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Abstract Terrestrial vegetation, as the key component of the biosphere, has a greening trend since
the beginning of this century. However, how this substantial greening translated to global gross
carbon sequestration or gross primary production (GPP) is not clear. Here we investigated terrestrial
GPP dynamics and the respective contributions of climate change and vegetation cover change (VCC)
from 2000 to 2015. We adopted a remote sensing based data-driven model, which was calibrated
based on the global eddy flux data set (FLUXNET2015) and Moderate Resolution Imaging
Spectroradiometer vegetation index data (Collection 6). A series of simulation experiments were
conducted to disaggregate the effects of climate and VCC. We found a much weaker increase in global
GPP (0.08%/year; P = 0.07) when compared with the global greening rate (0.23%/year; P < 0.001).
The positive effect of VCC on GPP was reduced by 53% due to climate stress. Enhanced global GPP were
largely contributed by nonforests, especially croplands. However, tropical forests, once a major driver
of the global GPP increase, negatively contributed to global GPP trend due to warming-induced moisture
stress and deforestation. Given the limited potential of cropland carbon storage due to harvest and
consumption, the contrasting GPP changes (i.e., cropland GPP increase vs. forest GPP reduction) may
have shifted the distribution of the land carbon sink. Our study highlights the potential vulnerability of
terrestrial gross carbon sequestration under climate and land use changes and has important
implications in the global carbon cycle and climate warming mitigation.

1. Introduction

As the key component of the biosphere, terrestrial vegetation absorbs atmospheric CO, through photosynth-
esis and serves as a major mechanism to potentially offset anthropogenic CO, emissions, thus contributing to
climate mitigation and human welfare (Lieth & Whittaker, 2012; Running, 2012). The amount of total carbon
captured by plants via photosynthesis in a unit time is defined as gross primary production (GPP). As the lar-
gest CO, flux from the atmosphere to the biosphere, terrestrial GPP primarily drives the global carbon cycle
(Houghton, 2007) and provides the essential matter and energy basis for ecosystem functions such as respira-
tion and growth (Beer et al., 2010). However, terrestrial GPP is one of the most variable components in the
carbon cycle (Anav et al., 2013; Lieth & Whittaker, 2012; Running et al., 2004), and its dynamics and
responses to the changing environment remain poorly understood (Anav et al., 2015; Campbell et al., 2017).

Earth observations from space have shown a widespread greening over the land surface since the beginning
of this century (Chen et al., 2019; Zhang, Song, et al., 2017; Zhu et al., 2016). However, how this substantial
greening translates to gross carbon sequestration or GPP, especially in the context of climate change, is not
well established. The greening could lead to a proportional increase in GPP by enhancing the absorbed
photosynthetic active radiation (Potter et al., 1993). Climate warming may further alleviate temperature
stress in cold regions, increasing GPP (Nemani et al., 2003). However, high temperature and low precipita-
tion following the ongoing warming may increase climate stress, reducing GPP (Anderegg et al., 2015; Ciais
et al., 2005; Zhao & Running, 2010). Global GPP dynamics are further complicated by human-induced land
use change such as deforestation (Cramer et al., 2004; Malhi et al., 2008). To date, a consensus on global GPP
dynamics and the driving forces are still elusive (Anav et al., 2015; Campbell et al., 2017; Jung et al., 2017;
Ryu et al., 2019; Welp et al., 2011; Zhao & Running, 2010).
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Ecosystem models in combination with remotely sensed observations provide an unprecedented way to
explore global GPP dynamics (Anav et al., 2015; Beer et al., 2010). However, the model performance largely
depends on the quality of remote sensing data, especially on the long-term scales (Hilker et al., 2008). The
Advanced Very High Resolution Radiometer (AVHRR) sensors onboard the National Oceanic and
Atmospheric Administration satellite series provide the longest continuous spectral measurements on the
land surface since 1981 (Pettorelli et al., 2005). The AVHRR-based products such as normalized difference
vegetation index (NDVI) and leaf area index (LAI) have been key vegetation data in global change studies
(Pinzon & Tucker, 2014; Zhu et al., 2013). However, recent studies showed that large inconsistences exist
in these long-term products mainly due to sensor differences and platform drift (Jiang et al., 2017; Tian
et al., 2015). The Moderate Resolution Imaging Spectroradiometer (MODIS) onboard National Aeronautics
and Space Administration's Terra and Aqua satellites since 2000 are referred to as the extension of
AVHRR-based observations with advanced spectral, spatial, and temporal characteristics (Song et al.,
2015). However, recent studies indicated that MODIS Collection 5 data, which were widely used to under-
stand vegetation dynamics, suffered from sensor degradation, especially for Terra satellite after 2009
(Lyapustin et al., 2014; Wang et al., 2012; Zhang, Song, et al., 2017). Consequently, these data uncertainties
may have been propagated into the related global GPP studies.

Here, we aim to investigate terrestrial GPP dynamics and quantify the respective contributions of climate
change and vegetation cover change (VCC) from 2000 to 2015 using a newly developed coupled carbon
and water (CCW) model (Zhang et al., 2016). The CCW model was calibrated based on the global eddy flux
data set from FLUXNET2015 and MODIS Collection 6 (C6) NDVI data. Compared to C5, MODIS-C6 NDVI
has implemented several improvements in the retrieval algorithm (Didan et al., 2015) and corrected the
major sensor degradation impacts identified by previous studies (Lyapustin et al., 2014; Zhang, Song, et al.,
2017). To better account for VCC effect on GPP, we adopted the yearly land cover product from the
European Space Agency Climate Change Initiative (ESA-CCI). Model evaluations for CCW were conducted
based on the flux tower data, FLUXCOM GPP, MODIS GPP products, and solar-induced fluorescence (SIF)
data from the Orbiting Carbon Observatory-2 (OCO-2). A series of experiments were designed to disaggregate
the effects of climate and VCC on global GPP, aiming to understand how recent greening translated into gross
carbon sequestration. Our hypothesis is that the terrestrial GPP increases proportionally as the Earth
greens up.

2. Materials and Methods
2.1. Global Data Set

Global satellite products used in this study included global monthly vegetation index data from MODIS (data
version: MOD13C2 C6; spatial resolution: 0.05°; period: 2000-2015), annual land cover data from ESA-CCI
(300 m; 2000-2015), annual MODIS GPP product (V55; 1 km; 2000-2015), annual FLUXCOM GPP product
(0.5°; 1982-2013), and monthly SIF data from OCO-2 (1°; 2015). Global monthly climate data were from
CRU-National Centers for Environmental Prediction (NCEP; V7; 0.5° 2000-2015). Global monthly covar-
iance eddy flux data were from FLUXNET2015 (updated on 3 November 2016; 2000-2014). Other data
included K&ppen-Geiger climate classification (0.5°) and global forest area from Food and Agriculture
Organization (FAO) Forestry inventory (2000, 2005, 2010, 2015). The data sources used in this study were
described in Text S1 in the supporting information.

2.2. Model Framework

We developed the CCW model to estimate terrestrial ecosystem GPP and evapotranspiration simultaneously
at a monthly scale using global eddy flux tower data from FLUXNET and remotely sensed data from MODIS
(Zhang et al., 2016). Based on the light-use efficiency (LUE) theory (Potter et al., 1993), GPP in CCW is esti-
mated as the product of absorbed photosynthetically active radiation and realized LUE (¢) that varies with
vegetation types and climate:

GPP = APARXE = (PARXFPAR)X(&poXRsXTsxWy) ¢

where PAR is the incident photosynthetically active radiation (MJ/m?), which is assumed to be 45% of the
shortwave total radiation (Running et al., 2000); FPAR is the fraction of PAR absorbed by plants, which is
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linear to NDVI (Sims et al., 2006) ; &,o¢ (g C/MJ) is the potential LUE realized by plants without environmen-
tal stresses; Ry, T, and W are the environmental scalars related to diffuse radiation proportion, air tempera-
ture, and vapor pressure deficit (VPD), each of which varies within the range of 0-1. The model is capable of
estimating large-scale GPP with acceptable accuracy. Compared to other models (e.g., MOD17), CCW model
considers the nonlinear constrains of temperature and VPD and the effect of light saturation on LUE. The
details of the theory framework identification for CCW can be found in Zhang et al. (2016).

2.3. Model Calibration and Validation

The initial version of CCW was calibrated based on LaThuile 2007 FLUXNET Synthesis Dataset and Terra
MODIS-C5 NDVI. Given that global eddy flux tower data and MODIS NDVI data have been updated to
FLUXNET2015 and MODIS-C6 NDVI data, respectively, we recalibrated CCW based on those up-to-date
data. Notably, the FLUXNET2015 data set has expanded its data records from 2006 to 2014 and includes sev-
eral improvements in the data quality control protocols and the data processing pipeline compared to its pre-
decessor LaThuile 2007 data set (www.fluxnet.fluxdata.org/data/). Our evaluation showed that MODIS-C6
NDVI from Terra satellite is more consistent with vegetation index products from the Aqua satellite and sen-
sor degradation impact has been largely removed (Zhang, Song, et al., 2017).

The site-level data used to calibrate CCW are from FLUXNET2015 and 1-km MODIS-C6 NDVI during 2000
to 2014. After data screening (Zhang et al., 2016), a total of 8,309 monthly records covering 9 biomes at 155
flux tower sites was selected (Table S1). Spatially, these sites span a wide range of climate zones from the
boreal/alpine and temperate to arid/semiarid and tropics (Figure 1). We randomly split data records at each
flux site and then used half of the data within each biome to recalibrate all biome-specific parameters in CCW
through Monte Carlo simulation (Zhang et al., 2016). The recalibrated parameters are seen in Table S2. The
reserved data were used to evaluate the model at whole, biome, and site levels.

2.4. Estimation and Evaluation of Global GPP by CCW

The global data set used to drive CCW in this study include 0.5° X 0.5° monthly climate data from CRU-
NCEP V7 (2000-2015), 0.05° x 0.05° monthly NDVI data from Terra-MODIS product (i.e., MOD13C2 C6),
and 300 X 300-m annual land cover data from ESA-CCI.

The CRU-NCEP climate data are the combination of ground observation-based CRU and model-based
NCEP-National Center for Atmospheric Research Reanalysis data (Viovy, 2018). We downloaded 6-hourly
CRU-NCEP data sets including global radiation, precipitation, air temperature, air pressure, and air specific
humidity. VPD was calculated using air temperature, atmospheric pressure, and air specific humidity at the
6-hourly scale and then aggregated into the monthly scale. The coarse spatial data were downscaled to the
spatial resolution of 5 x 5 km? with bilinear interpolation.

Land cover data were used to define the maximum LUE and climate constrains for each plant functional type
in CCW. In this study, we adopted the annual global land cover product from the CCI of the ESA. This pro-
duct is a consistent global land cover data at 300-m spatial resolution on an annual basis from 1992 to 2015.
The original ESA-CCI data uses the Land Cover Classification System developed by the United Nations FAO
(Table S3). To serve CCW, we converted the United Nations-Land Cover Classification System in ESA-CCI
product to the classification of International Geosphere-Biosphere Programme based on the conversion
(Table S4) and then aggregated the 300 x 300-m data to the spatial resolution of 5 x 5 km* by computing
biome compositions. With input data described above, we then estimated global GPP by weighting biome
area proportions within each 5 x 5-km? pixel.

To evaluate global GPP estimated by CCW, we collected the machine learning (ML)-based GPP product from
FLUXCOM (three methods related to RF, MARS, and ANN; 1982-2013; Jung et al., 2017) and LUE-based
GPP product from MODIS (V55; 2000-2015; Zhao & Running, 2010). We then compared CCW GPP with
these data spatially. Annul land sink from Global Carbon Budget (Le Quéré et al., 2018) was also obtained
to show its association with global GPP by CCW. SIF is a light emission produced by photosynthetic pig-
ments from their excited state and is considered to be linked with GPP (Meroni et al., 2009; Sun et al.,
2017). In this study, we further evaluated CCW GPP with SIF from OCO-2 (Sun et al., 2017). OCO-2 is a
National Aeronautics and Space Administration mission designed to measure atmospheric CO,, which
was launched in July 2014 (Frankenberg et al., 2014). SIF from OCO-2 is measured at the wavelengths of
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Table 1

Simulation Design to Disentangle the Effects of VCC and Climate Change on GPP

Legend

Climate Zone

I Tropical
Arid/Semi-arid

I Temperate

Il Boreal/Alpline

® FLUXNET Sites

Figure 1. Spatial distributions of FLUNXNET2015 sites and climate zones derived from Koppen-Geiger climate
classification.

757 and 771 nm. The daily level-2 SIF-lite data in the year of 2015 were compiled to global monthly data at
the spatial resolution of 1° X 1° (Sun et al., 2018). It is noted that only high-quality data after a series of
screenings under the nadir view were used, and the sufficient number of soundings in each monthly bin
ensured a robust signal of the grid-average SIF (Sun et al., 2018). The monthly SIF was derived from the
corrected SIF at two wavelengths:

SIF = (SIF757nm + 1.5XSIF771nm)/2.0 (2)
To match the coarse resolution of OCO-2 SIF, global monthly GPP by CCW were rescaled to 1° X 1°, and
pixels with low quality of SIF were masked out in the comparison.

2.5. Simulation Design

To disentangle the effects of VCC and climate change on GPP, three groups of simulation scenarios were
designed based on different combinations of inputs to CCW (Table 1; Zhang et al., 2014). Group I was used
to quantify VCC effect on GPP by allowing both land cover and frac-
tion of photosynthetically active radiation (FPAR) to change along
with time while keeping climate factors constant at the initial level
of 2,000. Note that in CCW, FPAR is related to vegetation greenness

2Aobiis . as measured by NDVI, while land cover determines the biome-
Group Landcover FPAR Radiation Temperature VPD specific potential LUE and its sensitivity to climate. Therefore, VCC
I vce A A A A A here represents the combined effects of vegetation abundance and
I  Climate VAN JAN a B D vegetation structure/type changes on GPP. Group II was designed
ﬁ ﬁ g % ﬁ to quantify separate, combined, and total effects of three climate fac-
A A A A A tors (i.e., radiation, temperature and VPD) on GPP by keeping land
YAN YAN A A yaN cover and FPAR held at the level of 2,000. Group III was used to
A A A A A account for combined effects of VCC and climate change.
A A A A A : , . .
I All A N A A A To derive the spatial pattern of major factors controlling GPP, we

compared the effects from VCC and climate on annual GPP trend

Note. A: variable changes along the time; /\: variable is held at the initial year
of 2000. CCW = Coupled Carbon and Water Model; FPAR = fraction of photo-
synthetically active radiation; GPP = gross primary production; VCC = vegeta-
tion cover change; VPD = vapor pressure deficit.

(i.e., linear slope). Four forms of VCC and climate effects based on
their signs (i.e., positive and negative) were identified: positive VCC
effect (VCC+; largest amplitude of VCC effect with positive sign),
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Simulated GPP (g Cm™ d

negative VCC effect (VCC—; largest amplitude of VCC effect with negative
sign), positive climate effect (Climate+; largest amplitude of climate effect
with positive sign), and negative climate effect (Climate—; largest ampli-
tude of climate effect with negative sign).

2.6. Published Global Annual GPP and Greenness Trends

To evaluate global annual GPP trend by CCW along with global greenness
trend by MODIS vegetation index, we further selected a series of global
published GPP models and greenness products (Table S5). These models
included the following: ISIMIP2a (1982-2013; Ito et al., 2017), CMIP5a
. (1982-2011; Smith et al., 2016), BEPS (1982-2015; He et al., 2017), BESS
Y=0.992*X

(2000-2015; Jiang & Ryu, 2016), VPM (2000-2015; Zhang, Xiao, et al.,
R%=0.707 2017), and MOD17-GIMMS (1982-2011; Smith et al., 2016). Overall, the
RMSE=2.013 models used for trend evaluation were grouped as three types: (1)

machine-learning based (i.e., FLUXCOM), (2) LUE based (i.e., MOD17,

Flux Tower GPP (g C m>q’ )

Figure 2. Evaluation of GPP estimated by Coupled Carbon & Water Model

8

MOD17-GIMMS, and VPM), and (3) process based (ISIMIP2a, CMIP5a,
BESS, and BEPS). Besides MODIS-C6 NDVI/EVI, global long-term
NDVI products from GIMMS3g (V1; 1982-2000) and VIP (V4; 1982-
2000), and global LAI products from MODIS-C6 (2000-2015), TCDR

10 12 14 16 18 20

with reserved flux-tower derived GPP. GPP = gross primary production; (1982-2000), and GIMMS3g (V1; 1982-2000; Jiang et al., 2017) were also

RMSE = root-mean-square error.

included to evaluate global greenness change. The AVHRR-based global
NDVI and LAI products were used to quantify global greenness trend from
1982 to 2000, while MODIS-C6 EVI/LAI were used for trend analysis from
2000 to 2015.

3. Results
3.1. Evaluation of CCW Model

The comparison of reserved flux data and modeled GPP showed a generally good performance of CCW,
which captured 71% of variations in GPP (P < 0.001) with a root-mean-square error of 2.0 g C-m™2-day™*
(Figure 2). This recalibration showed a slightly better performance than the initial version of CCW with R*
0f 0.67 (P < 0.01; Zhang et al., 2016). Further assessments of CCW on biome and site levels are displayed in
Figure S1. Overall, CCW consistently showed reasonable performances in most sites. The updated CCW was
also comparable to a series of existing LUE models reported by Yuan et al. (2014) and a recently modified LUE
model developed by Wang et al. (2017) in terms of R? and root-mean-square error (Table S6).

Multiyear mean of global annual GPP estimated by CCW from 2000 to 2015 is 133.1 + 1.2 Pg C/year, which is
close to the value of 136 Pg C/year derived from the optical integration of multiple models (Schwalm et al.,
2015) and among the broad range of global GPP estimations (i.e., 99-187 Pg C/year; Anav et al., 2015;
Schwalm et al., 2015). Spatially, annual GPP estimated by CCW was higher in tropical and temperate regions
but lower in boreal/alpine and arid/semiarid regions, consistent with FLUXCOM GPP and MODIS GPP
(Figure S2). However, CCW GPP differed from MODIS GPP on regional scales, especially in tropical regions
such as Amazonia and Indonesia, and temperate regions such as the southeastern United States, China, and
western Europe (Figures S2a and S2b). In these regions, CCW GPP tended to be higher, and their spatial pat-
terns were more consistent with FLUXCOM GPP and MODIS vegetation index (Figures S2c and S2d).

We further evaluated CCW GPP based on OCO-2 SIF. Global GPP from CCW correlated well with seasonal
OCO-2 SIF (R = 0.95; P < 0.001) in 2015 (Figure S3). Spatially, the seasonal maximum SIF from OCO-2
effectively captured the high productive zones for croplands in the Northern Hemisphere, such as the corn
belt in the Midwestern United States, European Plain, and China's Northeast Plain (Figure S4b; Guanter
et al., 2014). CCW GPP also well detected those high productive regions (Figure S4a). Overall, the spatial
pattern of annual GPP by CCW was highly consistent with that of SIF derived from OCO-2 (R = 0.87, P <
0.001), especially in the tropical regions (Figures S4c and S4d). Therefore, we deem that CCW is robust and
appropriate to be used to investigate global GPP dynamics.
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3.2. Nonuniform Greening Earth

From 2000 to 2015, terrestrial vegetation showed a greening trend over 74.8% of the vegetated area according
to MODIS Terra-C6 NDVI (Figure 3a). About 28.6% of vegetated land exhibited significant greening (P <
0.05), while only 5.4% of vegetation showed significant browning (P < 0.05). Overall, global vegetation had
a greening rate on the order of 0.001 year ' or 0.23%/year (i.e., annual linear trend relative to the year
2000 base; the same definition of relative changing rate for annual trend hereafter) by NDVI (P < 0.001).
However, the overall greening was nonuniform across the globe (Figure 3a) and along with the base green-
ness (Figure 3b). Vegetation greening mainly occurred in temperate and boreal zones with median and low
base greenness. In contrast, vegetation browning tended to appear in tropical regions with dense vegetation.
Overall, boreal/alpine regions, accounting for about 25% of global total greenness, contributed to over 40% of
global total increased greenness, while tropical regions with 38% of global total greenness were only respon-
sible for 15% of global increased greenness (Figure S5). The nonuniform vegetation greening-browning pat-
tern may have profound implications in global GPP.

3.3. Climate Warming-Induced Drying and Global Deforestation

Global vegetated land showed a significant warming rate of 0.02 °C/year (P = 0.02) based on the annual
air temperature from CRU-NCEP. Given a negligible change in total precipitation (—0.78 mm™'.year ",
P = 0.56), the warming caused a significant drying trend with an increasing rate of 1.4 Pa/year (P < 0.001)
in global annual mean VPD (Figure 3c). During the same period, global forest area shrank 12 x 10° ha every
5years (P < 0.001) according to ESA-CCI, which is comparable to the FAO Forest Resource Assessment data
(18 x 10° ha forest loss every 5 years during 2000-2015; P < 0.001; Figure 3d). Global deforestation was
accompanied by the increase of cropland and other nonforest vegetation, especially in the tropical

regions (Figure S6).
3.4. Limited GPP Increase Under Climate Change and Vegetation Cover Change

By integrating changes in vegetation cover and climate into CCW model, we estimated a much weaker glo-
bal GPP trend (0.110 Pg C/year or 0.08%/year; P = 0.07; referred to as GPPenq here after) when compared
with the global greening rate (i.e., 0.23%/year; P < 0.001) during the same period (Figures 4a and 4b). Our
simulation showed that VCC would increase the global GPP at a rate of 0.235 Pg C/year or 0.18%/year
(P < 0.001) without climate stress. However, when the effects of climate were considered, global GPP
increase was sharply reduced by 53%. Contrary to VCC, climate exerted a strong negative influence on global
GPP (i.e,, —0.139 Pg C/year or —0.10%/year; P = 0.03). Among three climate factors, VPD showed the
strongest negative effect on global GPP (—0.140 Pg C/year; P = 0.02), while temperature and radiation did
not generate statistically significant effects (Figures 4c and 4d). Globally, the negative effect from VPD
dominated its interactive effects with the other two factors (Figure 4d). Overall, VCC dominated the overall
increasing trend of global GPP, yet climate strongly shaped the interannual variation of global GPP.

Spatially, simulated annual GPP showed upward trends over 60.4% of global vegetated area (17.8% with sig-
nificant trends, P < 0.05; Figure 5a), which were much less than the significant greening extent (Figure 3a).
The enhanced GPP mainly occurred in East and South Asia, northwestern North America, central Africa,
southwestern South America, and southeastern Australia. Notably, some browning or weak greening areas
showed strong GPP reductions, such as central Eurasia, eastern United States, Indochina, and Amazonia.
Boreal/alpine regions, accounting for 19% of global total GPP, contributed 47% of global total increased
GPP (Figure S5), followed by temperate (38.0%) and arid/semiarid (16.8%) regions (Figure 5b).
Nevertheless, the tropics, accounting for over half of global total GPP (Figure S5), was the only region that
negatively contributed to global GPP trend (—2.0%; Figure 5b).

Across tropical subregions, tropical Africa and Asia both showed upward trends in annual total GPP, equal
to 24.9% and 2.1% of GPPyeng, respectively (Figure 5b). However, tropical America, the only subregion
where the negative effect mainly from warming-induced drying was much larger than the weakly positive
effect of VCC, exhibited a downward GPP trend (equal to —29% of GPPyeng) and more than offset the total
increased GPP from tropical Africa and Asia (equal to 27% of GPPy¢yena)- It is important to note that severe
droughts occurred in 2005, 2010, and 2015 across Amazonia (Feldpausch et al., 2016; Jiménez-Mufioz et al.,
2016), causing strong negative annual GPP anomalies in tropical America (Figures S7 and S8) and clearly
projecting onto the global GPP dynamics (Figure 4a). Overall, the annual GPP trend was most strongly
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Figure 3. Changes in global vegetation greenness, climate, and forest area over 2000 to 2015. (a) Spatial pattern of linear trend in annual NDVI from Moderate
Resolution Imaging Spectroradiometer C6; greening: linear slope of annual NDVI > 0; browning: linear slope of annual NDVI < 0; ES: extremely significant
with P < 0.01; S: significant with P < 0.05; the number in the parenthesis is the browning/greening area relative to global vegetated area; the lower right inset panel
shows the interannual variation of global averaged NDVI. (b) Distribution of annual NDVI positive and negative trends, respectively, along the gradient of NDVI
base in 2000; the bin size of NDVI (x axis) is 0.01; total NDVI trend indicates the annual NDVI trend for all area within the bin. (c) Annual changes of global
averaged total precipitation and VPD from CRU-National Centers for Environmental Prediction. (d) Annual changes of global forest areas derived from FAO
Forestry inventory data and ESA-CCI land cover data. All the statistics are calculated over terrestrial vegetated area. All anomalies are relative to their multiple-year
averages. FAO = Food and Agriculture Organization; ESA-CCI = European Space Agency-Climate Change Initiative; NDVI = normalized difference vegetation
index; VPD = vapor pressure deficit.

influenced by climate in the tropics, followed by temperate, boreal/alpine, and arid/semiarid
zones (Figure 5b).

The effects of VCC and climate on GPP differed along the latitudinal gradient (Figure 5c). Although a rela-
tively large greening trend existed in the high latitudes (i.e., >55°N), its actual effect on annual GPP was lim-
ited likely due to short growing seasons and relatively strong climate constraints. We further examined the
spatial pattern of dominant factors by comparing their direct GPP effects on each pixel (Figure 5d). Overall,
the positive effect of VCC dominated annual GPP trend over 49.2% of vegetated area, which were mainly
located over the Northern Hemisphere, central Africa, and southeastern Australia (Figure 5d). A certain por-
tion of the vegetated area (18.5%) showed negative GPP controls by VCC, which were mainly clustered in the
Southern Hemisphere and midlatitudes Eurasia (Figure 5d). Climate had positive effects on GPP over 11.6%
of vegetated surface, which were scattered in boreal zone due to climate warming, and central Africa and
South America due to wetting trends (Figures 5d, S9, and S10). However, 20.7% of the vegetated area, nearly
twice the area with positive effect, showed negative climate effects on GPP (largely due to warming-induced
VPD increase; Figures S9 and S10), which were mainly distributed in Amazonia, southeastern United States,
central Eurasia, and Indochina (Figure 5d).

3.5. Negative Contribution of Tropical Forests in Global GPP Increase

During the study period, global total increased GPP were mainly contributed by nonforests with an annual
rate of 0.137 Pg C/year (equal to 124.6% of GPPy.(eng; Figure 6a). On the contrary, global forests negatively
contributed to annual global GPP trend with a rate of —0.027 Pg C/year (or —24.6% of GPPyyeng). Further
analysis showed that forests in tropical America and Asia had remarkable GPP reductions (—0.082 Pg
C/year or —74.6% of GPPy.(renq), Which more than offset forest GPP increases from tropical Africa and other
nontropical zones (0.055 Pg C/year or 49.9% of GPP,(rend; Figure 6a). The forest GPP reductions in tropical
America and Asia were largely due to deforestation (Figures 6b and S6) and climate stresses (Figures 5, S7,
and S9). Among nonforest types, cropland contributed most to the annual total GPP increase (51%), followed
by woody savanna (33%) and grassland (11%; Figure 6b). The enhanced cropland GPP, which were partly

ZHANG ET AL. 7



Journal of Geophysical Research: Biogeosciences 10.1029/2018JG004917

—_
=
-~

(b)

Annual GPP Anomaly (Pg C yr')
N S

—~
i
~

Annual GPP Anomaly (Pg C yr')
(=}

——GPP (VCC)
| ==—GPP (Climate) \ee sk
——GPP (All)
Climate *
All
2000 2005 2010 2015 -0.3 -0.2 -0.1 0 0.1 0.2 0.3
Year Annual GPP Trend (Pg C yr')
@
~—GPP (RAD)
| =—GPP (TMP) RAD
——GPP (VPD) 1
TMP ]
VPD ¥
RAD+TMP
RAD+VPD %%
TMP+VPD w
2000 2005 2010 2015 -0.3 -0.2 -0.1 0 0.1 0.2 0.3
Year Annual GPP Trend (Pg C yr')

Figure 4. Effects of vegetation cover change (VCC) and climate change on interannual variations and trends in global gross primary production (GPP) from 2000 to
2015. (a) Annual changes of global GPP when considering VCC and climate change, respectively. (b) Annual global GPP trends contributed by factors in (a).

(c) Annual changes of global GPP caused by three climate factors including radiation (RAD), temperature (TMP), and vapor pressure deficit (VPD). (d) Annual
trends in global GPP contributed by climate factors in (c) and their interactive effects. All the statistics are calculated over terrestrial vegetated area. The annual
anomaly is relative to the initial year of 2000. Statistical significance level (P): * (P < 0.05), ** (P < 0.01).

due to the active management and agricultural expansion (Figure S6), were widely distributed across differ-
ent climate zones except boreal region (Figure 6b).

4. Discussion

Global vegetation showed a significant greening trend from 2000 to 2015 based on MODIS-C6 vegetation
index products (Figures 4a and 7a). By only considering the VCC effect in CCW, our model results showed
a significant increase in global GPP (Figure 4). However, when further accounting for climate effects, the
greening effect was considerably offset by 53% and a much weaker increase in global GPP was found when
compared with the global greening rate (Figure 7a), which rejects our initial hypothesis on the proportional
increase of global GPP along with Earth's greening. Vegetation index based on optical remote sensing is a
robust indicator of leaf chlorophyll abundance, which is closely linked to the photosynthesis capacity and
plant growth activity (Myneni et al., 1995; Running et al., 2000). However, the vegetation index is not a proxy
of GPP as there are a set of climatic factors limiting the conversion of absorbed sunlight to sequestered car-
bon (Chapin et al., 2002; Potter et al., 1993; Running et al., 2000; Zhao & Running, 2010). Meteorological
records showed that the early period of this century was the warmest since 1880s (Trenberth, 2015). Our
simulations confirmed that the warming-induced drying in terms of increased VPD was the major factor
governing the negative climatic effects on GPP (Figures 4 and 5).

During the study period, ML-based global GPP estimations from FLUXCOM showed no particular trends,
while a series of process-based models considering the CO, fertilization effect exhibited a stronger trend than
CCW (Figure 7a). Evidences from the free-air CO, enrichment data suggested that the CO, fertilization
effect might be much overestimated by current process-based models, largely due to a lack of representation
of nutrient constraints (He et al., 2017), potential climate feedbacks (Smith et al., 2016), or the acclimation of
plants to CO, fertilization (Ainsworth & Rogers, 2007). For example, a 20-year free-air CO, enrichment
experiment carried out in temperate grasslands showed that the CO, fertilization effect on C; plants was
negligible after 15 to 20 years (Reich et al., 2018), suggesting that plant response to CO, may depend on time,
species traits and resource availability (Korner, 2006; Nowak et al., 2004; Terrer et al., 2018).
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Figure 5. Spatial pattern of global GPP trend and its dominant factors from 2000 to 2015. (a) Spatial pattern of linear trend in annual global GPP by coupled carbon
and water. (b) Annual global GPP trends caused by VCC and climate change in different climate zones. Statistical significance level (P): * (P < 0.05), ** (P < 0.01). (c)
Changes of annual NDVI trend and global GPP trends influenced by different factors along the latitudinal gradient (latitude internal: 1°). (d) Spatial pattern of

dominant factors that controlling global GPP trend; + refers to positive effect, and — negative effect. Global unvegetated area in (a) and (d) are masked out, and all
relevant statistics are based on vegetated area. GPP = gross primary production; NDVI = normalized difference vegetation index; VCC = vegetation cover change.

Annual GPP trend by CCW was stronger than MODIS GPP, probably because the latter suffered from the
sensor degradation effect in MODIS-C5 data (Lyapustin et al., 2014). However, VPM, another LUE-based
model, which used the MODIS-C6 data (Zhang, Xiao, et al., 2017), showed a much stronger trend than
CCW and even process-based models (Figure 7a). The annual GPP variation by VPM was actually very
similar to CCW by only accounting for VCC effect (R = 0.934, P < 0.001; Figure S11). Given VPM is not
a strictly calibrated model based on in situ observation data, the parameters especially those related to
FPAR and water stress scalar may have uncertainties (Zhang, Xiao, et al., 2017). In spite of that, all models
showed relatively weak annual GPP trends when compared with the annual greening rate in terms of
MODIS-C6 LAI (Figure 7a). This pattern was consistent even extending back to the year of 1982
(Figure 7b). According to the theory of LUE model (Potter et al., 1993), the potential LUE realized by
plants without environmental stresses, which is closely linked with remote-sensed greenness, could pro-
vide the upper limit for GPP estimation (Ryu et al., 2019).

CCW model was calibrated based on global flux tower data and MODIS-C6 data. However, it showed
relatively poor performance in some forest, woody savanna and cropland sites (Figure S1), which may
be related to the uncertainties from both flux data and MODIS data, their potential footprint mis-
matches, and/or the sensitivity and representation of model environmental scalars (Jung et al., 2011;
Tramontana et al., 2016). Plant's water stress is codominated by soil water supply (i.e., soil water con-
tent) and atmospheric water demand (i.e., VPD). However, the effect of soil water content was not
directly modeled in CCW. Although VPD and soil moisture are better coupled at monthly time steps
(Novick et al., 2016) and the data-driven method used in this study could implicitly incorporate this cov-
ariance (Zhang et al., 2015; Zhang et al., 2016), the sensitivity of LUE to VPD may vary along with soil
moisture gradients (Novick et al., 2016), which is worthy of being investigated and included in CCW in
the future. In this study, we conducted model simulations to separate the effects of VCC and climate on
GPP. However, VCC is further influenced by climate change/variation (Figure S12; Zhang, Song, et al.,
2017), and such influences are difficult to separate by CCW. Therefore, the climate effect on GPP iden-
tified in our study may be underestimated. The process-based model such as Dynamic Global Vegetation
Model (Fisher et al., 2018) may help to address this issue in the future.
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Figure 6. Contributions of forests and nonforests in global GPP trend from 2000 to 2015. (a) Annual GPP trends contrib-
uted by forests and nonforests over different zones. (b) Annual GPP trends contributed by nonforests, and annual

changing rates of cropland and forest area from European Space Agency-Climate Change Initiative over different zones;
forests here include broadleaf, deciduous leaf, and mixed forests, while nonforests include cropland (CRO), shrub (SHR),
savanna (SAV), woody savanna (WSA), and grassland (GRA). Statistical significance level (P): * (P < 0.05), ** (P < 0.01).

Prior research reported a climate-driven increase in terrestrial vegetation production from 1982 to 1999
(Nemani et al., 2003). In this study, we showed a continuation of the increasing vegetation production since
2000 (Figure 4). However, the recent enhanced GPP were mainly contributed by boreal and temperate
regions where a widespread greening and climate warming occurred (Dass et al., 2016). Tropical regions,
once a major driver of the increased global vegetation production (Nemani et al., 2003), negatively contribu-
ted to global GPP due to warming-induced moisture stress and deforestation during the study period
(Figures 4, 5, S6, and S10). Tropical GPP declines were also highlighted by other recent studies (Baccini et al.,
2017; Bastos et al., 2018; Liu et al., 2017; Smith et al., 2016). Therefore, although a substantial greening
occurred on the Earth surface from 2000 to 2015, a proportional global enhanced gross carbon sequestration
was not found (Figures 4 and 5), which appeared to be further responsible for the weak increased land carbon
sink during the same period (i.e., 0.04 Pg C/year, P > 0.05; Figure S11).

General Circulation Models project a large future rainfall variability and more frequent droughts in the
tropical regions (Fu, 2015; Lewis et al., 2011). Given the sensitivity of tropical forests to drought revealed
in this study (Figures 5, S7, and S10) as well as other independent studies (Li et al., 2017; Rowland et al.,
2015; Schwalm et al., 2017), these hydroclimate changes are likely to significantly influence tropical eco-
system productivity, thus a major mechanism to alter global carbon cycle (Baccini et al., 2017; Liu et al.,
2017; Madani et al., 2018). From 2000 to 2015, global enhanced GPP were largely contributed by nonfor-
ests, especially cropland (Figure 6). A recent study based on MODIS LAI also showed that global greening
is mainly driven by cropland (Chen et al., 2019). However, given the limited potential of carbon storage
from croplands due to harvest and consumption (Wolf et al., 2015), GPP increase in croplands at the cost
of GPP reduction in forests may have significantly shifted the distribution of land carbon sink and the role
of vegetated land as a carbon sink may be weakened or even reversed in the future (Jones et al., 2018;
Molotoks et al., 2018).
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Figure 7. Trend comparisons in global annual GPP and greenness from different data sources (a) from 2000 to 2015 and
(b) from 1982 to 2000. Three groups of GPP models were included: ML based (i.e., FLUXCOM), LUE based (i.e., CCW,
MOD17, MOD17-GIMMS, and VPM), and process based (ISIMIP2a, CMIP5, BEPS, and BESS). The vertical dash lines
indicate global greenness changing rates shown by different indicators. Global averaged greenness in (a) included MODIS-
C6 NDVI, EVI, and LAI Global averaged greenness in (b) included GIMMS3g NDVI, VIP4 NDVI, GIMMS3g LAI, and
TCDR LAL All trends in annual GPP and greenness were scaled by their multiple-year means. FLUXCOM-Mean in (a) was
the mean of FLUXCOM-ANN, —MARS and —RF from 2000 to 2013. MOD17-GIMMS and CMIP5 in (b) were from 1982 to
2011. BEPS-CO, was the GPP estimation only accounting for CO, fertilization, while BEPS was further accounted by
nitrogen constraint (He et al., 2017). * P < 0.05; ** P < 0.01. CCW = coupled carbon and water; GPP = gross primary
production; ML = machine learning; LUE = light-use efficiency; LAI = leaf area index; NDVI = normalized difference
vegetation index.

Our findings have significant implications on the ongoing commitment in mitigating global warming
through carbon sequestration. Countries have pledged to take actions to limit future global warming within
2 °C from the preindustrial temperature by 2100 at the Paris Summit (Tollefson, 2015). Our analysis implies
that global terrestrial ecosystems are still important but their capacity in sequestering atmospheric CO, may
diminish under climate and land use changes. Therefore, more rigorous anthropogenic emission reduction
and renewed efforts for forest conservation and land management that enhance carbon sequestration
(Canadell & Raupach, 2008; Davies-Barnard et al., 2015) are likely needed in a warmer world.

5. Conclusions

The Earth's terrestrial biosphere is greening, but how it is linked with terrestrial gross carbon sequestration
is not quite clear. In this study, based on a calibrated remote sensing-driven model, we investigated terres-
trial GPP dynamics in the context of VCC and climate change from 2000 to 2015. We found a much
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weaker increase in global GPP (0.08%/year; P = 0.07) when compared with the global greening rate (0.23%/
year; P < 0.001). Model simulations showed that such a mismatch between global GPP and greenness trends
was mainly caused by climate stress. Further analysis by biome indicated that the generally enhanced global
GPP was mainly contributed by cropland and other nonforest biomes, while global forests, especially in tro-
pical regions, negatively contributed to global GPP trend. Given the limited potential of carbon storage from
cropland, the contrasting GPP changes (i.e., cropland GPP increase vs. forest GPP reduction) may have
shifted the distribution of the land carbon sink. Our study suggests that the capacity of terrestrial gross car-
bon sequestration may be weakened under climate and land use changes, which has important implications
in the global carbon cycle and climate warming mitigation.
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