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ABSTRACT

Forest sector models merge models of timber inputs and final wood
products markets with biophysical models of forest dynamics to
project forest futures. Comprehensive treatment of biophysical dy-
namics is required to address the product detail of timber markets
and to track changes in forest carbon. We examine assumptions
for existing Forest Inventory Projection Models and empirically ex-
amine the implications for forest carbon projections. We compare
model results with observations from remeasured forest inventories
in the eastern United States. Results show forest carbon projec-
tions are sensitive to non-harvest disturbances, ownership, and
stand-origin. Additionally, bias can arise when forest carbon stocks
are estimated using correlations between average stock density and
biomass aggregates. Current forest inventories provide a dataset
of consistently remeasured forest plot records that will increas-
ingly support a strong empirical foundation for Forest Inventory
Projection Models.

Keywords: Forest production, Age transitions, Greenhouse gas (GHG),
Carbon sequestration, Forest Inventory and Analysis (FIA)

1 Introduction

Forest sector models combine descriptions of economic behavior including tim-
ber demand with a biological/management model of forest inventory dynamics
to specify intertemporal timber supply relationships. Forest inventory models
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account for biological growth, land use changes, timber harvesting and other
forms of mortality to project change in a region’s forest biomass to define
timber supply in future periods. Because forest carbon stocks are correlated
with forest biomass, forest sector models have been modified to project forest
carbon (C) stocks and to study policy options for enhancing C sequestration to
mitigate climate change (Alig et al., 2010; Nepal et al., 2012; Tian et al., 2018).
Shifting the focus from wood product and timber market projections to forest
C projections implies a different approach to model validation/verification.
Carbon projections are directly linked to the level of detail and specification
of forest dynamics. For long-term projections, misspecification can lead to
compounding errors. Minimizing misspecification in the forest dynamics com-
ponents of C projection models prior to incorporating modeled climate change
and market mechanisms is imperative for avoiding biased projections. The
objectives of this paper are to (1) explore the common assumptions of forest
inventory models used for forest sector analysis and their potential to introduce
bias into C projections and (2) identify specifications for these models that
might produce the most accurate biomass and forest C projections.

The modern forest sector model derives from the work of McKillop (1967).
Ten years later, Adams (1977) developed the intertemporal logic for modern
forest sector models by linking endogenous timber harvests to a forest growth
framework to support long term policy analysis and projections of market
activity. Adams adopted a stand-table projection method (TRAS, Larson
and Goforth, 1974) to link forest growth and harvests to changes in biomass
inventory. The subsequent Timber Assessment Market Model (TAMM, Adams
and Haynes, 1980) adopted a spatial optimization approach (Haynes, 1975)
and replaced the forest inventory model with a variant of the Timber Resource
Inventory Model (TRIM, Tedder et al., 1987) which was later modified to
define the Aggregate Timberland Assessment System (ATLAS, Mills and
Haynes, 2007). For TAMM and many subsequent forest sector models (e.g.,
FASOM, Adams et al., 1996; Guo and Gong, 2017; Latta et al., 2018; Pohjola
et al., 2018), the logic of using a forest inventory projection model broadly
organized by the age structure and growth dynamics of forests has been a
constant.

Forest inventory projection models (FIPMs) describe the dynamics of forest
biomass, generally in terms of the growing stock biomass, to provide a means
to position timber supply curves in future periods. Since Adams (1977), timber
supply has been defined as a statistical relationship between timber output,
timber price, and growing stock inventory level. The economic rationale for
the use of the stock variable varies over management contexts (e.g., declining
inventories imply increasing scarcity or higher costs in an old-growth mining
context, stock levels are positively correlated with production capacity in a
renewable forestry context) but expanding inventories are expected to shift
supply outward.
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Some forest sector models, while adopting the broad logic of biological
growth to project stocks, compress the inventory model into a highly aggregate
form where exogenous growth rates are applied to total forest biomass at
regional or country levels without consideration of the age or other constituent
structures of the forest inventory. Most international trade models necessarily
adopt this approach because a majority of countries lack the inventory data
needed to support detailed constituent analysis (e.g., IIASA GTM: Kallio et al.,
1987; GFPM: Buongiorno et al., 2003). An exception among trade models
is Sohngen and Mendelsohn (2003) where trade modeling is coupled with
inventory projections based on age/forest type dynamics applied to inventory
aggregates. Our focus is on understanding the specification of forest inventory
models that can account for the changes in forest structure that are essential
for linking inventory futures to forest C outcomes.

FIPMs were developed during a period when forest inventory data were
scarce and largely inconsistent across regions of the U.S. Early models used
information from various and disparate sources including growth and yield
models for managed forest stands and incomplete and regionally variable forest
inventories. Forest inventory methods and their deployment in the United
States have improved substantially over the last two decades and now provide
data with enough temporal breath to test the implications of previous modeling
assumptions. This paper proceeds with a general description of FIPMs and a
set of their common assumptions. We simulate the implications of alternative
assumptions for predicting change in forest C taken from re-measured forest
inventories in the eastern United States (representing approximately 78% of
the U.S. C sink; Wear and Coulston, 2015), examine projections for signs
of bias over the re-measurement period, and for out-year projections. An
exploration of these alternative assumptions supports recommendations for
specifying forest sector models when assessing forest C futures.

2 Generalized Model

FIPMs have been derived from combinations of empirical and mechanistic
(logic or rule based) approaches. However, most models follow the general
approach described below with modifications to address data gaps or novel
conditions. An existing forest inventory can be described in terms of its areal
extent as follows:

I(Age class, Forest type, origin, owner class, slope, harvest . . . ) (1)

Where I is a multidimensional array of forest area with dimensions defined
by the number of categorizing variables or strata. Stratifying variables differ
by implementation but all models include age class, which provides a means to
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simulate intertemporal change. For ease of exposition, combine all categorical
variables except age in (1) into a vector X that defines a set of n discrete
conditions, so I(a,X) describes the inventory as an m× n matrix where a rep-
resents age class and m is the number of age classes. We can further decompose
this inventory into a set of n vectors: ak defining the age class distribution
for each of the n relevant forest conditions defined by the permutations of
stratifying variables (indexed by k). Average values for inventory attributes
from a measured inventory can be applied to the inventory age class structure
defined by I to estimate stock values:

Bt = It(a,X) ◦ b(a,X) (2)

where b is the m× n matrix of areal averages for the variable of interest (e.g.,
growing stock density or C density), ◦ is the Hadamard product obtained
by element-wise multiplication, and B is a matrix of stock values. The total
value for the inventory (e.g., growing stock volume or C stock) is defined by
summing across all elements of B.

The fundamental elements of an FIPM are (1) an age transition mechanism
that changes age distributions through time, (2) a stratification of the inventory
through the selection of the X variables, (3) a mechanism for transitioning
into and out of strata, for example by land use changes, and (4) assigning
inventory values to strata (the b(a,X) matrices). We examine each element
below.

2.1 Age Transitions

Simulating the future state of the inventory involves moving each of the age
class vectors through time by applying transitions defined endogenously (aging,
harvests, and sometimes investment) or exogenously (fire or other disturbance).
Define T as an m×m age transition matrix where each element Tij defines the
proportion of forest area in age class i transitioning to age class j and t defines
the time increment of the projection so: aj,t+1 = aj,t · T . The values of the
elements of T depend on a number of factors, including forest disturbances
such as harvests, fire, storms, and others, and the value of t, especially relative
to the span of the age classes. For example, consider a case where we hold
area fixed, allow for no mortality, define the time step t equivalent to the span
of age classes, and assign four age classes. T would be:

T =


0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 1

 (3)

At every time step all forest area progresses to the next age class and
forests within the terminal age class are retained forever. With this version
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of T, after three time steps all forests would be in the terminal age class.
Relaxing assumptions changes the structure of T. If we allow for disturbances
including harvesting and fire that result in stand regeneration and allow for
stochastic elements in forest aging:

T =


1− t1 d2 d3 d4
t1 1− t2 − d2 0 0
0 t2 1− t3 − d3 0
0 0 t3 1− d4

 (4)

where ti is the proportion of forest of age class i transitioning to age class
i + 1, di is the proportion of age class i that experiences a stand-replacing
disturbance, and (1−ti−di) is the proportion retained within age class i which
could be the result of a non-stand-replacing disturbance. These assumptions
are still highly restrictive since observed disturbances shift forest ages in a
variety of ways – even increasing average forest age when a suppressed cohort
of older trees is released due to disturbance/mortality focused on younger trees
that comprise the overstory.

The transition matrix also depends on the treatment of harvest activity and
the age allocation of forest area following a harvest. Timber can be harvested
using intermediate treatments (i.e., thinning), partial harvests, or clear felling.
Clear felling is the simplest treatment to model, but in the eastern U.S. a large
majority of harvests (65%) is derived from partial harvests (partial harvest
defined as <80% above ground live tree biomass removed). Clearcuts remove
all timber and reset the forest age to the first age class (consistent with di
in Equation 4). FIPMs have adopted a variety of mechanisms for simulating
partial harvesting and defining post-harvest ages. For example, the ATLAS
system uses a set of rules based on expert opinion to remove a portion of
volume from the inventory for partial harvests and reset the age of the treated
area to a younger age class (i.e., defines age transitions that are not a part
of the first row or the diagonal of T). These kinds of harvest rules can be
described using equations to approximate the distribution of partial harvests
hp and clearcut harvests hc across age classes. For example consider separate
harvest distribution for partial harvests and clearcuts:

hp =
[
0 hp2 hp3 hp4

]
(5a)

hc =
[
0 hc2 hc3 hc4

]
(5b)

Where the elements of hp and hc are the proportion of the age class harvested
by partial and clearcut approaches respectively. This defines the following
transition matrix:

T =


0 hc2 hc3 hc4
t1 hp2 hp3 0
0 t2 0 hp4
0 0 t3 t4

 (6)
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that assumes that clearcut forests (hc) are returned to the first age class
while partial cuts (hp) reduce the age by one age class. Here all entries must
be non-negative and all columns must sum to one (ti = 1 − hci − hpi) i.e.,
harvesting cannot remove more than the total area in each age class. The
definitions of the hp and hc arrays can be based on empirical measures from a
remeasured inventory or based on regional silvicultural prescriptions or expert
opinions.

2.2 Inventory Stratification

The transition matrix (T) summarizes the intertemporal dynamics of the forest
inventory including aging, harvesting (or other management choices), other
disturbances, and noise associated with measurement error. The transition
logic is developed to match the information structure defined by the stratified
inventory (I[a,X]) recalling that a is age and X is a set of stratifying variables.
Ideally, X variables define strata with minimal variance for variables of interest
(i.e., b (a,X) in Equation 2) and with homogenous management approaches
(i.e., described by harvest propensities or intensities). Stratification choices
generally focus on minimizing within-strata variance of biomass measured as
growing stock volume, and consistent harvest intensities (Equation 5). The
structure of projection scenarios may define the need for additional stratifying
variables, for example analysis of climate change may require stratifying the
inventory by climate variables. Stratification decisions are therefore driven by
multiple and potentially competing objectives.

Modelers face the challenge of defining strata that are statistically dis-
cernable and can support analysis of relevant scenarios. Stratification based
on biomass volume suggests using variables that influence forest productivity
including site class, forest type group, and soil category. Additionally, the
product structure of the model may require separating forests into, for example,
hardwood and softwood types. Stratification based on management homogene-
ity suggests including variables that describe owner objectives or cost structures.
Ownership category – for example, public versus commercial versus family
owners – may capture differences in objectives while slope and distance from
road can proxy for some operating costs. These variables, taken directly from
inventory records, can be augmented with variables from ancillary sources to
support scenario analysis, for example, using climate variables assigned to plot
locations that can then be linked to alternative climate projections. Manage-
ment propensities have been shown to vary by socioeconomic context suggesting
that inventory be stratified by variables such as population density or personal
income. The potential scope of the model can be enhanced by increasing the
number of strata (adding stratification variables), but over-stratification can
weaken the analysis. As the number of strata increases, the sample size of each
stratum declines and the potential for unpopulated (novel) stratum increases.
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Early FIPMs were organized by the logic of growth and yield tables that
describe merchantable forest biomass as a function of stand age, site produc-
tivity, and stand structure. As an example, ATLAS uses this type of logic and
variables describing management or silvicultural prescriptions (management
intensity class) to stratify the inventory (Mills and Haynes, 2007). Biomass
volume densities were estimated using both growth and yield models (e.g.,
TAUYIELD and DFSIM) and empirical volume estimates from some measured
inventories. The choice of strata reflected the questions of the 1980s and
1990s when forest production was shifting from old growth removals to an
agricultural approach and timber scarcity was a strong focus. At the time,
detailed inventory data were limited and inconsistent across regions (e.g.,
not covering public lands) and new management approaches (intensive pine
plantations) had not been fully deployed so were essentially “novel.” Given
the paucity of data, simulation models provided the only practical means of
providing estimates of future production.

More recent models have started to rely more on empirical estimates
from measured inventories. Latta et al. (2018) for example, modeled biomass
growth rates using FIA plot estimates stratified by ecoprovince, site class,
forest type and age. In constructing the USFAS, Wear et al., 2013 use
empirical approaches to define strata that produce statistically discernable
distributions of volumes across strata. Potential stratifying variables taken
from within the inventory (e.g., site class, slope, etc.. . . ) and from ancillary
variables describing climate conditions, were evaluated using multi-variate
regression trees to identify significant stratifying variables and the breakpoints
for stratification (i.e., defined the stratifying variables and the number of classes
within these variables). Forest age was also used as a stratifying variable within
the regression trees and defined breakpoints for age at irregular age intervals,
and a transition logic with age steps smaller than most age classes. USFAS’s
exclusive use of empirical estimates from inventories to stratify and transition
the inventory was allowed by the enhanced consistency and intensity of US
forest inventories since 2000. The empirical approach generally leads to fewer
strata than approaches based on yield tables (Wear et al., 2013).

2.3 Strata Transitions and Land Use

The transition matrix (T) coupled with a stratified inventory (I(a,X)) defines
intertemporal projections within each inventory stratum. Changes among
strata can occur, especially following a disturbance, and need to be addressed
within the modeling framework. For example, insect outbreaks may lead to a
change in forest type, harvesting of an upland hardwood forest may be followed
by a transition to a planted pine forest type, and climate change may lead
to a shift in climate “class.” These dynamics can be incorporated within the
model’s transition logic using either rule-based or empirical approaches.
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A special case of strata transitions is land use change which defines how
land enters or exits the inventory matrix. Rates of land use change are typically
defined by exogenous estimates or models (e.g., land use based on National
Resource Inventory data, Lubowski et al., 2008) and the treatment of these
changes strongly influence estimated changes in forest C (Wear and Coulston,
2015). Since 1982, net changes in forest area in the United States have been
small in relative terms but reflect much more substantial gross changes – that
is, largely offsetting shifts into and out of forest use. The distribution of these
changes across strata determines the amount of biomass and C entering or
leaving the forest inventory implying a large range of potential effects. For
example, no net change in forest area may involve the conversion of old forests
to other uses but offset by the planting of forests on agricultural lands. In
this case, no net loss of forests could be consistent with a large reduction in
biomass and C stocks in the forest sector and considerable C transfers to and
from other land sectors.

2.4 Constructing Inventory Values

Within a forest sector model, FIPMs serve to provide projections of forest
biomass which are used to specify future timber supply relationships. In recent
applications, they have also provided a mechanism for projecting change in
forest C stocks based on the correlation between biomass volume and C stock
(e.g., FASOM-GHG, Adams et al., 2009). In this role, the objective is to
extend historical C stock estimates derived from a forest inventory in a way
that captures the full suite of relevant dynamics. That is, projections of C need
to account for more than changes driven by timber market/harvest dynamics
to include all relevant disturbances as well as land use changes.

Inventory level estimates of biomass or carbon require a set of stock
densities consistent with the inventory stratification. The construction of
biomass estimates (b(a,X), Equation 2) from a full forest inventory simply
involves defining areal averages of biomass values within each strata of (I(a,X))
(e.g., Wear and Coulston, 2015). Early FIPMs defined I(a,X) using inventories
but used both growth and yield models and inventory records to estimate
b(a,X) (e.g., ATLAS, FASOM-GHG). Alternatively some implementation of
FIPMs have defined b(a,X) with estimates of growth from either inventory
records or growth and yield models and used growth to increment a separate
volume matrix (e.g., Mills, 1989; Latta et al., 2018). Because measured
inventory changes are rarely consistent with estimates from growth and yield
models parameterized independently (Clutter, 1963; Moser and Hall, 1969),
adjustment factors are utilized to force consistency with historical levels of
inventory (Mills and Haynes, 2007) and this raises concerns regarding the
ability to mirror historical dynamics in projections. However, there should be
a logical compatibility between growth and standing inventory (yield) and this
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compatibility has not been examined within the context of FIPM projections
of C.

C stock estimates for an existing forest inventory are constructed by
applying predictive models for several C pools to measured inventory variables
at the plot level (e.g., forest type, and age) and using ancillary data (e.g.,
precipitation and temperature). C stock density estimates (c(a,X)) can be
estimated from a forest inventory by averaging plot values for the total of all C
pools within each stratum (which includes age class). This approach provides
a direct match between projections and the historical levels of C estimated
from the forest inventory. Where forest biomass has been derived from growth
and yield models, a simple correlation approach has been applied to estimate
forest C stocks from projected forest biomass and forest age. FASOM-GHG,
for example, uses a set of conversion factors to translate merchantable volume
(output from the growth and yield framework) into total biomass volume
and then into live and dead tree C. Understory C and forest floor C are
modeled as a fixed proportion of live tree volume and forest age, and soil C
as a regression function of forest age using regional equations (Adams et al.,
2009). Adjustments to C stocks are driven by harvest activities. The work
presented here considers the generalized model and examines the sensitivity of
C outcomes given alternative modeling choices.

3 Methods

Our analysis explores modeling choices in four areas: stratification, age transi-
tions, density estimates, and growth and yield compatibility. In particular, we
examine four questions:

1. How do varying levels of aggregation defined by stratification strategies
(i.e., selection of X variables) affect the accuracy of forest C projections?

2. How do common assumptions about the transition matrix (T) affect the
accuracy of forest C projections?

3. Are forest C (c(a,X)) and forest biomass (b(a,X)) projections highly
correlated and what are implications of estimating forest C based on
correlative methods?

4. Do growth-based and yield-based approaches provide compatible projec-
tions of forest C?

We used the USDA Forest Inventory and Analysis data for the eastern
United States to examine these four questions based on 73,937 repeated
inventory plot observations that define forest C stocks for beginning (time 1)
and ending (time 2) periods (data available at https://apps.fs.usda.gov/fia/

https://apps.fs.usda.gov/fia/datamart/CSV/datamart_csv.html
https://apps.fs.usda.gov/fia/datamart/CSV/datamart_csv.html
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datamart/CSV/datamart_csv.html). These plots were classified as forest land
use at both time 1 and time 2 (i.e., land use change is not considered). We
compare observed change in the forest C stocks with alternative projections
based on (1) eleven alternative stratifications of the inventory, (2) three
alternative age transition approaches defined by Equations 3–4, 6, and (3) two
alternative models for forest C estimation to address questions 1–3 respectively
(Table 1). To address question 4 we develop an alternative model based on
observed growth in C stocks from time 1 to time 2 rather than time 1 C stocks.

The accuracy of each stratification was determined by predicting a time 2
forest C stock based on the time 1 inventory using each stratification of the
inventory plots (Question 1). The stratification with the smallest time 2 forest
C prediction error was then used to compare alternative age transition models
(Question 2). To address the third question we applied two approaches to
estimating forest C stocks applied to the alternative age transition modeling
approaches. In addition to examining the short-term (5-years) error we further
examine the variability among approaches in the long-run (50 years).

Alternative stratifications were based on five descriptive variables: Region (1
eastern United States region), forest type group (9 groups), site class (7 classes
denoting potential site productivity), owner class (4 ownership classes), and
stand origin (planted vs. natural regeneration, Table 1). We then constructed
six two-variable combinations for the latter four variables.

We used the estimators given by Bechtold and Patterson (2005) to estimate
the requisite parameters (a, c, dc, and T) where a is the forest area by age
vector, c is the C density by age vector, C stock density change by age vector
(dc), and λ is an age transition matrix with transition probabilities T. The
total Ŷ for each k age class was estimated by:

Ŷk = A
∑
F

Wf

∑
nf

yifI/nf (7)

where A is the total land area of the population, Wf is the inventory group
(f) weight, yih is the observation for each i plot in each f inventory group, I is
an indicator value where I = 1 if the observation was in k and zero otherwise,
nf is the number of inventory plots in group f . For forest area, yif is the
plot-level percent forest land use and each k element of a is estimated directly
from Equation 7. Likewise each element of λ is estimated from Equation 7 for
each time 1 to time 2 age transition and is the forest area of each transition.
To calculate T from λ each element of λ was divided its corresponding column
total. For more details on the estimation of λ and T, we point the interested
reader to Coulston et al. (2015). For C, yif is the plot-level C stock per unit
area of land and each k element of C (total C stock by age) was estimated
based on Equation 7. The c vector is ratio estimate C/a. In the case of
plot-level C stock change yif = yif time 2 − yif time 1 and dC was the total
stock change for each age class. The dc vector was the ratio dC/a.

https://apps.fs.usda.gov/fia/datamart/CSV/datamart_csv.html
https://apps.fs.usda.gov/fia/datamart/CSV/datamart_csv.html
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We used the projection model offered by Wear and Coulston (2015) to
project future C stocks which is generally consistent with Equations 1–6. The
forest area by age distribution is projected to the next time step by a ·T where
a is a k × 1 vector and T is a k × k matrix. The total C stock is then a ·T · c
where c is a k × 1 vector of C density by age class. Formally,

Ct+s = a
′
tTc (8)

where Ct+s is the total C stock at time step s. Alternatively, when stock
change density is used

Ct+s = Ct + a
′
tTdc (9)

To compare the efficacy of alternative stratification approaches, we estimate
empirical transition matrices (T and λ elements) for each stratum which are
defined by observed transitions between time 1 and time 2.

After defining the stratification with the least error, we compare projections
using four alternative age transition models (question 2). One is the “empirical ”
model based on observed age changes between time 1 and 2 described above.
The other three models define forecasts based on various rules applied to time
1 observations alone. The first, labeled “mechanical,” uses the simple aging
approach described in Equation 3 where all forests age to the next period
without accounting for disturbance. Another transition approach, labeled
“disturbance,” augments the aging logic with the inferred rates of disturbance
based on time 1 inventory plots coupled with aging rules (all disturbances
including cutting were included with this approach). The final transition
approach, labeled “cutting,” similarly augments the aging logic with inferred
age transitions for plots that are cut (only cutting disturbance was considered
to influence age transition). The “disturbance” transition matrix was estimated
from the time 1 inventory as follows:

δ = 1× k vector of disturbance area by age class

u = 1× k vector of non-disturbed area by age class

a = 1× k vector of total area by age class

Note the age class from the single inventory is “post-disturbance.” Assuming
that the area of disturbance in age class 0 was the result of stand replacing
disturbance, the area of stand replacing disturbance (including cutting) by age
class was modeled as:

r = δ1δ1(
∑
δ)−1 δ1δ2(

∑
δ)−1 · · δ1δk(

∑
δ)−1. (10)

Where the
∑
δ is total disturbance area. The area of non-stand replacing

disturbance by age class was:

ρ = 0 δ2 − r2 · · δk − rk. (11)
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The probabilities of stand replacing disturbance were d = r/a, non-stand-
replacing disturbance p = ρ/a, and undisturbed probabilities were t = u/a.
Imposing the logic from Equation 4, where undisturbed forests progress to the
next age class (until reaching the terminal age class) and non-stand replacing
disturbance are set back one period, defines the following transition matrix:

The transition matrix corresponding to Equation 4 was

Tdisturbance =



d1 d2 d3 d4 · · · dk
1− d1 p2 0 0 0

0 t2 p3 0 0
0 0 t3 p4 0
...

. . .
0 0 0 0 1− dk


(12)

The cutting transition matrix was estimated in a similar fashion except
that only cutting disturbances were used to infer transitions—cutting yields
both stand-replacing and non-stand replacing forest conditions:

h = 1× k vector of cutting area by age class
uh = 1× k vector of non-cut area by age class
a = 1× k vector of total area by age class

Assuming that the area of cutting in age class 0 was the result of clear-cut
harvest practices, the area of clear-cut harvest by age class was modeled as:

Hc = 0 h1h2(

k∑
i=2

h)

−1

· · h1hk(

k∑
i=2

h)

−1

. (13)

The area of non-stand replacing disturbance by age class was:

Hp = 0 h2 −Hc2 · · hk −Hck. (14)

The probabilities of stand replacing disturbance were hc = Hc/a, non-stand-
replacing disturbance hp = Hp/a, and undisturbed probabilities were

t = uh1(a1 − h1)
−1

uh2a
−1
2 · · uhka

−1
k . (15)

The transition matrix corresponding to Equation 6 was

Tcutting =



0 hc2 hc3 hc4 · · · hck
t1 hp2 hp3 0 0
0 t2 0 hp4 0
0 0 t3 0 0
...

. . .
0 0 0 0 hpk
0 0 0 0 0
0 0 0 0 tk


(16)
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To examine question 3, we compare our empirical estimates of forest C
based on the recorded C quantities for the seven forest C pools (above and
below ground live tree, above and below ground dead tree, litter, under story,
and soil organic matter) with an approach that uses above ground biomass
C as a correlate for total forest C. Here we construct ratios of total forest C
to the above ground live tree C pool for strata and use this ratio to estimate
forest C in time 2. This is comparable to ratio methods used in many FIPMs.
We also examine the stability of the C ratios across age classes to assess the
assumption that a ratio can be used to expand above ground live tree C to
total C in all pools.

To examine question 4, we develop an alternative model using observed
C changes between time 1 and 2 (Equation 9) and apply it using the best-
performing stratification and transition model.

4 Results

The total C stock in the eastern United States was 27544TgC at time 1 and
28060TgC at time 2 (approximately 5.3 year time step based on the average
remeasurement period for all plots) with an average annual stock change
of 97Tg C yr−1. For the eleven alternative stratifications, errors in time 2
forest C stock predictions ranged from −76Tg C to +2Tg C. These errors
from a C stock perspective were small (−0.27% to +0.01%). Errors in stock
change predictions ranged from +0.61 to −14.0 Tg C yr−1 (percent error
ranged −14.39% to +0.63%). The stand origin * owner yielded the smallest
error (panel 1 in Figure 1). The results for single factor stratification indicate
predictive strength of variables in descending order as: stand origin, owner
group, region, site class, and forest type. Among the two-variable combinations,
those that included stand origin persistently outperformed other groupings.

Evaluation of alternative transition models (question 2) were based on
the stand origin * owner stratification and the empirical transition model
is the base of comparison (+0.61 Tg C yr−1 error in stock change; panel 2
in Figure 1). The estimated empirical transition model (Figure 2) is consis-
tent with substantial partial harvests and non-harvest disturbances. Among
alternative transition models, the disturbance model produces the smallest
error (−2.3Tg C yr−1 error in stock change). The mechanical transition model
produces the greatest error (+105 Tg C yr−1) and the cutting transition model
produces error of intermediate value (+7Tg C yr−1). These results suggest
that the predictive strength of age transition models increases as accounting
for disturbances in modeling age transitions increases.

To examine question 3, we compared the empirical forest C estimates from
the four transition models with an alternative approach based on tracking only
the live tree biomass and applying strata based ratios to estimate total forest
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Figure 1: Error in predict annual C stock change based on different stratification approaches,
different assumptions about age transitions, and different estimation techniques.

C. Based on the time 1 data the average C expansion ratio was 3.5. In all
cases the ratio approach greatly increased the error of the period 2 prediction
(panel 3 in Figure 1). For the disturbance transition model, error increased
from −2.3 Tg C yr−1 to 84.9 Tg C yr−1; from 7.2 to 116.1Tg C yr−1 for the
cutting transition model, and from 105.9 to 349.0 Tg C yr−1 for the mechanical
transition model. We further examined the stability of the total C to live tree
C ratio across age classes. The ratio ranged from 21 at age zero to 3 at age 100
(Figure 3). This results was logical because young forests may have little above
ground tree C yet retain a significant amount of soil organic C (Figure 3).

The results presented above reflect a broad range of errors for the five year
time step of the remeasured inventory that depend on assumptions regarding
stratification and transitions. To explore the implications for longer run
projections, we also constructed 50 year projections based on the alternative
transition models (Figure 4). By construction, the long run projections are
hypothetical from the perspective of harvesting and climate conditions – that
is, harvests are not directly derived from timber market dynamics and climate-
induced shifts in productivity are not incorporated – but they further illustrate
the potential implications of various specification choices. For this analysis,
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Figure 2: (a) Transition probabilities for non-harvest plots.(b) Transition probabilities for
harvested plots.
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Figure 3: Carbon expansion ratios by age class.

the amount of harvesting (both clear-cut and partial) was held constant by age
class over the projection period (this amount was equal to the harvest recorded
in the time 2 inventory). The cutting transition model predicts greater values
of C stock and C stock change than both the disturbance and empirical models.
Over a 15-year projection period the percent difference between the empirical
model and the disturbance, and cutting models were 0.5%, and 1% respectively
for C stock and 27%, and 34% for C stock change. These percent differences
increased with time where for a 30-year projection period the percent difference
between the empirical model and the disturbance and cutting models were
40% and 45% for C stock change, respectively. Over the full 50-year projection
period these different assumptions suggested that an additional 684Tg C was
sequestered under the disturbance transition model, and additional 938 Tg C
were sequestered under the cutting model.

To examine Question 4, we used the projections described above. We further
constructed projections of C stocks and C stock change based on Equation 9.
The stand origin * owner stratification was used for these projections. We
denote the use of Equation 9 with the stand origin * owner stratification as
the growth approach. The error at time-step 1 for the growth approach was
0 for both C stock and stock change (by definition because plot-level stock
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Figure 4: Projected C stocks and projected annual C stock change based on three age
transition assumptions.

change was used directly). We compared the projections to the empirical
projection based on the stand origin * owner stratification. Percent difference
between C stock estimates for the growth approach and the empirical approach
was less than 1% for a 30 year projection period. The percent difference
for C stock change projections was less than 13% for a 16 year projection
period. Differences in C stock and C stock change projections increased
for projection periods longer than 16 years suggesting overall compatibility
between approaches for short to mid-term but not long-term projections.

5 Discussion

Stratification (Question 1) results indicate that the most important distinctions
in forest C stock distributions and especially dynamics are related to stand
origin and ownership class. There are several reasons for this finding. Planted
stands are clearly different than natural stands. The typical planted stand is
planted with genetically improved seedlings (see e.g., (McKeand et al., 2003))
resulting in enhanced survivorship, greater growth rates, and better tree-form.
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Intensive management associated with planted stands includes fertilization:
Fox et al. (2007) suggests that 0.5 million ha of plantation forests in the
Southern United States were fertilized in 2004. Given the fertilizer application
may occur once or twice over a rotation and that there are approximately 14
million ha in the eastern United States, this suggests fertilization is a common
practice to increase growth and yield. Forests under different ownerships have
different management regimes. The most obvious distinction is that 90% of the
planted forests were on private lands and further 77% of the harvest occurred
on private lands. Less obvious is the age class distribution of public lands.
Forests on public lands tend to be older than on private land. For example the
average age of non-plantation forests on public land was 64 years as compared
to 51 years on private land.

Transition (Question 2) results indicate that incorporation of disturbance
driven age dynamics is critical for simulating the evolution of forest C. This
indicates that accounting for disturbances through the estimation of forest
C densities with representative portions of disturbed stands within each age
class is insufficient for capturing their full effects. Rather, resetting the age
triggers out year dynamics that would not be included otherwise. Among
transition models, the empirical parameterization of T minimized error in
predicting time 2 C stock. Alternative models of T generally failed to capture
the observed age transitions. Both the cutting and disturbance matrix models
either assume stand replacement (age reset to zero) or assume a limited de-aging
associated with partial cutting or disturbance. These models did not capture
a consequential component of the aging process (Figure 2). Applying the
disturbance transition models generated an additional 684 Tg C of sequestration
over a 50-year projection while the cutting transition model generated an
additional 939 Tg C compared to the empirical approach. Part of the challenge
of specifying age transitions arises because most forests in the eastern United
States are uneven-aged. The definition of age and change in age in uneven-aged
stands is unintuitive and forest growth and yield modeling in these types of
forest has shifted to other approaches that are less dependent on age alone
such as imputation (Wear et al., 2013; Van Deusen, 2006; Van Deusen and
Roesch, 2013), diameter distribution models, and mechanistic models (see
Peng, 2000 for example).

Forest C estimates using the ratio method (Question 3) led to strong
overstatement of forest C stocks and stock change indicating that methods
that proxy change in forest C based on change in standing biomass may be
mispecified. The seven constituent pools of forest C follow different trajectories
associated with age and location and the correlation between standing live
biomass and total forest C is variable by age (Figure 3). Based on our analysis
the average ratio between above ground live tree C and total forest C was
3.5. This ratio may be substantially larger than ratios used by others because
we incorporated the latest US Forest Service soil C model (Domke et al.,
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2017) in our estimates. This forest soil C model accounts for a deeper soil
layer with a 75% increase in forest soil C than previously used forest Soil C
models. Regardless, the seven forest C pools do vary by stand development,
disturbance, and forest type and relying on a single conversion factor has been
demonstrated to be error prone.

Question 4 focused on the compatibility between stock (yield-based) and
stock change (growth-based) methods. Much of the focus on forest C is on
stock changes because it reflects the amount of atmospheric CO2 being removed
through forest growth. However, projection methodologies have focused on
stock-based approaches and assumed that the difference in stock at two-points
in time is compatible with stock change. As Clutter (1963) and Moser and
Hall (1969) first identified for timber volumes, many yield-based approaches
parameterized independently from growth can have poor predictive power
for estimating stock change, even on the same dataset. This issue is further
exacerbated within an uneven-aged forest modeling context. Our results
suggest that the empirical approach and the growth approach were relatively
compatible in terms of estimate forest C stock change for the eastern United
States over a 16-year projection period but with substantial inconsistencies over
the long run. However, the compatibility of stock and stock change approaches
for forest C projection is an area of research that has been under-investigated.

While this research focused on the dynamics of persistent forest land, land
use changes impact forest age structures and forest C stocks in various ways and
treatments of land use change vary across FIPMs. Based on the data from this
analysis, forest area expanded by 1.5 million ha between time 1 and 2, with 0.62
million ha of the net increase occurring in forests with ages <10 years consistent
with a conversion of agricultural land to forest use, but with 0.69 million ha of
the net increase occurring in forests with ages of 10–50 years. This counterin-
tuitive result reflects the conversion of land with forest cover from a non-forest
use to a forest use. If a FIPM assumes that all 1.5 million ha had arisen from
afforestation then forest C dynamics would be biased upward for several time
periods. Furthermore, net forest area change obscures a much larger gross
land use dynamic where the age and C content for land moving out of a forest
use may be substantially different than for the land moving into a forest land
use with unanticipated C dynamics. For example, no net change in forest land
could result in declining forest C stocks. While beyond the scope of this study,
it is clear that the mechanisms of gross land use change are an important
component of forest C inventories that need consideration within FIPMs.

6 Conclusions

The FIPMs developed for Forest Sector Models from the work of Adams (1977)
forward evolved through a unique policy context and in a period of scarce
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and inconsistent forest inventory data. Comprehensive modeling of inventory
change during the transition from harvesting old growth to agricultural forest
production systems required ingenuity to draw together a description of existing
forests and their dynamics from disparate sources and a view of the future
that would be characterized by essentially novel planted pine technologies.
The resulting combination of growth and yield, field inventories, and expert
opinions that comprised FIPMs was the only viable approach at the time but
these models could not be verified against actual forest changes. The current
spatially and temporally consistent national forest inventory in the U.S. allows
for verification/validation of these models against observed forest dynamics
and also allows for development of fully empirical FIPMs.

All alternative models examined here are based on empirical estimates from
measured forest inventories organized by different assumptions regarding forest
stratification, age transition, and C density estimates. They do not represent
alternative FIPMs from the literature, but construct the best cases for each
of the alternatives – for example, they are based on estimates derived from
consistent measures of the inventory and not from the coupling of inventory
and exogenous growth models. Model comparisons are intended to inform
future model development efforts and not to specifically address alternative
FIPMs developed from disparate information sources. Blending information
from growth and yield models, developed in a controlled experimental setting,
with inventories based on random samples would, by definition, suggest strong
upward bias in biomass or C stock estimates.

Our evaluation of forest stratification strategies indicates that stratifying
by stand origin (planted vs. natural) and forest ownership (public vs. private)
lead to the least error in predicting time 2 forest C stocks and dynamics when
compared with forest type, region, or site class. These two variables that char-
acterize management intent dominate the evaluated biophysical variables in
reducing error, indicating the importance of ownership and institutional factors
in determining future forest C sequestration. Ownership clearly influences the
age distributions of forests (public forests are generally older), but because we
separately account for forest age, this indicates a qualitative difference in forest
management and conditions across ownerships that warrants additional investi-
gation. Ignoring (i.e., averaging across) these variables could lead to substantial
bias in biomass/C projections. Their importance suggests further investiga-
tion of detailed ownership categories (e.g., commercial vs. family) or other
socioeconomic variables in characterizing and projecting forest inventories.

The differences in C projections arising from alternative transition models
highlights the importance of addressing the age dynamics associated with
forest disturbances. FIPMs generally do not include an accounting of forest
disturbances beyond harvests, but rely on the averages of C densities across
age classes to represent the effects of any extant disturbance regime. This
may be an important misspecification. Forest age transitions are not generally
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consistent with an even-aged management logic and are highly complex in
remeasured forest inventories indicating a need for a different approach that
accounts for all sources of transitions. Accuracy of age transition models will
likely be enhanced with additional cycles of remeasurement for forest inventory
plots. We also find that ratio approaches to converting aboveground timber
biomass to forest C are unlikely to accurately capture forest C dynamics within
a forest due mainly to the variable age dynamics of individual C pools among
strata of the forest inventory.

This study addresses the question of whether a forest projection model
focused on predicting future timber inventories can be modified to adequately
address a different type of ecosystem service: C sequestration. As forest policy
questions have shifted away from exclusive concerns about timber availability
and federal timber policies and toward the provision of multiple ecosystem
services, FIPMs need to project forests at finer levels of detail. For example,
the influence of forest cover on water production is largely influenced by tree
species as well as tree cover and density (Martin et al., 2017). In general
other ecosystem services such as biodiversity and recreation also depend on,
not only the amount of forest, but the location and configuration of various
forest conditions. Forest C sequestration may therefore be the most direct
analog to the timber market questions for which forest sector models were
originally designed. Given the importance of timber harvesting on future
forest conditions demonstrated here, it seems clear that forest sector activity
remains a critical component of projecting future forest C services. However,
our findings indicate the need to also address the mechanisms of non-harvest
disturbances to avoid bias in projection of C stocks and sequestration. The
accuracy and usefulness of these projections will depend on capturing the
dynamics of forests essential for defining ecosystem services and therefore
on the design of their associated FIPMs. Developing C projections that are
fully consistent with historical C inventory changes requires a full accounting
for biological, physical and management dynamics in addition to the market
processes that influence them.
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