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ABSTRACT

Shifts in streamflow, due to future climate and land

use change, may pose risks to nearby human

communities. Projecting the spatial distribution

and impacts of these risks requires consideration of

biophysical and socioeconomic factors. Models like

the Soil and Water Assessment Tool (SWAT) can

project spatial distributions of hydrologic risk due

to shifting biophysical factors like climate and land

use, but cannot account for socioeconomic factors

influencing a community’s capacity to adapt to

future streamflow changes. To address this limita-

tion, we used a risk matrix to classify subbasins in a

large river basin in the southeastern USA based on

(1) percent increase in SWAT simulated 10-year

and extreme high flows due to climate and land use

change between baseline (1982–2002) and pro-

jected (2050–2070) periods and (2) degree of

community vulnerability according to a Social

Vulnerability Index (SVI). We compared spatial

distributions of high-risk subbasins based on SWAT

results, SVI results, and the integration of SWAT

and SVI results using a risk matrix. Large increases

in simulated 10-year and extreme high flows oc-

curred in middle and lower parts of the river basin,

and socially vulnerable communities were dis-

tributed throughout. We identified 16, 7, and 14

unique high-risk subbasins using SWAT results,

SVI results, and SWAT and SVI results, respectively.

By using a risk matrix, we identified subbasins with

vulnerable communities that are projected to

experience future increases in streamflow due to

climate and land use change. These results serve as

a starting point for subsequent climate change

adaptation planning.
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HIGHLIGHTS

� Identifying vulnerable human communities is

critical for climate change planning.

� We used a risk matrix to link projected stream-

flow with socioeconomic metrics.

� This risk matrix approach identified unique high-

risk subbasins.

INTRODUCTION

Concurrent regional increases in future precipita-

tion (for example, Walsh and others 2014; Hayhoe

and others 2018) and urban development (for

example, Terando and others 2014) may lead to

larger and more frequent streamflow peaks (Ogden

and others 2011; Walsh and others 2014; Martin

and others 2017; Ficklin and others 2018; Hayhoe

and others 2018; Suttles and others 2018). These

shifts in streamflow magnitude and frequency may

increase the risk of adverse social and economic

consequences on nearby communities (Emrich and

Cutter 2011; IPCC 2014; Hsiang and others 2017).

Risk management tools—like a risk matrix (Raiffa

and Schlaiffer 2000; Major and O’Grady 2010;

Schwartz 2010; Yohe 2010; Yohe and Leichenko

2010; Ojima and others 2014; Schwartz and others

2014)—may help plan for and mitigate risk by

linking the likelihood of an event (for example,

high or extreme streamflow) with the capacity for a

community to bear the consequences of that event.

Therefore, there is a need for risk management

tools that incorporate (1) biophysical factors alter-

ing future streamflow and (2) socioeconomic fac-

tors influencing whether communities are capable

of adapting to future changes in streamflow.

Hydrologic models and socioeconomic metrics

have a limited ability to account for both biophys-

ical and socioeconomic factors independently.

More specifically, the Soil and Water Assessment

Tool (SWAT; Arnold and others 1998; Neitsch and

others 2011) is a physically based hydrologic model

used by researchers across the globe to project the

impacts of future climate and land use change on

water resources (Lee and Chung 2007; Ma and

others 2010; Kim and others 2014; Krysanova and

Srinivasan 2014; Natkhin and others 2015; Ho-

venga and others 2016; Ahiablame and others

2017; Suttles and others 2018). Technical infor-

mation derived from SWAT has helped inform lo-

cal, regional, and national water resource

management such as managing land use transi-

tions, resizing culverts and ditches, and developing

drought management/water conservation plans

(Gassman and others 2007; Francesconi and others

2016; FEMA 2018). SWAT can simulate the impact

of biophysical factors such as future climate and

land use change on streamflow. However, SWAT

does not incorporate socioeconomic data; thus, it

has a limited ability to address socioeconomic out-

comes.

Socioeconomic metrics such as Social Vulnera-

bility Indices (SVIs) may serve as a starting point to

identify vulnerable communities—communities

with limited resources to prepare, respond, recover,

and adapt to environmental hazards (Cutter and

others 2003; Flanagan and others 2011)—that may

experience adverse consequences due to future

increases in streamflow. SVIs are spatially explicit,

quantitative measures that are calculated using

human population data from government sources

like the United States Census Bureau American

Community Survey (ACS; https://www.census.go

v/programs-surveys/acs/). SVIs include a number

of socioeconomic variables that encompass themes

of personal wealth, age, housing type, density,

housing ownership, race, ethnicity, and occupation

(Cutter and others 2003; Flanagan and others

2011). There are many different formulations of

SVI with some being more complex (for example,

Cutter and others 2003) than others (for example,

Flanagan and others 2011), but the larger the SVI,

the more vulnerable the spatial unit (for example,

census tract). SVIs have been used to study the

persistence and creation of social vulnerability in

space and time as well as to study the potential

impacts of environmental hazards on communities

around the world (Cutter and others 2003; Cutter

and Finch 2008; Finch and others 2010; Emrich

and Cutter 2011; Flanagan and others 2011; Guil-

lard-Goncąlves and others 2015; KC and others

2015; Cutts and others 2018). However, SVIs do

not consider the impact of shifting biophysical

factors on streamflow. We use the SVI developed

by Flanagan and others (2011), which is publicly

available for the continental USA on the Centers

for Disease Control Agency for Toxic Substances

and Disease Registry (CDC-ATSDR) website (http

s://svi.cdc.gov/), to characterize social vulnerability

for our study area.

A risk matrix (Raiffa and Schlaiffer 2000; Major

and O’Grady 2010; Schwartz 2010; Yohe 2010;

Yohe and Leichenko 2010; Ojima and others 2014;

Schwartz and others 2014) offers a framework for

combining SWAT and SVI results to identify areas

(that is, watersheds or subbasins) that are at high-

risk of experiencing large shifts in future stream-

flow and also contain communities with limited
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capacity to bear the consequences of these shifts.

Previous research used a risk matrix approach to

inform climate change adaptation and mitigation

planning in New York City, New York, USA (Major

and O’Grady 2010; Yohe 2010; Yohe and Lei-

chenko 2010; Schwartz and others 2014). Others

have used a risk matrix to manage wildlife habitats,

forest carbon stocks, and forest fires under chang-

ing climate regimes (Iverson and others 2012;

Woodall and others 2013; Ojima and others 2014).

Here, we use a risk matrix to inform climate change

adaptation planning as it relates to water resources

management.

Given projected shifts in streamflow due to cli-

mate and land use change as well as the need to

identify and support vulnerable communities as

they adapt to these future shifts in streamflow, we

asked the following research question: How does

combining SWAT and SVI results using a risk matrix

affect the identification of high-risk subbasins compared

to using SWAT and SVI results alone? To answer this

question, we compared the spatial distribution of

high-risk subbasins in the Yadkin–Pee Dee River

Watershed (YPD), North Carolina, USA, based on

three approaches: (1) SWAT results for 10-year and

extreme high flows (2) SVI results, and (3) the

integration of SWAT and SVI results using a risk

matrix. Although we address this research question

in the YPD, a similar approach could be applied to

other regions where baseline streamflow, projected

streamflow, and SVI results are available.

METHODS

Site Description

Our study site is located in the YPD, which spans

western and central North Carolina (NC), USA, and

has an area of 17,780 km2 (Figure 1). The observed

average annual temperature and precipitation

(± standarddeviation) from the1982–2002 baseline

period for the YPD were 19.7 (± 9.5) �C and 1185

(± 167) mm y-1, respectively. In 1992—the mid-

point of baseline period—the YPDwas 65% forested

(that is, lowland and upland hardwoods, pines, and

mixed forest), 17% non-stocked (that is, forested

stands with < 17% growing stock trees), 11%

agriculture, 6% developed, and 1% wetlands and

water bodies (Vogelmann and others 2001). A total

of 27 counties and 456 census tracks lie either par-

tially or completely within the YDP. The 5-year ACS

population estimate for the YPD from 2010 to 2014

was about 1.66 million (Table 1). The YDP includes

the suburbs of Charlotte, NC in Mecklenburg and

Union Counties, the city of Winston-Salem, NC, in

ForsythCounty, and a number of other smaller cities

and towns (Table S1). The populations of Mecklen-

burg, Union, and Forsyth Counties are projected to

grow by 115–229 people km-2 (50–100 people

mi-2), whereas other regions of the YPD are pro-

jected to either grow or stay the same by 2060. Very

few counties in the YPD are projected to decline in

population (USFS 2012; Wear and others 2013). For

additional description of the YPD, see Suttles and

others (2018).

We chose the YPD as a test case for two reasons.

First, previous research indicates that climate and

land use change will likely impact water resources

and communities in this region (Martin and others

2017; Suttles and others 2018). Climate change

projections include a 2.2–6.6 �C increase in annual

temperature in the Southeast United States (SEUS)

by 2100 (Kunkel and others 2013). Precipitation

patterns in the SEUS, although less certain than

temperature estimates (Fekete and others 2004;

Kunkel and others 2013; McNulty and others 2013;

Carter and others 2014; Walsh and others 2014),

are projected to be more extreme and will likely

result in more intense rainfall events with longer

periods between these events (O’Gorman and

Schneider 2009; Laseter and others 2012; IPCC

2014; Walsh and others 2014; Carter and others

2018). Population growth and subsequent urban

land cover in the SEUS are expected to increase

101–192% by 2060 (Terando and others 2014), and

associated impervious cover may exacerbate high

streamflow events by increasing peak flows and

reducing groundwater recharge (Ogden and others

2011; Hamel and others 2013; Walsh and others

2014; Martin and others 2017; Carter and others

2018; Ficklin and others 2018; Suttles and others

2018). Second, the YPD contains communities that

are likely to be vulnerable to environmental haz-

ards associated with high streamflow. Approxi-

mately 17% of the population in the YPD lives

below the poverty line (Table 1).

Hydrologic Model

This study relies on the previous work of Suttles

and others 2018, who developed a SWAT for the

YPD. According to standard hydrologic model

evaluation criteria (Moriasi and others 2007), the

SWAT simulated daily streamflow well; results

ranged from satisfactory to very good (Suttles and

others 2018). A total of 28 subbasins were delin-

eated by SWAT (Figure 1); the number of sub-

basins is based on parameterization and

computational efficiency. In this study, we used

climate and land use data as inputs into the SWAT
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to simulate daily streamflow for baseline (1982–

2002) and projected (2050–2070) periods across an

envelope of four future climate–land use change

scenarios (referred to henceforth as future scenar-

ios). These four scenarios paired three unique

general circulation models (GCMs; that is, MIROC,

CSIRO, and Hadley), with either rapid (that is, RCP

8.5) or moderate (that is, RCP 4.5) increases in

greenhouse gas emissions (IPCC 2014), and land

use change projections. Further detail of these four

future scenarios is summarized in Table 2 and de-

scribed in Suttles and others (2018).

As described by Suttles and others (2018), we

downloaded downscaled MIROC, CSIRO, and

Hadley climate variables (that is, precipitation,

temperature, solar radiation, relative humidity, and

wind speed) for the baseline period and used these

as inputs into the SWAT to simulate baseline daily

streamflow. This process of simulating baseline

streamflow from (historic) GCM climate variables is

known as backcasting. Backcasting reduces uncer-

tainty by ensuring that differences between past

and future streamflow are due to model inputs

alone rather than model inputs and differences

Figure 1. Spatial extent of the Yadkin–Pee Dee River (YPD) Watershed in North Carolina (NC), USA. Inset shows the YPD

and numbers corresponding to subbasin IDs as assigned by the Soil and Water Assessment Tool (SWAT) (Color

figure online).

S. M. Saia and others



caused by how the model represents reality (Quist

and Vergragt 2006; Van der Voorn and others

2012). Backcast GCM annual average, 10th, and

90th percentiles of daily streamflow were smaller

than observations (Table S2, Figure S1). For the

projected period, we downloaded downscaled

MIROC RCP 8.5, CSIRO RCP 8.5, CSIRO RCP 4.5,

and Hadley RCP 4.5 climate variables and used

these as inputs into the SWAT to simulate projected

daily streamflow. See Suttles and others (2018) for

further details related to the climate data used in

this study.

We represented baseline landuse conditions using

the 1992 National Land Cover Dataset (NLCD;

Vogelmann and others 2001) and used projected

land use data from the United States Department of

Agriculture Forest Service (USFS) Southern Forest

Futures Project (USFS 2012; Wear 2013; Wear and

others 2013). More specifically, the Southern Forest

Futures Project incorporates future changes in pop-

ulation growth, income growth, and timber prices

for theYPD (Table 2).As timber prices are influential

in the distribution of forest land use across the SEUS

(USFS 2012; Wear 2013), land use change scenarios

pair high and low timber prices across future sce-

narios with either 60% population and income

growth or 40% population and income. USFS

(2012), Wear (2013), and Martin and others (2017)

provide further details on the assumptions govern-

ing timber prices, population, and income for the

land use projections used here.

Streamflow Analysis

We implemented standard cumulative annual

maximum log-Pearson Type III streamflow fre-

quency analyses (IACWD 1982) to estimate 10-

year (24-h) high flows from SWAT simulated daily

Table 1. Description and Yadkin–Pee Dee River watershed (YPD) values of the 15 American Community
Survey (ACS) 2010–2014 variables used to calculate the Social Vulnerability Index (SVI) in this study

Number ACS variable description YPD value

1 Number of people below the poverty line 275,000 (6350)

2 Number of civilian (age 16 or older) unemployed 89,300 (2370)

3 Per capita income $19,700 (158)

4 Number of people (age 25 or older) with no high school diploma 17,7000 (3330)

5 Number of people age 65 or older 23,1000 (2340)

6 Number of people age 17 or younger 399,000 (4450)

7 Number of civilian non-institutionalized people with a disability 211,000 (3290)

8 Number of single parent households with children under age 18 62,100 (1770)

9 Number of non-white, non-Hispanic people 511,000 (11,100)

10 Number of people (age 5 or older) who speak English ‘‘less than well’’ 45,400 (2310)

11 Number of housing structures with 10 or more units 50,200 (1540)

12 Number of mobile homes 88,300 (1880)

13 Number of housing units with more people than rooms 15,800 (960)

14 Number of households with no vehicle 37,800 (1290)

15 Number of institutionalized people in group quarters 36,100 (1680)

The total population estimate for the YPD is � 1.66 million ± a margin of error (MOE) of 8350 people. Values in parenthesis represent the MOE as defined in USCB (2008).

Table 2. Average increases in temperature and precipitation from backcast baseline to projected future
scenarios included in this study

Future scenario Temperature

increase (�C)
Precipitation

increase (mm year-1)

Land use scenario

MIROC 8.5 3.2 146 High timber prices, 60% increase in population and income

CSIRO 8.5 2.7 131 Low timber prices, 60% increase in population and income

CSIRO 4.5 2.4 219 High timber prices, 40% increase in population and income

Hadley 4.5 3.5 73 Low timber prices, 40% increase in population and income

This table was adapted from Suttles and others (2018). Corresponding land use scenarios originate from the United States Department of Agriculture Forest Service (USFS)
Southern Forest Futures Project (Wear 2013; Wear and others 2013).
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streamflow. For the purpose of this study, we fo-

cused on 10-year high flows because they are

commonly used for stormwater infrastructure de-

sign (USEPA 2009). However, this analysis could be

repeated for low flows as well as alternative return

periods depending on the goals of the climate

change adaptation planning project. We deter-

mined the baseline period 10-year high flow cutoff

(F10) for a corresponding 10-year (24-h) return

period and calculated the percent change PC10 in

number of days per year where streamflow was ‡
F10 using equation (1):

PC10 ¼
np;10�nb;10

nb;10
� 100

ns
ð1Þ

where nb,10 and np,10 represent the number of days

where streamflow was ‡ F10 in the baseline and

projection datasets, respectively, and ns is equal to

number of simulation years (that is, 20). Thus, PC10

reflects either an increase or decrease in the fre-

quency of 10-year (or greater) high flows (per year)

between the baseline and projected periods.

In addition to 10-year high flow analysis, we

included extreme high flow analysis as a secondary

way to present SWAT results; these events pose the

highest risk of flooding to communities. We de-

fined extreme flows as synonymous with minor

outliers, that is, when SWAT simulated daily

streamflow was ‡ the baseline extreme flow cutoff

(Fext) given in equation (2).

Fext ¼ Q3 þ 1:5 Q3 � Q1ð Þ ð2Þ

whereQ1 andQ3 are the 25th (first quartile) and75th

(third quartile) percentiles of streamflow, respec-

tively. We log-transformed baseline and projected

streamflow, calculated Fext from the baseline dataset

for each subbasin, and determined the percent

change (PCext) in number of days per year where

streamflow was ‡ Fext using equation (3):

PCext ¼
np;ext�nb;ext

nb;ext
� 100

ns
ð3Þ

where nb,ext and np,ext represent the number of days

where streamflow was ‡ Fext in the baseline and

projection datasets, respectively. Thus, PCext re-

flects either an increase or decrease in the fre-

quency of extreme high flows (per year) between

the baseline and projected periods.

Social Vulnerability Index

We used the census tract SVI available online at the

Centers for Disease Control Agency for Toxic Sub-

stances and Disease Registry (CDC-ATSDR) website

(https://svi.cdc.gov/). Flanagan and others (2011)

derived these SVIs from 2010 to 2014 ACS data

(https://www.census.gov/programs-surveys/acs).

Descriptions of the ACS variables included in the

CDC-ATSDR SVI are shown in Table 1. The SVI as

determined by Flanagan and others (2011) is the

sum of ranked percentiles for each variable rela-

tive to all census tracts in the continental USA;

thus, a SVI of 15 represents the most vulnerable

census tract in the continental USA, whereas a

SVI close to 0 represents the least vulnerable. In

the YPD, each census tract represents 4300 peo-

ple on average (USCB 2008). We did not project

social vulnerability (see ‘‘Future Directions’’

section for further discussion on the implications

and future directions of this work).

To compare census tract SVI data to subbasin

SWAT results, we scaled census tract SVIs to each

subbasin using an area weighted average approach.

There were two major reasons why we scaled

census tract SVI data to each subbasin—rather than

scaling SWAT data to the census tract. First, it is

beneficial to manage water resources at the

watershed scale (Molle 2009; Cutts and others

2018). Second, we assumed that less uncertainty

would be introduced when scaling up higher res-

olution, census tract SVI results compared to scal-

ing down lower resolution, subbasin SWAT results.

We determined the subbasin SVI using equa-

tion (4):

SVIi ¼
XN

j¼1

CAj

SAi

� �
SVIj ð4Þ

where i represents a given subbasin (i ranged from

1 to 28) and j represents a census tract within

subbasin i (j ranges from 1 to N; N is equal to the

total number of census tracts within subbasin i),

CAj represents the area of census tract j within

subbasin i, SAi represents the area of subbasin i,

and SVIj represents the SVI of census tract j within

subbasin i. For each subbasin, we calculated SAi

and then used the subbasin boundary to mask

census tract SVI spatial data. From this masked

census tract SVI output, we identified each census

tract SVI value (each SVIj) within the subbasin and

calculated each CAj. We used the arcpy Python li-

brary in ArcGIS to automate these calculations for

all 28 subbasins. We also recorded the maximum

census tract SVI within each subbasin and used

this—along with the subbasin SVI—to classify risk

for the SWAT and SVI approach. See ‘‘Social Vul-

nerability’’ section for further discussion on why

we used both scales.
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We calculated area weighted cumulative density

functions (CDFs) using the following approach.

First, we ordered census tract SVIs with a particular

subbasin from low to high and multiplied each

census tract SVI by its fraction of total subbasin

area; this resulted in an ordered list of area

weighted census tract SVIs. The ordered list ranged

from rank = 1 to rank = N (see equation (1)).

Next, we iteratively calculated the cumulative sum

of area weighted census tract SVIs for each rank

(from rank 1 up to and including the given rank)

and divided each cumulative sum by the corre-

sponding subbasin SVI as calculated by equa-

tion (1). This resulted in an area weighted CDF

value for each ranked census tract SVI. We re-

peated this approach for each subbasin. Besides

plotting CDFs, we used a Kolmogorov–Smirnov

(KS) test to compare the distributions of census

tract SVIs in the USA, NC, and YPD. CDF calcula-

tions and KS tests were done in R.

Comparison of Approaches

To address our research question, we mapped the

spatial distribution of high-risk subbasins based on

three approaches: SWAT results, SVI results, and

the integration of SWAT and SVI results using a risk

matrix. See below for details on each approach. For

all three approaches, we used yellow, orange, and

red to represent subbasins with low, medium, and

high-risks, respectively. For the SWAT results map,

low-risk subbasins had PC10 and PCext that were

£ 25%, medium-risk subbasins had PC10 and PCext

that were > 25% or £ 50%, and high-risk sub-

basins had PC10 and PCext that were > 50% (Fig-

ure S2a). To summarize high-risk SWAT results

across the four future scenarios, we labeled a sub-

basin as high-risk in the summary when it was

identified as high-risk in at least one of the four

future scenarios. For example, using this summary

approach, we generated Figure 4B from the high-

risk results presented in Figure S3 and generated

Figure 4D from the high-risk results presented in

Figure S4.

For the SVI results map, low-risk subbasins either

had a subbasin SVI or census tract SVI within the

subbasin that was £ 9.6 (that is, first standard

deviation of all continental USA census tract SVIs),

medium-risk subbasins either had a subbasin SVI or

a census track SVI within the subbasin that was

> 9.6 or £ 11.8 (that is, second standard devia-

tion of all continental USA census tract SVIs), and

high-risk subbasins had either a subbasin SVI or a

census tract SVI within the subbasin that was

> 11.8 (Figure S2b). We used these cutoffs be-

cause they were statistically intuitive and also re-

flected the social vulnerability within the YPD

compared to the entire USA. We generated Fig-

ure 4A from the high-risk results in Figure S5. We

used both subbasin (low-resolution) and census

tract (high-resolution) scales to account for spatial

heterogeneity in social vulnerability. See ‘‘Social

Vulnerability’’ section for further discussion on

why we included both scales.

To integrate SWAT and SVI results and generate

associated maps, we adapted a risk matrix (Raiffa

and Schlaiffer 2000; Schwartz 2010; Schwartz and

others 2014; Yohe 2010; Yohe and Leichenko

2010; Iverson and others 2012; Woodall and others

2013; Ojima and others 2014) to classify both

SWAT and SVI results in the YPD (Figure 2). We

defined risk as the product of the likelihood of

impact of a streamflow event and the capacity for a

community to bear the consequences of that event.

We used PC10 and PCext to represent the likelihood

of impact (x axis, Figure 2). We assumed subbasins

with percent change values above zero were more

likely to experience a large increase in 10-year and

extreme high flows in the future. We used the area

weighted subbasin SVI and the maximum census

tract SVI within a given subbasin to represent the

capacity to bear the consequences of a streamflow

event (y axis, Figure 2). Thus, we assumed

socioeconomic consequences were greater for

Figure 2. Risk matrix used to classify the census tract

and subbasin Social Vulnerability Index (SVI) values as

well as the percent change in Soil and Water Assessment

Tool (SWAT) 10-year and extreme high flow events for

subbasins in the Yadkin–Pee Dee River Watershed. The y

axis cutoff variables �y, �y + s, and �y + 2s represent the

mean (7.3), first standard deviation (9.6), and second

standard deviation (11.8), respectively, of all census tract

SVIs in the continental USA. This figure was adapted

from Yohe (2010) and Iverson and others (2012) (Color

figure online).
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communities that are unable to prepare for, re-

spond to, recover from, and adapt to climate and

land use change (that is, communities that have

higher SVIs). When a 10-year or extreme high flow

occurs, more vulnerable communities are likely to

be more negatively impacted than less vulnerable

communities (Finch and others 2010; Cutts and

others 2018). We identified where estimates for

each subbasin and each future scenario would lie

in a 2D risk matrix based on x and y axes coordi-

nates and used the quadrant where subbasin

SWAT and SVI pairs fell when mapping these re-

sults spatially (Figure S2c). We used the same ap-

proach as discussed previously for SWAT results to

summarize high-risk SWAT and SVI results across

the four future scenarios. More specifically, we

generated Figure 4C from the high-risk results

presented in Figure S6 and generated Figure 4E

from the high-risk results presented in Figure S7.

Similar to the SVI results approach, we used both

subbasin (low-resolution) and census tract (high-

resolution) scales to account for spatial hetero-

geneity in social vulnerability. See ‘‘Social Vul-

nerability’’ section for further discussion on why

we included both scales in our analysis.

Data Analysis and Availability

We analyzed these data using ArcGIS (version

10.4.1; ESRI 2011), Python (version 2.7; Python

Software Foundation 2010), and R (version 3.4.3;

R Core Team 2017). All data and scripts associated

with this publication are available on GitHub at h

ttps://github.com/sheilasaia/paper-yadkin-swat-sv

i-study and Zenodo (DOI: http://www.doi.org/10.

5281/zenodo.2635878).

RESULTS

Streamflow

PC10 and PCext values were largely positive

throughout the YPD (Figure 3). Additionally, there

was greater variation in PC10 compared to PCext

values between the four future scenarios. Variation

in PC10 values showed no clear trend toward the

watershed outlet (Figure 3A), but with the excep-

tion of a few subbasins (for example, 18, 21, 22,

and 25), the variation in PCext values tended to

increase toward the watershed outlet (Figure 3B).

The range of both PC10 and PCext values tended to

shift upward toward the watershed outlet. For

Figure 3. Variation in A percent change (PC10) in number of days per year where streamflow was ‡ F10 between the

baseline and projected datasets and B percent change (PCext) in number of days per year where streamflow was ‡ Fext
between the baseline and projected datasets versus SWAT subbasin identification number ordered by increasing

contributing area for each of the four future scenarios. Vertical lines denote the range of outputs.
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example, we calculated a PC10 of 0–23.8% for

subbasin 5 near the headwaters and 16.2–57.1%

for subbasin 28 near the outlet, depending on the

future scenario. We calculated a PCext of 2.2–6.2%

for subbasin 5 near the headwaters and 14.6–

59.5% for subbasin 28 near the outlet, depending

on the future scenario. Looking at the number of

days per year where streamflow was ‡ F10 or ‡
Fext, there was larger variation in the projected

period compared to the baseline period for both 10-

year and extreme flows (Figure S8). Additionally,

the number of days per year where projected

streamflow was ‡ F10 tended to increase more to-

ward the watershed outlet (Figure S8b) compared

to that for extreme flows (Figure S8d). For extreme

high flows, the number of days per year where

projected streamflow ‡ Fext did not show as dra-

matic an increase toward the watershed outlet

compared to 10-year high flows.

After summarizing the four future scenarios for

10-year high flows (Figure S3), there were 16 un-

ique high-risk subbasins based on PC10 from SWAT

results (Table S3, Figure 4B). PC10 for these 16

subbasins ranged from 54.8% (subbasin 23) to

133.3% (subbasin 18). Six of the 16 showed pro-

nounced increases in streamflow for at least half of

the future scenarios. For example, subbasin 14

showed ‡ 50% increase in PC10 for CSIRO 4.5 and

CSIRO 8.5 future scenarios and subbasin 18

showed ‡ 50% increase in PC10 for CSIRO 4.5,

CSIRO 8.5, and MIROC 8.5 future scenarios. We

identified no subbasins in the high-risk class for all

four future scenarios. After summarizing the four

future scenarios for extreme high flows (Fig-

ure S4), we identified four unique high-risk sub-

Figure 4. Comparison of high-risk subbasins in the Yadkin–Pee Dee River Watershed summarized for all four future

scenarios considering A Social Vulnerability Index (SVI) results, Soil Water Assessment Tool (SWAT) results for B 10-year

and C extreme high flows, and the spatial intersection of SVI and SWAT results for D 10-year and E extreme high flows

using the risk matrix. Tabulated results are included in Tables S3–S5. Low- and medium-risk categories and results from all

four future scenarios are included in the supplemental material (Figures S3–S7) (Color figure online).
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basins based on PCext from SWAT results (Table S3,

Figure 4D). All four of these subbasins were also

identified based on PC10 from SWAT results. In

these four subbasins, PCext ranged from 51.6%

(subbasin 27) to 59.5% (subbasin 28) and half

(subbasins 27 and 28) had a pronounced (‡ 50%)

increase in streamflow response in two or more

future scenarios. Three of the 16 high-risk sub-

basins had a > 100% increase in 10-year flows

between the baseline and projection datasets. We

discuss the integration of SWAT and SVI results

using the risk matrix (that is, Figure 4C, E) in

‘‘Comparison of Approaches’’ section.

Social Vulnerability

Social vulnerability varied across the YPD at census

track and subbasin scales (Figures 5 and S9). The

minimum, mean, and maximum census tract SVIs

for the YPD were 2.1, 7.8, and 12.7, respectively.

For comparison, the minimum, mean, and maxi-

mum census tract SVIs for the continental USA

were 0.09, 7.3, and 13.7, respectively. The first

standard deviation of all census tract SVIs in the

YPD and continental USA datasets were similar: 2.1

and 2.2, respectively. According to two-sided Kol-

mogorov–Smirnov tests, the distribution of NC and

YPD census tract SVIs was significantly different

and shifted to the right compared the distribution

of US census tract SVIs (Figure S10; p < 0.05).

However, the distribution of NC and YPD census

tract SVIs is not significantly different (Figure S10;

p = 0.58). At the subbasin scale, the minimum,

mean, and maximum subbasin SVIs for the YPD

were 6.5, 7.9, and 9.9, respectively. The first stan-

dard deviation of all subbasin SVIs for the YPD was

0.9. See ‘‘Social Vulnerability’’ section for further

discussion on how and why we incorporated both

the census tract and subbasin SVI results into our

analysis.

There were seven unique high-risk subbasins

based on SVI results (Table S4, Figures 4A and S5).

One subbasin (subbasin 25) had a subbasin SVI that

was > 9.6 (that is, first standard deviation of all

continental USA census tract SVIs) and the

remaining six subbasins had at least one census

tract with a census tract SVI that was > 11.8 (that

is, second standard deviation of all continental USA

census tract SVIs). Five of the seven high-risk

subbasins had subbasin SVIs > 7.3 (that is, mean

of all continental USA census tract SVIs). Several of

these seven subbasins had large ranges in census

tract SVIs (Figure 5B). For example, subbasin 8 had

the largest range in census tract SVIs; its minimum

census tract SVI was 2.1 and its maximum census

Figure 5. A Subbasin Social Vulnerability Index (SVI) results for the Yadkin–Pee Dee River Watershed (YPD) calculated as

the area weighted average of census tract SVIs within each subbasin. B Census tract SVIs in each YPD subbasin

(corresponding subbasin IDs are labeled in A). Box and whiskers are omitted for subbasins 17, 27, and 28 because there

were n = 3 census tracts. Note subbasin SVI scale ranges from 6 to 10 (Color figure online).
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tract SVI was 12.0. Based on CDFs for each of these

seven subbasins, anywhere from< 5 to 75% of the

subbasin area contained communities classified as

high-risk based on a census tract SVIs > 9.6 (Fig-

ure S11). For example, approximately 25% of the

area of subbasin 8 and 75% of the area of subbasin

25 included census tracts SVIs > 9.6. Besides the

high-risk subbasins, there were 18 medium-risk

subbasins and three low-risk subbasins (Figure S5).

We discuss the integration of SWAT and SVI results

using the risk matrix (that is, Figure 4C, E) in

‘‘Comparison of Approaches’’ section.

DISCUSSION

Streamflow

Our results suggest a future with increased fre-

quency of 10-year and extreme flows, which is

consistent with and exacerbated by the projected

conversion of forested lands to developed and

Figure 6. AWatershed view of (B–D) subbasins highlighted in Comparison of Approaches: B subbasin 15, C subbasin 8, and

D subbasin 24. Black and blue lines represent subbasin boundaries and the Yadkin–Pee Dee River, respectively. Census

tract boundary outlines are colored by county, and background shading represents census tract Social Vulnerability Index

(SVI) (Color figure oline).
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agricultural lands in the YPD (Figure S12). As a

consequence of these changes, more surface runoff

is expected to be transported to streams via

impervious and cultivated surfaces (Ogden and

others 2011; Suttles and others 2018). Over half

the subbasins exhibited > 50% increase in PC10

and one-seventh of the subbasins showed > 50%

increase PCext. Based on SWAT results, over 35% of

the high-risk subbasins were indicated as such by at

least half the future scenarios (that is, three-eighths

of subbasins for PC10 and half of subbasins for

PCext; Table S3). Therefore, across the envelope of

future climate and land use changes, it is likely that

streamflow in the YPD will exhibit more frequent

10-year and extreme high flows. Based on previous

studies, the impacts of climate and land use change

on future streamflow were additive in the YPD

(Suttles and others 2018). Additionally, in select

subbasins such as subbasin 18 (that is, Uwharrie

River Watershed), future land use change had a

larger impact on streamflow than climate change

where land was converted from forested to urban

(Martin and others 2017).

In this study, the Hadley 4.5 scenario projected

the largest increase in average annual temperature

and smallest increase in average annual precipita-

tion compared to the other future scenarios (Ta-

ble 2). This translates into drier average (that is,

lowest number of 10-year flows exceedances in the

projection dataset; Figure S8b) and wetter extreme

(that is, highest number of extreme flow ex-

ceedances the projection dataset; Figure S8d)

streamflow conditions in the YPD. Additionally, the

CSIRO 4.5 scenario projects the smallest increases

in average annual temperature and the largest in-

crease in average annual precipitation compared to

the other future scenarios (Table 2), which trans-

lates to the wettest average and moderately ex-

treme streamflow conditions in the YPD. These

results are consistent with findings that the Hadley

and CISRO GCMs tend to projects higher future

precipitation totals in the SEUS compared to the

MIROC GCM (Steinschneider and others 2015).

We note that this analysis examines mid-twenty-

first century changes. Since future climate scenar-

ios tend to diverge more rapidly in the late-twenty-

first century (IPCC 2014), analysis of this later

period will likely yield wider response ranges than

presented here. Further, we note that projected

daily streamflow may be conservative since back-

cast baseline GCM results under predicted observed

annual average and 90th percentile flows (Ta-

ble S2, Figure S1).

Social Vulnerability

Scaling census tract SVI results to the subbasin

scale, which was necessary to make comparisons

with SWAT results and facilitate water resources

management at the watershed scale, reduced SVI

heterogeneity across the YPD. Namely, we ob-

served that the first standard deviation of subbasin

SVIs for the YPD was smaller than the first standard

deviation of census tract SVIs (0.9 compared to 2.1,

respectively). We are not aware of any studies that

have tested whether a risk matrix framework can

adequately account for discrepancies in scale be-

tween social vulnerability and hydrologic model

results. Therefore, we used both overall subbasin

(low-resolution) and census tract (high-resolution)

SVI results to classify subbasins because we wanted

to account for (1) scale discrepancies between

watershed and demographic (that is, census tract)

boundaries and (2) socioeconomic disparities be-

tween communities in the same subbasin. We also

found that some subbasins contained wide ranges

in social vulnerability, which suggests that some

communities within the subbasin may be more

able to adapt to future climate and land use change

than others. This result further justifies the

importance of simultaneously considering different

scales of SVI results.

Our results also suggest that NC and YPD census

tracts are more socially vulnerable compared to

census tracts at the national (US) scale. Further-

more, socially vulnerable communities in the YPD

can be found in both urban and rural settings.

Approximately 45% of the area of subbasin 8,

which contains the city of Winston-Salem, NC, is

made up of census tracts with SVIs > 7.3 (that is,

the mean of all census tract SVIs in the continental

USA) and 25% of the area is made up of census

tracts with SVI > 9.6 (that is, first standard devi-

ation of all census tract SVIs in the continental

USA; Figure S11). For urban communities in the

SEUS, increases in high streamflow events due to

climate and land use change may lead to increases

in economic vulnerabilities such as loss of property,

and like rural communities, increases in health

vulnerabilities (Carter and others 2018). With re-

spect to rural communities in the SEUS, increases

in high streamflow events due to climate and land

use change may lead to economic vulnerabilities

such as reduction in labor hours and loss of profit

due to crop loss and health vulnerabilities such as

increases in exposure to extreme events and new

local diseases (Carter and others 2018). In contrast

to the urban communities in subbasin 8, subbasin

25 had the highest subbasin SVI in the YPD and
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contained the rural communities of Troy, NC and

Biscoe, NC. Approximately 90% of its area was

made up of census tracts with SVIs > 7.3 and 75%

of its area is made up of census tracts SVIs > 9.6

(Figure S11). These results highlight the impor-

tance of considering both urban and rural com-

munities while developing climate change

adaptation plans.

Comparison of Approaches

The goal of this study was to assess how combining

SWAT and SVI results using a risk matrix effects the

spatial distribution of climate change adaptation

planning compared to using SWAT and SVI results

alone. To answer our research question, we com-

pared the spatial distribution of high-risk subbasins

based on: (1) SWAT results, (2) SVI results, and (3)

the integration of SWAT and SVI results using a risk

matrix. We summarize general spatial patterns and

highlight three high-risk subbasins for each of the

three approaches (that is, SWAT results, SVI re-

sults, and SWAT and SVI results). More specifically,

we discuss the Yadkin River (subbasin 15), Muddy

Creek (subbasin 8), and Richardson Creek (sub-

basin 24) subbasins.

Based on SWAT results, the 16 subbasins with

the largest projected increases in 10-year high flows

were located in middle to lower parts of the YPD.

The four subbasins with the largest increase in

extreme high flows overlapped with these 10-year

high flow subbasins and were located in lower parts

of the YPD (Figure 4B, D). Subbasin 1, located in

the headwaters of the YPD, is an exception to this

general spatial pattern. It was indicated as high-risk

in the CSIRO 4.5 future scenario based on SWAT

results (Table S3, Figure S3c) likely because of

projected increases in developed and agricultural

land uses and projected decreases in forested land

use within the subbasin (Figure S12). We selected

Yadkin River (subbasin 15) as a SWAT results

example because it represents a subbasin that

might be selected for climate change adaptation

planning if only biophysical factors were consid-

ered (Figure 6B). Subbasin 15 is located in the

middle of the YPD along the main stem of the

Yadkin River and contains the towns of Denton,

NC, Misenheimer, NC, and Richfield, NC. The low

density of census tracts within subbasin 15 suggests

that these communities are rural; people are likely

to live farther apart (Figure 6B). For the CSIRO 4.5

future scenario, subbasin 15 was projected to have

a 64.5% increase in 10-year and extreme high

flows (Table S3). This increase in the number of

10-year and extreme high flows is likely due to the

conversion of forested land uses to developed land

(Figure S12). More specifically, subbasin 15 con-

sisted of primarily forested (70%) lands at baseline

conditions while future scenarios project that

developed lands will increase over 14 times. How-

ever, although subbasin 15 was classified as high-

risk based on SWAT results, it may have a greater

socioeconomic capacity to adapt to future climate

and land use change impacts on streamflow com-

pared to other subbasins in the YPD. Namely, its

subbasin SVI (that is, 7.9) was within the first

standard deviation of census tract SVIs for the USA

(that is, 9.6) and all of its area contained census

tract SVIs < 9.6 (Figure S11).

Based on SVI results, the seven most vulnerable

subbasins were located further away from the

mainstem of the Yadkin–Pee Dee River and con-

sisted of both urban and rural socially vulnerable

communities at the census tract scale (Figure 4A).

Additionally, we observed spatially heterogeneous

census tract SVIs throughout the YPD; several

subbasins (for example, subbasins 8, 14, and 20 in

Figure 5B) showed large ranges in census tract SVIs

indicating socioeconomic disparities between com-

munities within the same subbasin and associated

spatially uneven impacts of environmental hazards

(Finch and others 2010; Cutts and others 2018;

Hale and others 2018). We selected Muddy Creek

(subbasin 8) as a SVI results example because it

represents a subbasin that might be selected for

climate change adaptation planning if only

socioeconomic factors were considered (Figure 6C).

Subbasin 8 contains the city of Winston-Salem, NC,

and is one of the most highly populated subbasins

within the YPD given that it has a high density of

census tracts (Figure 6C) and large (34%) per-

centage of developed land use. Subbasin 8 is part of

Forsyth County which is projected to experience

population growth by 2060 (USFS 2012; Wear and

others 2013). As discussed previously, approxi-

mately 25% of the area of subbasin 8 was made up

of census tracts that had a census tract SVI > 9.6

(that is, first standard deviation of all census tract

SVIs in the continental USA). Especially vulnerable

communities are located on the northeastern,

eastern, and southeastern sides of the city between

the western and eastern forks of the Muddy Creek;

some especially vulnerable communities overlap

with the eastern fork of the Muddy Creek (Fig-

ure 6C). However, although subbasin 8 was clas-

sified as high-risk based on SVI results, it will

experience more limited (< 25% increase) either

10-year or extreme high flows under any future

scenario compared to other subbasins in the YPD

(Figures S3 and S4).
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In combining SWAT and SVI results, the 14 most

vulnerable subbasins were mainly located in the

middle and lower parts of the YPD (Figure 4C, E).

The majority of these 14 subbasins showed agree-

ment among two or more future scenarios for both

10-year and extreme high flows (Table S5, Fig-

ures S6, S7, and S13). Of these 14 subbasins, sub-

basin 25 falls into the upper-left-most corner of the

risk matrix used in this study based on its large PC10

and subbasin SVI, whereas the remaining subbasins

fall into this region of the risk matrix used in this

study based on large PC10 and maximum census

tract SVI. For these 14 subbasins, about 1–75% of

their area was composed of census tracts with

census tract SVIs > 9.6 (that is, first standard

deviation of all census tract SVIs in the continental

USA; Figure S11). Thus, these 14 subbasins are

both socially vulnerable and expected to have large

increases in 10-year and extreme high flows.

We selected Richardson Creek (subbasin 24) as a

SVI and SWAT example because it represents a

subbasin that was identified as high-risk based on

both SVI and SWAT results using the risk matrix

used in this study (Figure 6D). Subbasin 24 con-

tains the town of Monroe, NC, and is located

within Union County, which is projected to expe-

rience population growth by 2060 (USFS 2012;

Wear and others 2013). In terms of socioeconomic

factors, subbasin 24 has a subbasin SVI of 7.6 which

is > 7.3 (that is, mean of all census tract SVIs in

the continental USA) and about 20% of its area is

composed of census tracts with census tract

SVIs > 9.6 (Figure S11). Especially vulnerable

communities are located in the middle of the sub-

basin—with the most vulnerable being located

right along Richardson Creek (Figure 6D). In terms

of biophysical factors, subbasin 24 is projected to

have > 50% increases in 10-year and extreme

high flows in half of the future scenarios (Table S5);

this is likely due to projected increases in developed

land (Figure S12). More specifically, at baseline

conditions subbasin 24 consisted of 41.4% forested,

32.3% non-stocked, 19.7% agriculture, 5.9%

developed (the remainder is wetlands and water)

land uses. Based on land use projections for sub-

basin 24, developed land will increase almost six

times and agricultural land will nearly double as

forested lands are lost (Figure S12). Thus, by using

a risk matrix to integrate SWAT and SVI results, we

can identify subbasins where projected increases in

streamflow overlap with vulnerable communities.

Future Directions

In this study, we used SWAT to simulate the

combined impact of land use and climate change

on streamflow because these biophysical influences

will likely occur together. We also combined these

biophysical influences because previous research in

the YPD focused on the contributions of each to

changes in streamflow (that is, Martin and others

2017; Suttles and others 2018); thus, our study

extends previous work to include socioeconomic

factors. However, opportunities exist to explore the

relative impacts and interactions of climate and

land use change on social vulnerability with respect

to future low and high streamflow events.

Addressing scaling discrepancies between water

resources management at the watershed and sub-

basin scale with decision making at the census tract

or county scale is an ongoing and understudied

issue (Molle 2009; Gober and others 2013). We

attempted to address this by including both sub-

basin and census tract scale SVI results when

applying a risk matrix. However, opportunities

exist to refine the methods presented here for the

purpose of addressing the impacts of future climate

and land use change on streamflow on across

county, state, and country boundaries. In addition

to exploring different approaches for SVI scaling,

social vulnerability in YPD communities may

change and we are not aware of datasets that pro-

ject SVI. Therefore, future work may use longitu-

dinal methods (for example, Cutter and Finch 2008

and Cutts and others 2018) to identify historic

trends in social vulnerability that can be used to

inform future climate change adaptation planning

and engage local communities.

We emphasize that the integrated SVI and SWAT

results be used as an initial step to inform climate

change adaptation planning. Further, recent pub-

lications agree that census data should be used as a

screening tool to highlight (or triage) areas for

further scrutiny (Emanuel 2018). Feedback from

community members is a key component of effec-

tive water resources management research (Siva-

palan and others 2012; Gober and Wheater 2015;

Srinivasan and others 2017; Cutts and others 2018)

as is the realization that technical solutions to fu-

ture climate and land use change are more likely to

be effective with community support (Schirmer

and Dyer 2018). SVI results are publicly available

for the continental USA (see https://svi.cdc.gov/S
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VIDataToolsDownload.html), and SWAT studies

have been established across the USA and around

the world; therefore, there is an opportunity ex-

tend the methods used in this study to other re-

gions of the USA and abroad to help vulnerable

communities adapt to climate and land use change

induced impacts on water resources.

CONCLUSIONS

This study compared the spatial distribution of high-

risk subbasins in the Yadkin–Pee Dee River Water-

shed (YPD) in North Carolina, USA, based on three

approaches: (1) percent increase in Soil and Water

Assessment Tool (SWAT) simulated 10-year and

extreme high flows between baseline (1982–2002)

and projected (2050–2070) periods due to climate

and land use change, (2) the degree of community

vulnerability according to a Social Vulnerability In-

dex (SVI), and (3) the integration of SWAT and SVI

results using a risk matrix. We showed how climate

change adaptation planning that relies on either the

first (that is, SWAT results) or second (that is, SVI

results) approachesmaymiss locations where future

increases in streamflow overlap with vulnerable

communities. Further, we demonstrated how the

third approach (that is, SWAT and SVI results) con-

siders both biophysical and socioeconomic factors by

identifying high-risk subbasins that are projected to

experience increases in 10-year and extreme high

flows and that also contain vulnerable communities

with limited capacity to adapt to these future in-

creases in streamflow due to climate and land use

change. For 10-year high flows, we identified high-

risk subbasins in the middle and lower parts of the

YPD where multiple climate–land use change sce-

narios projected increases in future 10-year flows

and had either a large (low-resolution) subbasin SVI

or contained census tracts with large (high-resolu-

tion) census tract SVIs. For extreme high flows, all

high-risk subbasinswere located in the lower parts of

the YPD and overlapped with subbasins previously

identified under the 10-year high flow case. In

summary, combining SWAT and SVI results using a

risk matrix can be used to extend the use of these

results on their own by providing the first step (that

is, identifying spatial units—either census tracts or

subbasins) of a multi-step process in climate change

adaptation planning. Besides describing spatial pat-

terns in risk, SWAT results suggest that future 10-

year and extreme flows are likely to be more fre-

quent and variable in the YPD. We identified vul-

nerable communities throughout the YPD. We

identified several subbasins with large ranges in

census tract SVIs, which suggests there are socioe-

conomic disparities between communities within

these subbasins. In this study, we used the YPD as an

example and suggest the riskmatrix approach can be

applied to other regions where baseline streamflow,

projected streamflow, and SVI results are available.
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Sivapalan M. 2017. Prediction in a socio-hydrological world.

Hydrol Sci J 62:338–45.

Steinschneider S, McCrary R, Mearns LO, Brown C. 2015. The

effects of climate model similarity on probabilistic climate

projections and the implications for local, risk-based adapta-

tion planning. Geophys Res Lett 42:5014–22.

Suttles KM. 2017. Assessment of watershed vulnerability to land

use and climate change. North Carolina State University,

Master’s thesis.

Suttles KM, Singh NK, Vose JM, Martin KL, Emanuel RE,

Coulston JW, Saia SM, Crump MT. 2018. Assessment of

hydrologic vulnerability to urbanization and climate change

in a rapidly changing watershed in the Southeast U.S. Sci

Total Environ 645:806–16.

Terando AJ, Costanza J, Belyea C, Dunn RR, McKerrow A,

Collazo JA. 2014. The southern megalopolis: using the past to

predict the future of urban sprawl in the Southeast U.S. PLoS

ONE 9:e102261.

United States Census Bureau (USCB). 2008. A compass for

understanding and using American community survey data:

what general data users need to know. Washington, DC:

United States Government Printing Office. p 68.

United States Environmental Protection Agency (USEPA). 2009.

Technical guidance on implementing the stormwater runoff

requirements for federal projects under section 438 of the

energy independence and security act. USEPA report 841-B-

09-001. Washington, DC: Office of Water. p 63.

United States Department of Agriculture Forest Service (USFS).

2012. Future scenarios: a technical document supporting the

Forest Service 2010 RPA Assessment. General technical report

RMRS-GTR-272. USFS, Rocky Mountain Research Station,

Fort Collins, CO. p 34.

Van der Voorn T, Pahl-Wostl C, Quist J. 2012. Combining

backcasting and adaptive management for climate adaptation

in coastal regions: a methodology and a South African case

study. Futures 44:346–64.

Vogelmann JE, Howard SM, Yang L, Larson CR, Wylie BK, Van

Driel JN. 2001. Completion of the 1990’s national land cover

data set for the conterminous United States. Photogramm Eng

Remote Sensing 67:650–62.

Walsh J, Wuebbles D, Hayhoe K, Kossin J, Kunkel K, Stephens

G, and others. 2014. Ch. 2: our changing climate. In: Melillo

JM, Richmond TC, Yohe GW, Eds. Climate Change Impacts in

the United States: the third national climate assessment.

Washington, DC: United States Global Change Research Pro-

gram. pp 19–67.

Wear, DN. 2013. Chapter 4: forecasts of land uses. In: Wear DN,

Greis JG, Eds. The southern forest futures project: technical

report. General technical report SRS-179. Ashville, NC: United

States Department of Agricultural Forest Service Research and

Development, Southern Research Station. pp 45–71.

Wear DN, Huggett R, Greis JG. 2013. Chapter 2: constructing

alternative futures. In: Wear DN, Greis JG, Eds. The southern

forest futures project: technical report. General technical re-

port SRS-179. Ashville, NC: United States Department of

Agricultural Forest Service Research and Development,

Southern Research Station. pp 11–26.

Woodall CW, Domke GM, Riley KL, Oswalt CM, Crocker SJ,

Yohe GW. 2013. A framework for assessing global change risks

to forest carbon stocks in the United States. PLoS ONE

8:e73222.

Yohe G. 2010. Risk assessment and risk management for

infrastructure planning and investment. The bridge: linking

engineering and society. Natl Acad Eng 40:14–21.

Yohe G, Leichenko R. 2010. Adopting a risk-based approach.

Ann N Y Acad Sci 1196:29–40.

Applying Climate Change Risk Management Tools

http://data.nconemap.gov
http://it.nc.gov/gicc
http://www.python.org/
https://www.R-project.org/

	Applying Climate Change Risk Management Tools to Integrate Streamflow Projections and Social Vulnerability
	Abstract
	Highlights
	Introduction
	Methods
	Site Description
	Hydrologic Model
	Streamflow Analysis
	Social Vulnerability Index
	Comparison of Approaches
	Data Analysis and Availability

	Results
	Streamflow
	Social Vulnerability

	Discussion
	Streamflow
	Social Vulnerability
	Comparison of Approaches
	Future Directions

	Conclusions
	Acknowledgements
	References




