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ABSTRACT  We extend real options analysis 
of timberland investments to examine a com-
bination of financial and biophysical risk ef-
fects on optimal investment strategies in the 
southeastern United States. Results show 
that, despite a slight downward drift in price, 
expected returns for loblolly pine manage-
ment fall between entry and exit thresholds, 
indicating an optimal “hold” strategy. This 
is explained by an offsetting upward trend 
in biophysical productivity associated with 
climate changes across a range of modeled 
futures. Monte Carlo analysis indicates a 
small positive difference between entry and 
exit outcomes consistent with observed rates 
of expansion in timberland investments in the 
region. (JEL D81, Q23)

1. Introduction

Since 1980, U.S. timber production has con-
centrated in the southeast and increasingly in 
planted loblolly pine (Pinus taeda) forests. 
The region’s softwood timber production rose 
by 49%, from 33% to 60% of total U.S. out-
put between 1976 and 2006, and the area of 
planted pine forests increased by 11 million 
ha (Oswalt, Smith, et al. 2014; Wear and Greis 
2012). In 2012, planted pine represented 19% 
of all timberland in the southeastern states, 
27% in the southeastern Coastal Plain, and 
81% of the expansion in planted forest area in 
the United States (Oswalt, Smith, et al. 2014; 
Wear and Greis 2012). With respect to own-

ership, 95% of the planted loblolly-shortleaf 
forest type group in the Southeast is held by 
private owners; 56% is held by corporate land 
owners, primarily timber investment man-
agement organizations and real estate invest-
ment trusts with large land holdings (Oswalt, 
Smith, et al. 2014). Overall, the forest indus-
try plays an important role in the southeastern 
economy.

While forest sector assessments project 
long-term expansion in the southeastern tim-
ber sector (e.g., Wear et al. 2013), the po-
tential future of expansionary investment in 
planted pine forestry is unclear, as softwood 
prices, which rose strongly through the 1990s, 
have leveled off or declined in the most re-
cent decade. Price trend and volatility have 
been shown to influence pine timberland in-
vestment strategies in the Southeast (Mei and 
Clutter 2015), and recent price dynamics may 
dampen new entries to production, though the 
area of planted pine has continued to expand 
at low rates. However, price dynamics are not 
the only sources of change and uncertainty af-
fecting potential returns. Uncertainty related 
to climate-driven changes in productivity or 
disturbance events may also affect harvest 
yields and net returns.

Due to its long production period, timber 
has a long exposure to damage and mortality 
risks relative to other agricultural endeavors. 
Natural hazards such as fire, wind throw re-
lated to hurricanes, or insect epidemics are in-
frequent events that can generate catastrophic 
outcomes at a specific location. Hedging in-
vestments with multiple locations provides a 
means of mitigating these risks with known 
occurrence frequencies. Nonetheless, climate 
change introduces new uncertainties regard-
ing not only risks of disturbance events (Ayres 
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et al. 2014) but also the underlying biologi-
cal productivity of the forest by altering so-
lar insolation, temperature, and precipitation, 
and increasing atmospheric concentrations of 
CO2 and levels of nitrogen deposition (Payn 
et al. 2015). Depending on location, biologi-
cal growth may be enhanced or decreased by 
an altered climate, and biome boundaries be-
tween forests and savannahs are likely to shift 
(Kirilenko and Sedjo 2007). Several authors, 
including those cited here, have enumerated 
the potential influence of climate change on 
timber yields, but these uncertainties have not 
been explicitly incorporated as a component 
of the forest investment decision-making en-
vironment.

The objective of this study is to examine the 
joint influence of price and yield uncertainty 
on potential investments in planted loblolly 
pine forests in the southeastern United States. 
We model forest investments in terms of en-
try and exit conditions within a real options 
framework. Following Mei and Clutter (2015) 
we set up the investment analysis as a contin-
gent claims approach influenced by both price 
and yield uncertainties. Several forest invest-
ment studies have applied real options with 
price uncertainty to address optimal harvest 
timing (e.g., Clarke and Reed 1989; Morck, 
Schwartz, and Stangeland 1989; Reed and 
Clarke 1990; Thomson 1992), and others have 
extended these models to address timberland 
investment choices, including entry/exit for a 
forest portfolio (e.g., Mei and Clutter 2015; 
Yin 2001; Yin and Newman 1999). While bio-
physical risks arising from disturbances such 
as wildfires or insect outbreaks have been in-
corporated in the optimal rotation net present 
value calculus (e.g., Ning and Sun 2017; Xu, 
Amacher, and Sullivan 2016), to our knowl-
edge, no study has effectively integrated price 
and biophysical uncertainties in a study of 
timberland investments. Price and Wetzstein 
(1999) examine a similar question regarding 
investments in perennial peach crops with an-
nual yields, which serves as a starting point 
for our analysis.

Our approach is to blend stochastic pro-
cesses for prices and net yields within a real 
options framework that accounts for the tem-
poral structure of forest production. Price vol-
atility is described using the ex post stochastic 

process models frequently deployed in the 
literature. Yield volatility, especially as it re-
lates to anticipated climate changes, requires 
ex ante simulation approaches. We use a phys-
iological forest growth model that is sensitive 
to climate inputs to generate observations of 
expected changes in forest productivity over 
time. We also incorporate a model of age-de-
pendent disturbances to account for stand-re-
placing events in determining anticipated 
harvest area. Monte Carlo analysis generates 
estimates of potential net yield changes that 
are summarized as a stochastic process model. 
The merger of the price and net yield models 
allows us to address questions regarding the 
potential for expansionary investment in lob-
lolly pine production and the potential influ-
ence of climate change on forest investment.

2. Methods 

Model Specification

This study focuses on the management of 
planted loblolly pine forests in the Coastal 
Plain of the southeastern United States, the 
most actively managed forest species in 
the nation’s most productive timber region 
(Oswalt, Smith, et al. 2014). Loblolly pine 
is native to the Southeast, and decades of 
tree-breeding and management research have 
greatly enhanced its yields under even-aged 
management. Future yields are likely to be 
affected by changes to physiological inputs 
including temperature, solar insolation, and 
precipitation, as well as CO2 fertilization. The 
species is subject to a variety of catastrophic 
disturbances including wildfire and wind 
throw linked to tropical storms. The Southern 
pine beetle (Dendroctonus frontalis Zimmer-
mann), a native insect, can cause widespread 
mortality during episodic outbreaks. While 
overall mortality rates are low (less than 
0.5%/year aerial measure, according to Forest 
Inventory and Analysis data), climate change 
may increase these rates: wildfire is expected 
to be more frequent (Liu, Stanturf, and Go-
odrick 2010); southern pine beetle epidemic 
locations, frequencies, and intensity may 
be altered due to changes in both host stress 
and insect population dynamics (Ayres et al. 
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2014); and frequency of tropical storms may 
be altered due to uncertain changes in future 
climates.

We examine an investment in loblolly 
pine management as a decision to install an 
irreversible lump sum cost to provide an un-
certain value stream from a forest holding 
dependent on uncertain prices and harvested 
yields of timber. For analytical tractability, we 
assume a forest investor starts with a 6 acre 
forest holding with a uniform age structure: 
1 acre in each of six age classes with a start-
ing age vector: age = [0, 5, 10, 15, 20, 25]. In 
a deterministic model, at the end of the five-
year time step, all forest area ages five years, 
and the 30-year-old forest is harvested and 
regenerated to reset the initial conditions for 
the subsequent period and a regular flow of 
harvest volume. However, the investor antici-
pates that forest productivity may change over 
time in response to evolving climate condi-
tions and that the investment is also subject to 
stochastic nonharvest events that can kill the 
forest at any age. Furthermore, the investor 
may anticipate that rates of disturbance could 
also be influenced by future climate condi-
tions. We address yield uncertainty arising 
from productivity change and disturbances 
with separate mechanisms.

To address disturbances, we develop an age 
transition model that defines their influence 
on the investor’s expectations regarding har-
vest area and regeneration area at the end of 
the five-year time step. Define At as the 1 × 6 
vector of forest area (set to the unitary vector 
in the first period). Define T as a 6 × 6 transi-
tion matrix:
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0 0 0 1 0 04
0 0 0 0 1 05

d d d d d
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, [1]

where the 1 × 6 vector d defines the rate of 
stand-replacing disturbance by age class so 
that disturbed areas return to the first age 
class while the undisturbed forests transition 
to the next age class. The distribution of for-

est area at the end of the period is defined as 
1t t+ ′= ×A A T . At each time step, the area har-

vested (H) is the value of [6]tA  and the area to 
be regenerated (R) is defined as A[1]t+1. Be-
cause all values of d are nonnegative, the area 
harvested will be less than or equal to 1 acre 
and the area regenerated will be greater than 
or equal to 1 acre. To implement the age tran-
sition matrix, random draws from a binomial 
distribution centered on an observed average 
disturbance probability for planted pine for-
ests (d = 0.0044/year ) are used to estimate T 
and therein produce multiple realizations of 
expected harvest area (H).

To define our expectations for the future 
productivity of planted loblolly pine forests, 
we simulate forest growth using the 3-PG 
(physiological processes predicting growth) 
model developed by Landsberg and Waring 
(1997) and modified by Thomas, Brooks, et 
al. (2017) and Thomas, Jersild, et al. (2018) 
for a set of spatially downscaled climate fu-
tures. The 3-PG model simulates the accumu-
lation of aboveground biomass for a loblolly 
pine stand to age 40 for several origin years 
between 1990 and 2030 for each of the cli-
mate futures. From this dataset we draw the 
expected volume at age 30 (harvest age) for 
each climate future by state for reference 
years 2020, 2030, 2040, 2050, and 2060.

We merge the disturbance estimates result-
ing in harvest area H with the productivity 
changes resulting in average harvest volume 
at age 30 (Q30,t) to define net harvest volume 
within a Monte Carlo simulation framework. 
Multiple realizations of harvest area, generated 
by taking random draws from the disturbance 
distribution, applying the resulting transition 
matrix (T), and calculating H, are merged with 
the alternative projections of change in forest 
volume—replicates are generated using inde-
pendent random selection with replacement 
for H and Q30,t. Expected harvest volume, de-
fined as 30,

ˆ
tQ H Q= ×  at time t, is generated for 

each reference year. We summarize change in 
net harvest volume as a geometric Brownian 
motion (GBM) stochastic function with drift: 

Q Q
ˆ ˆ ˆdQ Qdt Qdzα σ= + , [2]

where α is the drift term and σ is the vola-
tility term. Using the pseudodata described 
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above, we estimate separate GBM param-
eters for each state for five different refer-
ence years. The number of observations for 
each estimated state model is between 4,000 
and 17,400 as defined by the number of cli-
mate futures (m = 20), the number of counties 
within the Coastal Plain region of each state 
(average of 60), and the number of replicates.

Our treatment of price similarly utilizes a 
GBM stochastic function to describe the ex-
pected increment and volatility in price over 
time: 

P PdP Pdt Pdzα σ= + . [3]

For both volume and price processes, if dX/X 
is normally distributed, the parameters can be 
readily derived from summary statistics for 
the series: α = m / Δ – 0.5s2 / Δ and σ = s / √∆, 
where m is the mean and s2 is the variance of 
the log difference of X, and Δ is the equally 
spaced time interval expressed in years (Tsay 
2005). For prices we estimate GBMs for each 
state for time series of product prices. For net 
yield we estimate GBMs for each state of ex-
pected change in average annual yield using a 
cross-section of pseudodata from the simula-
tion approach described above.

Given the GBM specifications of blended 
stumpage price (dollars per ton) and yield 
(tons per acre), proceeds R = PQ from har-
vesting age 30 class forests (dollars per acre) 
of the multiaged forest also follows a GBM by 
Ito’s lemma,

R RdR Rdt Rdzα σ= + , [4]

where αR = αP + αQ + ρσPσQ, σ2
R = σ2

P + σ2
Q, + 

2ρσPσQ, and ρ is the correlation coefficient 
between stumpage price and yield (Price and 
Wetzstein 1999).

Solution by Contingent Claims Approach

As described by McDonald and Siegel (1986), 
an investment decision is analogical to choos-
ing the optimal time to install a lump-sum cost 
I in return for a project with an uncertain value 
V, given that the investment is irreversible. As 
such, investment timing is like a call option. 
An exercise of the option triggers the invest-
ment cost I, and in return the investor holds 

a project with a stochastic value V. Denoting 
the value of a timberland investment oppor-
tunity by F, the optimal decision rule can be 
described as

max [( ) ]rt
TT

F E V I e−= − , [5]

where E[•] denotes expectation, T indicates 
time, and r is the discount rate (Dixit and Pin-
dyck 1994). Because V and F are contingent 
assets whose values depend on timber revenue 
R, they are expressed as functions of R as V(R) 
and F(R).

The contingent claims approach assumes 
an equilibrium in capital markets. It starts 
with forming a riskless portfolio by going 
long one unit of the option to invest F(R) 
and short F ′(R) units of the basic asset R.1 
The portfolio’s current value is F – F ′(R)R, 
and its total return over a time interval dt is  
dF – F ′(R)dR – δRF ′(R)dt, where δ is conve-
nience yield defined as the discount rate (r) 
minus drift rate of timber revenue (αR). Using 
Ito’s lemma, the total return can be expressed 
as [0.5σ2

RR2F ″(R) – δRF ′(R)dt. To avoid arbi-
trage, the total return must be risk-free return:

2 2
R[0.5 ( ) ( )] [ ( ) ] ]R F R RF R dt r F F R R dtσ δ ′− −′ ′ =′ . [6]

Rearranging terms of equation [6] results in 
the following differential equation:

2 2
R0.5 ( ) ( ) ( ) 0R F R r PF R rFσ δ+′ −′− =′ . [7]

Entry and Exit Options

Assume that the payoffs of a pine forest de-
pend on timber revenue R, then the value (V) 
of the pine forest can be expressed as a func-
tion of R. Using the contingent claims method, 
V(R) can be derived. Specifically, Dixit and 
Pindyck (1994) show that the option value to 
invest V0(R) and the value of an active project 
V1(R) (profit from operation plus the option 
value to exit) are

10 1 H, [0, ]( )V A R R RR β= ∈ , [8]

1 Short selling is feasible on financial assets but not on 
hard assets such as timberland. However, this does not inval-
idate the use of the real options approach.
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2
1 2( ) / /V R B R R C rβ δ= + − , [9]

where A1 and B2 are parameters to be deter-
mined, β1 and β2 are parameters derived from 
the GBM of timber revenue, and C is the vari-
able cost of operation. Applying the value 
matching and smooth pasting conditions, en-
try and exit revenue thresholds (RH and RL) 
can be solved numerically from the following 
system of four nonlinear equations (Dixit and 
Pindyck 1994),

1 2
1 2 HH H / /A R B R R C r Iβ β δ− + + − = ,

1 21 1
1 1 2 2H H 1 / 0A R B Rβ ββ β δ− −− + + = ,

1 2
1 2 LL L / /A R B R R C r Eβ β δ− + + − = − ,

1 21 1
1 1 2 2L L 1 / 0A R B Rβ ββ β δ− −− + + = , [10]

where E is the lump-sum abandonment cost.

3. Data

Stumpage Price

Pulpwood, chip-n-saw, and sawtimber prices 
in 10 southern states, Alabama (AL), Arkansas 
(AK), Florida (FL), Georgia (GA), Louisiana 
(LA), Mississippi (MS), North Carolina (NC), 
South Carolina (SC), Texas (TX), and Virginia 
(VA),2 over 1980–2017 were obtained from 
Timber Mart-South (TMS).3 TMS is a non-
profit corporation that compiles and publishes 
prices of major timber products in the U.S. 

2 Hereafter, we use the two-letter U.S. Postal Service state 
abbreviations for these southern states.

3 Timber Mart–South, Warnell School of Forestry and 
Natural Resources, University of Georgia, Athens, available 
at http://www.timbermart-south.com.

south. Sawtimber, chip-n-saw, and pulpwood 
are primary products of pine plantations, and 
their prices are therefore used to generate a 
blended stumpage price. The weights are 
harvest volumes in the three products from a 
multiaged forest. Nominal prices are deflated 
using the consumer price index (2017 = 100). 
Descriptive statistics of real blended prices 
are reported in Table 1. Among the 10 states, 
GA has the highest mean ($30.05/ton) and 
standard deviation ($9.85/ton), whereas NC 
has the lowest mean ($21.95/ton) and stan-
dard deviation ($3.57/ton).

Growth and Yield

To characterize potential forest productivity 
for planted loblolly pine, we use simulations 
of forest growth from the 3-PG model for a 
set of climate futures. We use outputs from 20 
global circulation models (GCMs) based on 
the emissions future for the 8.5 representation 
concentration pathway (RCP8.5) from the In-
tergovernmental Panel on Climate Change 5th 
Assessment Report (Moss et al. 2010; Riahi 
et al. 2011) and statistically downscaled based 
on the MACA framework (Abatzoglou and 
Brown 2012). These projections are linked to 
climate normals defined by the PRISM cli-
mate history (Gibson et al. 2002). The 3-PG 
model is used to simulate the development 
of a planted loblolly pine stand to age 40 for 
several origin years for each of the climate 
futures. Simulations are conducted for each 
county within a 10-state region of the south-
eastern United States (Figure 14). The pro-

4 Abbreviations and their corresponding states are AL 
(Alabama), AR (Arkansas), FL (Florida), GA (Georgia), 
LA (Louisiana), MS (Mississippi), NC (North Carolina), SC 
(South Carolina), TX (Texas), and VA (Virginia).

Table 1
Summary Statistics of Blended Real Timber Prices in 2017 Constant Dollars  

per Ton and Parameter Estimates for Geometric Brownian Motions

AL AR FL GA LA MS NC SC TX VA

Mean 29.22 24.61 29.02 30.05 25.62 27.01 21.95 26.58 26.22 21.93
SD 9.52 7.18 7.23 9.86 7.04 9.57 3.57 6.25 7.02 4.73
αP –0.0090 –0.0091 –0.0043 –0.0027 –0.0094 –0.0078 –0.0015 –0.0057 –0.0063 0.0021
σP 0.1442 0.1547 0.1151 0.1567 0.1168 0.1652 0.1045 0.1015 0.1664 0.1202

Note: Using annual Timber Mart–South data (1980–2017) with Q2 price representing the annual one. αP and σP are drift and volatility parameters 
of timber price. Abbreviations and their corresponding states are AL (Alabama), AR (Arkansas), FL (Florida), GA (Georgia), LA (Louisiana), 
MS (Mississippi), NC (North Carolina), SC (South Carolina), TX (Texas), and VA (Virginia).
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jected yield at harvest age 30 for each state is 
reported in Table 2.

The dataset is organized as a multidimen-
sional matrix of total aboveground biomass 
quantities Q(a,y,m,l), where Q is measured as 

green tons per hectare, a indexes age from 2 
to 40, y indexes origin (planting) year from 
1990 to 2030 on a five-year increment, m 
indexes the GCM, and l indexes location as 
county FIPS code for the study region.5 Ex-
pected change in harvest yield for reference 
year y* is defined as Q(30,y* + 5,m,l) – Q(30,
y*,m,l). Changes in aboveground biomass are 
converted to growing stock inventory (green 
tons per acre) using conversion factors, and 
product distribution at age 30 is defined as 
the proportional distribution of growing stock 
across products defined by the SiMS growth 
and yield model.

Other Economic Variables

Similar economic assumptions as provided by 
Mei and Clutter (2015) are used in this study. 
Investment cost I includes purchase of 6 acres 
of land ($600/acre), purchase of standing in-
ventory, and regeneration cost ($180/acre) on 
1 acre. Variable cost includes administrative 

5 FIPS stands for Federal Information Processing Stan-
dard.

Figure 1
Parameter Estimates for Geometric Brownian Motion of Harvestable  

Volume (Age 30) by State and Reference Year

Table 2
Projected Harvest Yield (Green Tons per Hectare)  

at Age 30 by State and Reference Year

Reference Year

2020 2030 2040 2050 2060

AL 205.50 210.18 215.07 219.34 223.58
AR 199.89 204.12 208.34 212.46 216.27
FL 217.13 222.40 226.88 231.90 235.45
GA 191.55 197.40 202.89 207.44 210.90
LA 207.90 212.47 216.84 220.94 224.59
MS 205.32 210.36 214.94 219.15 223.69
NC 204.98 210.21 216.29 221.98 228.24
SC 195.46 201.73 207.53 212.01 216.69
TX 193.38 199.06 202.15 207.57 211.10
VA 196.00 203.76 210.15 215.97 222.88
Average 201.71 207.17 212.11 216.88 221.34

Note: Abbreviations and their corresponding states are AL (Ala-
bama), AR (Arkansas), FL (Florida), GA (Georgia), LA (Louisiana), 
MS (Mississippi), NC (North Carolina), SC (South Carolina), TX 
(Texas), and VA (Virginia).
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and management cost ($10/acre) and property 
tax that varies by state (Izlar and Li 2017). 
Abandoning cost is assumed to be –0.33I, 
implying a positive salvage value net of other 
liquidation costs. Real discount rate is 4% 
across all states. Values of these key variables 
by state are reported in Table 3.

4. Results

Key Parameter Estimates

Estimates of GBM parameters for prices in 
the 10 southern states are reported in Table 1. 

The magnitudes of the drift parameters imply 
that all states, except for VA, exhibit slightly 
declining trends of timber prices. In particular, 
timber prices in AL, AR, and LA decline more 
rapidly. According to the estimates of volatil-
ity parameters, timber prices in AR, GA, and 
MS exhibit higher variations. Projected aver-
age harvest yields (green tons per hectare) at 
age 30 by state and reference year are reported 
in Table 2. Regardless of the state, there is a 
monotonic increasing trend of yield over time. 
Across states, FL has consistently higher yield 
than other states.

Table 3
Values of Key Economic Variables for the Multiaged Pine Forest by State and Reference Year

AL AR FL GA LA MS NC SC TX VA

Reference 2020

I 1,979 1,758 2,591 2,010 2,087 1,805 1,953 2,013 1,797 2,063
C 18 17 19 22 18 18 17 18 19 19
E –660 –586 –864 –670 –696 –602 –651 –671 –599 –688
αR –0.0069 –0.0073 –0.0025 0.0000 –0.0076 –0.0055 0.0008 –0.0027 –0.0045 0.0065
σR   0.1445   0.1549   0.1163 0.1584   0.1184   0.1656 0.1103   0.1036   0.1702 0.1230

Reference 2030

I 2,026 1,798 2,651 2,064 2,133 1,845 2,004 2,070 1,836 2,132
C 18 17 19 22 18 18 17 18 19 19
E –675 –599 –884 –688 –711 –615 –668 –690 –612 –711
αR –0.0068 –0.0069 –0.0022 –0.0001 –0.0075 –0.0055 0.0008 –0.0028 –0.0041 0.0058
σR   0.1445   0.1549   0.1163   0.1580   0.1184   0.1656 0.1103   0.1032   0.1697 0.1222

Reference 2040

I 2,070 1,836 2,707 2,118 2,174 1,881 2,053 2,127 1,875 2,197
C 18 17 19 22 18 18 17 18 19 19
E –690 –612 –902 –706 –725 –627 –684 –709 –625 –732
αR –0.0067 –0.0070 –0.0022 –0.0002 –0.0078 –0.0057 0.0005 –0.0033 –0.0047 0.0050
σR   0.1445   0.1549   0.1163   0.1577   0.1186   0.1655 0.1105   0.1031   0.1695 0.1219

Reference 2050

I 2,102 1,858 2,754 2,160 2,201 1,907 2,100 2,173 1,905 2,254
C 18 17 19 22 18 18 17 18 19 19
E –701 –619 –918 –720 –734 –636 –700 –724 –635 –751
αR –0.0072 –0.0075 –0.0024 –0.0006 –0.0080 –0.0061 0.0005 –0.0034 –0.0047 0.0049
σR   0.1445   0.1550   0.1163   0.1576   0.1186   0.1656 0.1104 0.1030   0.1692 0.1219

Reference 2060

I 2,138 1,890 2,787 2,195 2,238 1,941 2,152 2,220 1,936 2,320
C 18 17 19 22 18 18 17 18 19 19
E –713 –630 –929 –732 –746 –647 –717 –740 –645 –773
αR –0.0071 –0.0072 –0.0029 –0.0012 –0.0079 –0.0058 0.0007 –0.0038 –0.0047 0.0049
σR   0.1447   0.1551   0.1164   0.1576   0.1188   0.1657 0.1101   0.1031   0.1692 0.1219

Note: Investment cost I, variable cost C, and abandonment cost E are in 2017 constant dollars per acre for the six-age-class, regulated pine 
forest. αR and σR are drift and volatility parameters of timber revenue. Real discount rate r = 4% across all states. Abbreviations and their cor-
responding states are AL (Alabama), AR (Arkansas), FL (Florida), GA (Georgia), LA (Louisiana), MS (Mississippi), NC (North Carolina), SC 
(South Carolina), TX (Texas), and VA (Virginia).
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Estimates of the drift and volatility param-
eters for net yield (age 30) models by state 
and by reference year are displayed in Figure 
1. The drift parameters, which approximate 
the average proportional growth increment, 
are positive across all states and reference 
years with a slight downward trend over time 
for most states, indicating an upward drift in 
anticipated net yields at age 30 through 2060. 
Drift values range from 0.0015 to 0.0043. 
While most states cluster around 0.0025, 
VA, the northern-most state, has substantially 
higher drift values. TX and LA, the west-
ern-most states have the lowest drift values. 
Sigma values range from 0.010 to 0.035 and 
follow no clear geographic pattern. Highest 
values for sigma are found for TX and NC, 
while the lowest values are found for AL, AR, 
and MS.

Estimated values of other key economic 
variables are reported in Table 3. Acquisition 
cost is rising monotonically with time primar-
ily because of higher growth and yield for all 
age classes, which implies higher inventory 
values. Similarly, acquisition cost is highest 
in FL and lowest in AR because of the differ-
ence in growth and yield and timber demand. 
Variations in variable cost result primarily 
from differences in property tax, and GA has 
the highest. Abandonment cost changes the 
same way as acquisition cost because it is 
assumed to be one-third of acquisition cost. 
Drift and volatility parameters of timber rev-
enue are dominated by the impact of those of 
timber price. NC and VA have positive drift 
estimates, but all others have negative drift 
estimates. In terms of volatility, TX has the 
highest while NC has the lowest.

Entry and Exit Thresholds

From the static net present value (NPV) anal-
ysis of a numerical example in GA, the re-
spective revenue thresholds for the multiaged 
forest with reference year 2020 are $103/acre 
and $49/acre. Considering both financial and 
biophysical uncertainty in timber revenue, a 
forest investor requires a premium to trigger a 
new investment, and an existing forest owner 
is more reluctant to exit. That is, the entry 
threshold becomes higher and the exit thresh-
old becomes lower. In the numerical exam-

ple above, the respective revenue thresholds 
incorporating uncertainty become $173/acre 
and $30/acre. Using the average stumpage 
price in the last five years, annual harvest gen-
erates a revenue of $2,799, or $467/acre, from 
the multiaged forest with the same reference 
year. The average annual equivalent value 
(AEV) of $86/acre falls between the entry 
and exit thresholds of both the static NPV and 
the real options analyses. Coupling the Monte 
Carlo simulations for yields with the GBM 
model for timber prices, we generate multiple 
realizations of AEV in GA for the 2020 ref-
erence year (Figure 26). About 97% of AEV 
realizations for GA are between exit and en-
try thresholds, indicating an optimal “hold” 
strategy. About 3% of realizations exceed the 
entry threshold, while less than 1% fall below 
the exit threshold, indicating the potential for 
a very slight upward trend in timberland in-
vestments. Our major conclusions remain the 
same with respect to other states and reference 
years, with net entry shares ranging from 0% 
to 2%.

Table 4 summarizes the results by state and 
by reference year. Similar to GA, AEVs in 
other regions fall between the two thresholds 
by both static NPV and real options analyses. 
Therefore, given current market conditions, it 

6 R(exit) and R(entry) indicate exit and entry thresholds 
for AEV, and Prob(·) values summarize the displayed dis-
tribution.

Figure 2 
Simulated Annual Equivalent Values (AEVs) of 

Timber Revenue for Georgia over Five Years  
with Reference Year 2020
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is not rational to make new timberland invest-
ments in the South, and existing timberland 
investors should hold their properties to ex-
plore other managerial options such as tempo-
rary suspension of active timber management.

Sensitivity Analysis

Our approach provides a compact representa-
tion of the biomass dynamics simulated by the 
3-PG model in response to variable climate re-
alizations described by the collection of GCM 

outputs, as well as changes in disturbance 
frequencies attributable to climate changes 
(e.g., wildfire and pest outbreaks). It there-
fore captures a portion of extant uncertainty 
regarding future biomass realizations. Other 
components would include emissions levels, 
and unaddressed model error components 
(e.g., parameter uncertainty) in both GCM 
and 3-PG models. That is, if we assume that 
estimates of drift are unbiased, we should ex-
pect the estimates of variance to be downward 
biased, but to an unknown extent. In addition, 

Table 4
Entry and Exit Revenue Thresholds for a Multiaged Pine Forest Investment by State and Reference Year

AL AR FL GA LA MS NC SC TX VA

Reference 2020

AEV 85 75 115 86 91 76 85 87 86 86
Static Entry 97 87 123 103 101 90 95 99 91 101
Static Exit 44 40 54 49 46 42 43 45 43 46
RH 167 154 187 173 162 163 138 145 164 146
RL 30 27 37 30 33 27 30 33 26 28

Reference 2030

AEV 87 76 118 89 93 78 88 89 88 90
Static Entry 99 89 125 105 103 92 97 101 92 104
Static Exit 45 41 54 50 46 43 44 46 43 47
RH 170 157 190 177 165 166 141 148 166 150
RL 30 27 38 31 34 27 30 34 27 29

Reference 2040

AEV 89 78 120 91 95 80 90 92 90 92
Static Entry 101 90 127 107 105 93 99 103 94 106
Static Exit 46 41 55 50 47 43 45 47 44 48
RH 173 160 193 181 168 169 144 152 169 154
RL 31 27 38 31 34 27 31 34 27 30

Reference 2050

AEV 91 79 123 93 97 81 92 94 92 95
Static Entry 102 91 129 109 106 95 101 105 95 109
Static Exit 46 42 56 51 47 44 45 47 44 49
RH 176 162 197 184 171 171 147 155 172 158
RL 31 27 39 31 35 28 31 35 27 31

Reference 2060

AEV 93 81 125 95 98 83 95 96 93 98
Static Entry 104 92 131 110 107 96 103 107 96 111
Static Exit 47 42 56 51 48 44 46 48 44 50
RH 178 164 200 187 173 173 150 158 174 162
RL 31 28 39 32 35 28 31 35 28 31

Note: Annual equivalent value (AEV) is value of timber revenue every five years. Static entry and exit revenue thresholds corresponding to 
the NPV analysis are C + rI and C – rE, where C is the variable production cost, r is the real discount rate, I is the investment cost, and E is the 
abandonment cost. RH and RL are entry and exit revenue thresholds from the real options analysis. All values are in 2017 constant dollars per acre. 
Abbreviations and their corresponding states are AL (Alabama), AR (Arkansas), FL (Florida), GA (Georgia), LA (Louisiana), MS (Mississippi), 
NC (North Carolina), SC (South Carolina), TX (Texas), and VA (Virginia).
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it is well known that the stochastic behavior 
of timber price is time dependent. For deci-
sion-making, assumptions should be forward 
rather than backward looking. Accordingly, 
we conduct sensitivity analysis to explore the 
impact of these key assumptions on optimal 
decisions (Table 5). We use GA as our case 
study, but similar results can be generalized 
for other states.

First, we totally separate the impact of yield 
uncertainty by simply considering price risk. 
This reduces both drift and volatility of timber 
revenue, and the net effect is higher entry and 
exit revenue thresholds. Then, we change val-
ues of the key variables one at a time and ex-
amine the impact. An increase in real discount 
rate decreases the present value of the invest-
ment cost of the investment timing option and 
thus discourages an early exercise. So the en-
try revenue threshold goes up. Similarly, an 
increase in real discount rate decreases the 
present value of the guaranteed payoff of the 
abandonment option and thus encourages an 
early exercise.7 So the exit revenue threshold 
also goes up.

An increase in timber price drift rate leads 
to an increase in the timber revenue drift rate, 
which makes investment more likely (lower 
entry revenue threshold) and abandonment 
less likely (lower exit revenue threshold). 
An increase in timber price volatility results 
in an increase in timber revenue volatility. 

7 Abandonment is a put option with the net salvage value 
being the exercise price.

Therefore, both investment and abandonment 
become less likely. Increases in yield drift 
rate and volatility have the same impact as in-
creases in those of timber price. An increase 
in correlation between timber price and yield 
increases both drift rate and volatility of tim-
ber revenue.8 The net impact is trivial.

A lower investment cost implies a higher 
NPV and makes an investment more likely. 
So the entry revenue threshold goes down. A 
lower variable cost means a higher profit, and 
hence, both entry and exit revenue thresholds 
decrease. An increase in abandonment cost 
implies a lower salvage value, which makes 
the investment opportunity less appealing. 
Thus, the entry revenue threshold rises. More-
over, a lower salvage value makes the exercise 
of the abandonment option less likely, leading 
to a lower exit revenue threshold.

5. Discussion and Conclusion

Using TMS timber price data and 3-PG mod-
els with Monte Carlo simulations, we incor-
porate both financial and biophysical risk in 
GBMs under the real options framework and 
examine the optimal entry and exit opportuni-
ties of timberland investment in 10 southern 
states in the United States. Our results show 
that it is generally not economical to make 

8 Trees know nothing about timber prices, but timber 
prices can send signals to forest landowners on what and 
how to produce. Thus, a moderate positive correlation be-
tween price and yield is reasonable.

Table 5
Sensitivity Analysis

No. Variable Description Base Value New Value PH PL

1 Base case 173 30
2 Price only 176 31
3 ∆r Discount rate 0.04 0.05 198 35
4 ∆αP Price drift –0.0027 0 170 29
5 ∆σP Price volatility 0.1567 0.2 196 27
6 ∆αV Yield drift 0.0027 0.01 164 28
7 ∆σV Yield volatility 0.0232 0.04 175 30
8 ∆ρ Correlation 0 0.2 175 29
9 I Investment cost ($/acre) 2,010 1,800 158 30
10 C Variable cost ($/acre) 22 15 162 25
11 E Abandonment cost ($/acre) –670 –500 175 26

Note: All values are in real terms. RH and RL are entry and exit thresholds (2017 constant dollars per acre) 
from the real options analysis. Analysis based on investment in GA (Georgia) with reference year 2020.
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new timberland investments in the South and 
that current forest landowners should hold and 
explore other managerial options. In the 10 
southern states, the majority of current annual 
timber revenue expectations fall between the 
entry and exit thresholds. However, “entry” 
outcomes slightly exceed “exit” outcomes 
across AEV realizations, indicating a poten-
tial for 0% to 2% annual increases in timber-
land investments despite a downward drift 
in prices. These findings are consistent with 
inventory change data for the Southeast (see 
Appendix), where planted pine area increased 
by 169,100 ha yr–1 (1.1%) between 2007 and 
2012, and by 133,500 ha yr–1 (0.8%) between 
2012 and 2017 (Oswalt, Miles, et al. 2017; 
Oswalt, Smith, et al. 2014; Smith et al. 2009).

Optimal timberland entry and exit deci-
sions remain invariant with respect to ref-
erence years despite the impact of climate 
change. This is because the impact on growth 
and yield has been absorbed in both cost and 
revenues of timberland investments. Within 
the same reference year, however, there are 
considerable variations in investment cost, 
operation cost, and timber revenue across 
states. For instance, FL has the highest timber 
revenue potential with relatively low volatility 
while being the most expensive place to invest. 
In addition, our analysis does not account for 
simultaneous changes in returns to other com-
peting land uses that would ultimately influ-
ence adoption of timberland investments and 
switching among land uses. This remains an 
important area for additional research.

Our analysis indicates that both market 
risk and climate-driven biophysical risk in-
fluence the viability of forest investments in 
the southeastern United States. Our focus on 
loblolly pine forests in the Southeast allowed 
us to utilize extensive price records, forest 
inventory data, and detailed forest growth 
for a globally significant production area to 
develop our methods. Investments in this re-
gion benefit from relatively stable forest area 
combined with stable markets and governance 
and relatively moderate climate change risks 
to forests, when compared with other regions 
(Payn et al. 2015). Projections based on our 
analysis indicate continued stability to slight 
growth in planted pine production given cur-
rent expectations regarding prices and climate 

change. While the projected increases are 
small (up to 2% per annum) they are not in-
consequential (expansion of up to 10% over 
a five-year period). In contrast, running these 
models without climate-driven changes in 
yields leads to no increase in planted pine area 
in the Southeast.

Extension of this analysis to other regions 
of the world could be challenged by data lim-
itations. We anticipate that combinations of 
market and biophysical risks may be more 
influential on future investments in regions 
where climate impacts are more severe. For 
example, commercially significant planted eu-
calyptus are expected to experience declines 
in productivity due to temperature increases, 
range shifts, and increases in catastrophic 
disturbances in Oceania, with important con-
sequences for forest viability and investment 
returns (Binkley et al. 2017; Payn et al. 2015; 
Shabani, Kumar, and Ahmadi 2017). 

Our methods would benefit from linkages 
between disturbance risk probabilities and the 
outputs of GCMs that would allow for con-
necting each yield projection with a distur-
bance regime, that is, information on the cor-
relation of yields and disturbance frequencies. 
A next step in the analysis would be to exam-
ine investment in a land use choice/switching 
context that would account for climate change 
influences on the yields expected from alter-
native land uses.
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