree, east‐
ern white pine only occasionally grows in pure stands and is more 
commonly found as a highly scattered super‐canopy tree (Abrams, 
2001). We found evidence of IBD within each genetic cluster ac‐
cording to Mantel tests, indicating that long‐distance dispersal of M. 
macrocicatrices between patches is rare (McClure, 1976).

TA B L E  2  Analyses of molecular variance for Matsucoccus macrocicatrices

Test Group structure Source of variation Degrees of freedom Sum of squares Variance components
Percent 
variation Fixation indices

  Range‐wide

A No structure Among populations 21 632 0.78 25.3 FST = 0.253

Within populations 758 1,760 2.32 74.7  

Total 779 2,392      

B K = 2 Between groups 1 284 0.69 20.1 FCT = 0.201

Among populations 20 348 0.43 12.4 FSC = 0.155

Within populations 758 1,760 2.32 67.5 FST = 0.325

Total 779 2,392 3.44    

C K = 3 Between groups 2 381 0.81 23.4 FCT = 0.235

Among populations 19 250 0.3 8.9 FSC = 0.116

Within populations 758 1,760 2.32 67.7 FST = 0.324

Total 779 2,392 3.43    

  Within cluster

D NEast Among subgroups 1 56 0.24 9.1 FCT = 0.091

Among populations 9 75 0.15 5.9 FSC = 0.065

Within populations 425 937 2.21 85 FST = 0.150

Total 435 1,068 2.6    

E SApps Among subgroups 2 65 0.3 9.5 FCT = 0.095

Among populations 4 40 0.2 6.2 FSC = 0.069

Within populations 249 660 2.65 84.3 FST = 0.158

Total 255 765 3.15    

Fa GLakes Among populations 3 15 0.15 7.1 FST = 0.071

Within populations 84 163 1.94 92.9  

Total 87 178 2.09    

Significant F‐statistics are bold (p < .05).
aNo priors were set, because the K = 4 result from STRUCTURE implied a largely mixed ancestry among populations. 
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F I G U R E  4  Abiotic variables that may 
influence the barrier to Matsucoccus 
macrocicatrices gene flow located in the 
Blue Ridge mountains, USA, including (a) 
Level III ecoregions (U.S. Environmental 
Protection Agency, 2013), (b) elevation 
and (c) host‐tree density using remote 
sensing data, where each pixel indicates 
the percentage of eastern white pine 
compared to total tree species for 
individuals ≥12.7 cm DBH, at 250‐m 
resolution (FIA, USDA Forest Service)

(a)

(b)

(c)
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Between the three clusters, there were sudden increases in ge‐
netic distance not simply explained by geographical distance. We 
identified two main barriers to gene flow that were likely responsible. 
One barrier isolates the GLakes cluster, suggesting the Great Lakes 
act as a physical barrier to successful dispersal. Large water bodies 
present a high risk of mortality for passive, aerial dispersed arthro‐
pods and can lead to vicariance (Hawes, Worland, Convey, & Bale, 
2007; Kuntner & Agnarsson, 2011). Genetic divergence between 
USA populations located in the Great Lakes and the northeastern 
states have also been observed in active‐dispersing terrestrial ani‐
mals (e.g. Bagley, Sousa, Niemiller, & Linnen, 2017; Hapeman, Latch, 
Rhodes, Swanson, & Kilpatrick, 2017).

The second barrier to M. macrocicatrices gene flow is located 
in between North Carolina (population NC2) and Virginia (popu‐
lation VA1) where the Blue Ridge Mountains and the Ridge and 
Valley ecoregions (U.S. Environmental Protection Agency, 2013) 
meet (Figure 4a). Population NC2 was the most genetically iso‐
lated in our study, perhaps because it lies in the French Broad 
River basin in North Carolina with imposing mountains to its 
southwest and northeast. It is noteworthy that the least‐cost path 
(based on eastern white pine density) from this population to the 
nearest‐neighbour SApps populations is roughly equal to its least‐
cost path to the southernmost NEast population (VA1). However, 
genetic distance was much greater between M. macrocicatrices 
in North Carolina and Virginia. Unique features of the area near 
the North Carolina‐Virginia border, other than host‐tree density, 
must therefore be contributing to the restriction of gene flow. 
Geological attributes of the Blue Ridge Mountains, such as their 
irregularity and precipitous changes in elevation from 450 m to 
over 2,000 m (Figure 4b), may be factors contributing to hindered 
gametic exchange. Significant genetic structure in the Blue Ridge, 
and especially among populations on either side of the French 
Broad River in North Carolina, has been observed in several other 
taxa such as snakes (Fontanella, Feldman, Siddall, & Burbrink, 
2008), salamanders (Crespi, Rissler, & Browne, 2003), centipedes 
(Garrick, Newton, & Worthington, 2018), and harvestmen (Hedin 
& McCormack, 2017). It stands to reason that the terrain would 
also make it difficult for passive, wind‐dispersed animals to be car‐
ried freely among suitable habitat patches of its host. The long, 
parallel mountains within the Ridge and Valley ecoregion chan‐
nel wind along their axes (Whiteman & Doran, 1993), whereas in 
the Blue Ridge ecoregion, prevailing winds travel perpendicular 
to mountain axes (Raichle & Carson, 2009). Thus, impeding winds 
and irregular terrain, rather than just host plant distribution and 
density (Figure 4c), may explain why the Blue Ridge Mountains 
appear to significantly impede gene flow in the area between the 
NEast and SApps clusters.

5  | CONCLUSIONS

With high range‐wide genetic diversity, no signatures of recent 
founder events and clear genetic clusters separated by distinct 

geographical barriers, we reject the hypothesis that M. macroci‐
catrices is a non‐native invader within the North American range 
of eastern white pine. Hence, host trees currently experiencing 
dieback symptoms and mortality have likely co‐evolved with this 
insect. Its small size, sessile nature and seemingly benign impacts 
probably allowed it to remain undetected until the recent emer‐
gence of eastern white pine dieback symptoms in the mid‐2000s. 
Costanza et al. (2018) reviews several ecological disturbance fac‐
tors contributing to this phenomenon—such as climate change, land 
use, site conditions and forest management—which may be contrib‐
uting to sudden M. macrocicatrices population growth. Assumed to 
be just one of over 250 innocuous herbivores of eastern white pine 
(Wendel & Smith, 1990), it currently remains a mystery why this 
native species has recently been associated with severe tree injury 
and mortality. The pathogenic fungus thought to exploit M. mac‐
rocicatrices feeding wounds and drive canker formation, C. pinea, 
is also native (Ray, 1936). This system presents a unique opportu‐
nity to understand how a native insect–pathogen complex, perhaps 
nonexistent or rare in the past, can become a transregional forest 
health concern. Excluding the possibility of a non‐native invasion 
narrows the search for why and how a species might become pes‐
tiferous. Our work has demonstrated the utility of establishing the 
origin of a pest in guiding ecosystem conservation.
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