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Abstract: Estimates of growth or change in a forest population parameter for a specific length of time,
such as cubic meters of wood per hectare per year, are often made from sample observation intervals of
different lengths of time. For instance, a basic building block of growth estimators in forest inventory
systems is often the annual mean of the first differences of all observations for a particular year,
regardless of observation interval length. The aggregate differences between successive observations
on re-measured forest sample plots can be viewed as a linear combination, while forest growth is
usually assumed to be non-linear. Bias can be assumed to exist whenever a linear combination is
used to estimate a specific segment of an underlying non-linear trend. The amount of bias will
depend upon the relationship of the intended estimation interval relative to the set of observation
intervals. Here, three specific segments, relative to each year of interest, form the bases for a standard
set of three estimands. Bias-ratio-adjusted composite estimators for use with observations made on
alternative sets of symmetric interval lengths are compared in a simulation against this standard
set of estimands. The first estimand has a one-year basis, the second has a five-year mid-interval
basis, and the third has a five-year end-of-period basis. For the first and second bases, the initial
results clearly show a logical ordering of bias and mean-squared error by observation interval length
relative to the target interval length. As expected, some deviance from these clear trends are shown
for the end-of-period basis. In the presence of three simple distributions of symmetric measurement
intervals, the bias-ratio adjustments and subsequent composite estimators are shown to usually be
effective in reducing bias and mean-squared error, while being most obviously effective for the most
disparate distribution of intervals and for the end-of-period basis.

Keywords: national forest inventory (NFI); simulation; annual growth; estimation

1. Introduction

National forest inventories and monitoring systems provide a valuable service by collecting and
maintaining data, and by presenting summaries and interpretations of those data for public use. The
data are obtained through well-defined observations made over specific land areas and through specific
periods of time. The accompanying analyses of, and even the very presentation of these data often
have underlying assumptions that may not be immediately obvious to a new user. Additionally, even
though these assumptions are usually well documented and accessible to experienced users, their
full implications with respect to the users’ expectations often need further exploration. One such set
of assumptions concerns the use of the annual mean of the first differences of all observations for a
particular year, regardless of the length of time that passed since the previous observation. To this
end, a standard set of estimands for forest growth was defined in Roesch [1] to address a varying
set of potential user expectations for the United States Department of Agriculture (USDA)’s Forest
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Inventory and Analysis Program (FIA), which is the national forest inventory for the United States of
America (USA). The estimands differ in their basis, with each basis being defined by its period length
and viewpoint orientation (i.e., the reference year within the period.) Estimand 1 has a one-year basis,
Estimand 2 has a five-year mid-interval basis, and Estimand 3 has a five-year end-of-period basis. Also,
in that work, a number of candidate methods of bias adjustment were tested for their effectiveness in
the presence of positively asymmetric measurement intervals, such as those that might arise when
a budget reduction leads to increasing interval lengths. That is, the interval lengths were positively
asymmetric from the intended length. Here, I evaluate bias-ratio adjustments in a simulation for
effectiveness under three simple distributions of symmetric measurement intervals. The first of these
distributions is a discrete simplification of one that might arise when the re-measurement of forest
plots is randomly reordered. For all three bases, the intent is to determine the circumstances under
which bias-ratio adjustments are prudent and likely to be effective in substantially reducing both bias
and mean-squared error.

The observation of broad-area forest growth by any national forest inventory (NFI) constitutes an
observation of a mixture of more refined forest growth distributions. The components of the mixture
could be defined at different scales, such as one growth curve for each general forest type, or, more
specifically, such as one growth curve for each tree species within each narrowly defined forest type.
However one defines the components of the mixture, it will invariably be true for an NFI that some
of the components will be well understood while others will be poorly understood. It should be
recognized that the most useful of procedures for an NFI will be those that work well regardless of
the underlying distribution of components. For it is not only the goal of most NFI efforts to estimate
forest growth for the entire country, but to also be able to estimate forest growth over any sub-area and
time period of interest. This recognition is the impetus for the approach taken here. The approach
simply assumes that there exists a final joint distribution or growth curve resulting from the mixture
of underlying components. It is safest to assume that the underlying components themselves are
non-linear and that the resulting mixture distribution is non-linear. Couple this with the observation
that the aggregate differences between successive observations on re-measured forest plots for each of
the different interval lengths constitute different linear combinations, and we realize that a unique
bias can be assumed to exist when each of these linear combinations is used to estimate the mean of a
specific segment (or basis) of the underlying non-linear growth trend. It is the evaluation of this bias
and the amelioration of its effects that are of primary interest in this paper.

2. Materials and Methods

2.1. Estimators

As noted, the amount of bias for a specific interval length is annually specific, rendering this
a particularly difficult problem to model in an unsupervised inventory processing system, while
solutions that work well within an unsupervised system are highly desirable for large-scale efforts
such as national forest inventory systems. Although multiple estimation systems were discussed in
Roesch [1], to which the interested reader is referred, here, the focus is on the bias-ratio estimators
discussed there, as they are expected to be the most robust in an unsupervised system.

The assumptions and theory in this section follow the assumptions and theory discussed in
Roesch [1]. To review, let 6y;(,,) epresent an estimator of growth or change, Ay; in a population parameter
over a specific temporal interval length (or basis b), such as basal area per hectare per year, derived
from an observation interval of length m, either centered on year i (the mid-year viewpoint) or ending
in year i (the end-of-period (EoP) viewpoint).

A naive estimator, referred to below as the sample mean, is the annual mean of the first differences
of all observations for year i regardless of observation interval length. In the case of Estimands 1 and 2,
this means all intervals centered on year i, while, in the case of Estimand 3, this means all intervals
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ending in year i. The premise is that an estimator that usually dominates the naive estimator in terms
of having a smaller bias or mean-squared error (MSE) is worthy of further consideration.

Roesch [1] gave a few examples of composite estimators to combine the &y;(,,) stimators and
pointed out that only when the basis interval length b is equal to the observation interval length m, and
growth is linear under the mid-year viewpoint will a possibility exist for dy;(,,)0 be unbiased.

Composite estimators can be used to combine multiple estimators by assigning a weight to each
of the component estimators. The weights (which sum to 1) correspond to an investigator’s “degree
of belief” in each estimator’s relative applicability to an estimand of interest. When the component
estimators are biased, or might be biased, as in the case at hand, the usual practice is to base one’s
degree of belief on the inverse of an estimate (mse) of the mean-squared error (MSE) of each estimator
(Green and Strawderman [2]). For any basis b, the mse-weighted composite estimator would be

Coi = ), i) i) )
all m
where
) Y m56<6bi(m)) ¥
bi(m) Y1 /mse(ébi(m))‘
all m

Estimates of the bias and variance, the components of MSE, could be obtained either from an
earlier sample or from the current sample.

2.2. Bias-Adjusted MSE-Weighted Composite Estimators

Highly biased component estimators can be problematic in composite estimation. Roesch [1]
pointed out that, if prior information is available on the magnitude of the expected bias, then one
could attempt to adjust for the bias prior to forming the composite estimator; thus, bias adjustments
for alternative measurement intervals could be estimated under a wide range of models. The strategy
developed in that paper, utilizing a simple ratio model, is also used here.

Assume that, at year i, there exists a difference (or bias) for each observation interval of length m
relative to the basis interval length:

Byi(m) = Dbi = Domis 3)

where, as above, m and b are either centered on year i (the mid-year viewpoint) or end in year i (the
EoP viewpoint), and some estimator of By, () is available and denoted as Bbi(m).
The bias ratio for each m, relative to the basis, would then be

dy

— 4
Ami = bpi(m)

Thi(m) =

where dy; is the sample mean annual cubic meter volume growth per hectare for a period of length b,
centered on year i, and d,,,; is the sample mean annual cubic meter volume growth per hectare for all
observations from intervals of length m, centered on year i.

Once 7y;(,y) is estimated from an adequately sized sample, it could be used in subsequent samples
to adjust results for measurement intervals of size m to its basis length equivalent:

A ~

Obi(m) = Tpi(m)@mi

where d,,,; is the subsequent (or current) sample mean annual cubic meter volume growth per hectare
for all observations from intervals of length m, centered on year i.
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Substituting Sbi(m) into Equation (1) results in

Cpi = Z Qi) Obi(m) - (6)
all m
When the weights are developed a priori (from an earlier sample or “fit” data), I use the designation
of &;(n,f), and, when they are developed from the current sample (or “test” data), I use the designation
of Ap;(y,r)- This can lead to any number of potential estimators. The results from three potential
estimators, which utilize bias-ratio adjustments from the fit data applied to the test data, are given
below. The first estimator is the unweighted bias-adjusted mean:

BRAi(1) = Z (ﬁ)ébi(m)f @)

all m

where n(m) indicates the number of interval length categories. Then, the a-priori weighted composite
estimator is given as

wWBRA(r) = Z Qiom, ) Obi(m) (8)

all m

and, finally, the contemporaneously weighted composite estimator is given as

wBRAp;(+) = Z Qi(m,1)Obi(m)- )

all m

2.3. Simulation

The data from re-measured FIA forested plots from 125 FIA survey units in 34 states in the
United States were used to build 125 simulated populations. These survey units are usually groups of
counties within a state, and vary widely both in total land area and in the proportion of forest land.
The interested reader will find the data available in a public database known as the FIADB [3]. For the
purposes of this study, to build the sampled populations, I limited the data to those collected under the
annual panel design, as described in Bechtold and Patterson [4], in states with a target cycle length of
five years or less, and for which adequate data were collected for the target estimation years of 2004
through 2008. Figure 1 is a map showing these states, within the United States, in blue. These data are
the same as those used in Roesch [1] and had ending year measurements made between 1998 and 2016,
inclusive. As in the previous citation, data from measurement intervals of less than one year were
eliminated because they were not originally intended to be analyzed as growth intervals. The data
from each of the 125 populations were used to create a compatible set of five matrices, one for each of
the four components of forest growth and one for initial annual volume, as defined below. All or any
subset of these five matrices could be considered a population for simulation purposes.
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Figure 1. The states (in blue), within the United States of America (USA), from which the data were
collected by the United States Department of Agriculture (USDA) Forest Service Forest Inventory
Program (FIA) and used in this study. These data are publicly available in the Forest Inventory and
Analysis Database (FIADB) [3].

Because the survey units were so diverse, each was treated as a separate population in the
simulation, rather than using a method to construct multiple populations from a single dataset. That is,
each population is assumed to represent the set of forested conditions within its associated survey unit.
These estimation units cover a range in latitude in the northern hemisphere from approximately 25°
north (N) to 47° N.

The methods used here to construct the annual populations were previously described in Roesch [5],
for a smaller dataset, and later used in Roesch et al. [6]. The data from each forest sample plot in each
survey unit were used to create a row with a sequence of 21 successive, annual values, for each of five
compatible variables of interest, commonly referred to as the components of growth, although only
one of those variables (live growth) was used for the work reported in this paper. The five variables of
interest consist of the volume of wood (m3®-ha~!) at the beginning of each year t (V;), the growth of
wood on all living trees (L;) during the year (m3-ha~!-year™!), the volume of all living trees entering
the population (E;) during the year (m3ha!), the volume of all trees harvested (H;) during the year,
and the volume of all trees dying (M;) during the year. Compatibility would then require that

V,=Vi+L;i+E —H; —M;. (10)

The data from all measurements of each forest plot were converted into a 21-year series of values,
for each variable of interest, as described below. Most of the ground plots were measured three or
more times during the 21-year period, resulting in the observation of at least two growth periods
during the 21-year time period. The allocation of the observed values proceeded as follows: firstly, any
harvests were allocated to a particular year in the observation interval. Because exact harvest times
were unknown, harvested volume was randomly allocated to a year within each observation interval.
Linear interpolation between observations and extrapolation beyond the limits of observation were
used to obtain an initial value for the live growth, entry, and mortality components for each year, as
well as a starting cubic meter per hectare value in the first year, with annual adjustments made as
necessary when high levels of harvest and mortality reduced all volume to zero. This completion of
this process resulted in Set 1.

The underlying assumption for the matrices in Set 1 is that each 21-year series in Set 1 represents
the mean of a variable of interest for a forested condition class that is composed of similar but unique
land segments with similar developmental characteristics through the 21-year period. To achieve this
diverse set of land segments, random variance was applied 100 times at two levels to each row of Set
1. That is, each line in Set 1 was used to create 100 lines in Set 2, the population of annual values for
each survey unit. In level 1, in order to add variance but maintain trend, all values for each growth
component in each row were multiplied by a random variate, unique for the row, drawn from an N
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(1, 0.025) distribution. A second level of variance was effected annually by multiplying the result of
level 1 for each annual value in each row by a random variate, unique for each value, drawn from
an N (1, 0.0025) distribution. To maintain compatibility, the initial annual volume matrix was then
re-calculated, starting at the first year of non-zero volume observation for each line and applying the
growth components recursively. As mentioned above, this study uses only the live growth matrix from
each of the resulting populations. This process can be viewed as transforming the observations for
each remeasured plot into a 100-row by 21-year condition class in which the 21-year series of values in
each row is randomly different from the other rows in the condition class. The characteristics of the
originating FIA survey units are, for the most part, retained in these populations, and some of these
populations may be similar to specific areas in other national forest inventories. The populations are
diverse in size and composition, as illustrated in Figure 2, which gives the distribution of sizes for the
125 populations in the top graph and the standard deviation of the within-population annual variance
of cubic meter volume growth of living trees.

Population Size
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Figure 2. The size in hectares for the 125 populations (a), and the standard deviation of the
within-population annual variance of cubic meter volume growth (b).
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To create a set of populations to test the effects of interval length on the estimates of wood growth
(m3-ha~!-year~!) for an intended target length of five years, I expanded the 125 live growth populations,
by distributing the annual growth throughout the year in a manner intended to mimic intra-annual
growth. This was done to partially account for two factors. The first is that, in much of the study area,
forest plot measurements are taken throughout the year, while forest growth occurs for only part of the
year, and the growth season varies through the study area. The second is that the rate of growth varies
throughout the growing season. Unfortunately, our available data are not nearly refined enough to
allow the reliable estimation of these factors at the scale at which we know they vary. Therefore, in
the simulation, a simple approximation is used to distribute the annual growth values throughout an
approximate growing season spanning 80% of the year. To accomplish this, each year was divided into
10 equal-length segments or decimal-years (dy). Because the actual apportionment of growth to dy
within each of the underlying original populations for each year is unknown, the annual growth was
apportioned to dy 1 through 10 of each year in the proportions of 0, 0.05,0.1, 0.2, 0.2, 0.18, 0.12, 0.1, 0.05,
and 0, respectively. This created 210 columns within each row from the 21 years available (from 1995
through 2015).

The decimal-year populations were then used to examine the effects of different distributions of
interval lengths on the different estimands of interest. The distributions each combine five of the nine
interval lengths of 1, 3, 4, 4.5, 5, 5.5, 6, 7, and 9 years, which are denoted in the text as Y1, Y3, Y4, Y4.5,
Y5, Y5.5, Y6, Y7, and Y9, respectively. The sampling simulation consisted of taking 100 samples of size
1000 for each interval length from each of the 125 populations, and calculating each estimator for each
sample. Initially, I present the simulation results that are obtained from the treatment of the sample of
each interval length as a stand-alone sample. Following that, I combine the samples of three different
combinations (or distributions) of five of the nine interval lengths within each population into a single
sample in each iteration. I then compare the results with respect to three estimands, for each of the
three distributions. The entire sampling simulation, including data and R-code, is available from the
corresponding author on digital versatile disc (DVD) upon request.

3. Results

Figure 3, Figure 4, and Figure 5 show, for Estimands 1, 2, and 3, respectively, the simulation mean
volume growth (a), the simulation mean bias (b), and the simulation mean of mean-squared errors (c)
for the sample means from each of the nine interval lengths, for the years 2004-2008, over 100 samples
of size 1000 from each of the 125 populations.
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Figure 3. The simulation mean volume growth (a), the simulation mean bias (b), and the simulation
mean of mean-squared errors (c) for Estimand 1 (the annual mean) for the means from each of the nine
interval lengths of 1, 3,4, 4.5, 5, 5.5, 6, 7, and 9 years, applied to the years 20042008, from 100 samples
of size 1000 from each of the 125 populations.
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Figure 4. The simulation mean volume growth (a), the simulation mean bias (b), and the simulation

mean of mean-squared errors (c) for Estimand 2 (the five-year centralized moving average) for the

means from each of the nine interval lengths of 1, 3, 4, 4.5, 5, 5.5, 6, 7, and 9 years, applied to the years
2004-2008, from 100 samples of size 1000 from each of the 125 populations.
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Figure 5. The simulation mean volume growth (a), the simulation mean bias (b), and the mean of the
simulation mean-squared errors (c) for Estimand 2 (the five-year end-of-point (EoP) moving average)
for the means from each of the nine interval lengths of 1, 3, 4, 4.5, 5, 5.5, 6, 7, and 9 years, applied to the
years 2004-2008, from 100 samples of size 1000 from each of the 125 populations.

Figures 3b and 4b clearly show the bias that is incurred as the length of the measurement interval
moves away from the basis interval length. Note that subplots Figures 3a and 4a are identical because
they are simply the simulated sample realization of all intervals of each length. Figure 3b shows the
plot for Y1 to be the most symmetric around zero, while Figure 4b shows the plot for Y5 to be the
most symmetric around zero. This symmetry around zero is reduced in both of these subfigures as
the interval length moves away from the basis interval length. Because growth is not linear, these
subfigures also show that there are cases for individual years when the value from one or more of
these alternative plots will show less bias; however, the overall bias is still greater.

The following important question remains: Is that increase in bias large enough to have a
significant impact on mean-squared error (MSE)? Figures 3¢ and 4c show that, for the one-year basis
and the five-year mid-year basis, the answer is no. In both of these subfigures, the MSE plots are
clearly ordered for each year in inverse proportion to interval length. That is, the variance reduction
achieved through the longer interval lengths outweighs the increase in bias (squared). Therefore,
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although attempts at bias reduction when combining these intervals may be somewhat successful, the
subsequent effect on overall MSE would be expected to be minimal.

Figure 5, for the five-year EoP basis, tells a somewhat more complex story than Figures 3 and 4.
In this figure, all sample interval lengths are applied to the final year of the five-year basis. For that
reason, the plot for a one-year observation interval (Y1) in Figure 5a matches the plots for Y1 in Figures
3a and 4a, but the plots for all other intervals are different. Owing to the effect of lag bias, the plots for
the four-year observation interval (Y4) and the 4.5-year observation interval (Y4.5) show slightly less
overall bias than the plot for the five-year interval (Y5), and the plot for Y4.5 shows the closest match to
the basis-matching symmetry noted in Figures 3 and 4. That is, the sample contributing to the Y5 plot
for year y contains intervals occurring throughout year y to predict the values for the five-year period
ending at the end of year y. Therefore, a small part of the growth observation occurs outside of the
basis of interest. Also, the overall bias is greater for the non-basis intervals (i.e., those other than Y4,
Y4.5, and Y5) in Figure 5b than in Figures 3b and 4b. Although it seems that successful bias adjustment
might be beneficial overall, it is much less clear what the model for bias adjustment should be. The
symmetry observation suggests that it might be reasonable to “prefer” an adjustment to Y4.5, Y4, and
Y5, in that order, for the five-year EoP basis, when sufficient data are available at those alternative
(to Y5) interval lengths. If one rather preferred that the estimates be drawn from within the basis of
interest, then one should prefer an adjustment to Y4, Y4.5, and Y5, in that order.

Consider the three following symmetric distributions, each consisting of five of the nine interval
lengths given above in equal proportions:

Distribution 1 (d1) uses the five interval lengths of 4, 4.5, 5, 5.5, and 6 years;

Distribution 2 (d2) uses the five interval lengths of 3, 4, 5, 6, and 7 years;

Distribution 3 (d3) uses the five interval lengths of 1, 3, 5, 7, and 9 years.

These distributions are symmetric around the target observation interval length of five years.
For each distribution, 1000 rows were sampled in equal proportions for each of the five intervals, in
each of the 125 populations, for 100 iterations. Additionally a “fit” dataset was developed using the
same methods, which comprised 5000 rows from each population (five iterations of samples without
replacement of 1000 rows each).

Above, I presented the simulation results that were obtained from the treatment of the sample of
each interval length as a stand-alone sample. Below, I combine the samples of the five interval lengths
within each population into a single sample in each iteration. I then compare the results with respect
to three estimands, for each of the three distributions.

Figure 6, Figure 7, and Figure 8 show, for Estimands 1, 2, and 3, respectively, the simulation mean
bias (left) and the simulation mean of mean-squared errors (right) for each of four estimators (the
sample mean, BRAy;(;), wBRAy;(r) and wBRAy; ;) for each of the three distributions. These estimators
are plotted with MeanPPer, which is simply the mean of the sample interval most closely corresponding
to the basis interval for each distribution. MeanPPer would not usually be considered, because normally
it would have a small sample size, and the interval length from which it is drawn might not be one of a
small, discrete set of intervals, as it is in this simulation. Therefore, in this simulation, favorable results
in terms of MSE for MeanPPer simply indicate that filtering out the observations arising from more
diverse interval lengths might be a reasonable approach.
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Figure 6. The simulation mean bias in the left graphs (a, ¢, and e) and the simulation mean of

mean-squared errors in the right graphs (b, d, and f) for Estimand 1 (with a one-year basis), for each

distribution d1 through d3, from top to bottom, respectively. These summary statistics were compiled

after 100 iterations of composite samples of size 1000, for each of five sample observation lengths,

within each of the 125 populations.
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Figure 7. The simulation mean bias in the left graphs (a, ¢, and e) and the simulation mean of

mean-squared errors in the right graphs (b, d, and f) for Estimand 2 (with a five-year mid-year basis),

for each distribution d1 through d3, from top to bottom, respectively. These summary statistics were

compiled after 100 iterations of composite samples of size 1000, for each of five sample observation

lengths, within each of the 125 populations.
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Figure 8. The simulation mean bias in the left graphs (a, ¢, and e) and the simulation mean of
mean-squared errors in the right graphs (b, d, and f) for Estimand 3 (with a five-year EoP basis), for
each distribution d1 through d3, from top to bottom, respectively. These summary statistics were
compiled after 100 iterations of composite samples of size 1000, for each of five sample observation
lengths, within each of the 125 populations.

These summary statistics were compiled after 100 iterations of composite samples of size 1000,
for each of five sample observation lengths, within each of the 125 populations, for each of the three
distributions. The estimand in Figure 6 is Estimand 1, the population’s annual average for each year of
interest, while the estimand in Figure 7 is Estimand 2, the population’s five-year annualized mean
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centered on each year of interest, and the estimand in Figure 8 is Estimand 3, the population’s five-year
annualized mean attributed to the end year in each series.

4. Discussion

Figure 6, for Estimand 1 with a one-year basis, shows that there is usually some advantage to
bias adjustment, as well as some additional benefit to inverse-MSE-weighted composite estimation.
All bias graphs (Figure 6a,c,e) show the alternative estimators to be more symmetrical around zero
than the sample mean (or naive estimator). This is what one would expect. Additionally all of the
MSE graphs (Figure 6b,d,f) show the alternative estimators to almost always have a smaller MSE than
the sample mean. This is true even for MeanPPer, which uses one-fifth of the data being used by the
other estimators. MeanPPer is usually greater in MSE than the other alternative estimators (BRA;(;,
wBRAy;(f), and wBRAy; (1)) in Figure 6b,d, for the two least dispersed distributions (d1 and d2). This is
also true in Figure 6f for the most dispersed distribution (d3), although the distinction is less clear.
Note also that, in the corresponding bias graph (Figure 6e), there is virtually no distinction between the
alternative estimators. At least two factors contribute to this. The first is that the closest interval in d3
to the estimand of interest is the one-year interval, meaning that all observation intervals contributing
to MeanPPer are very close to the annual interval of interest. The second factor is that, even though
these distributions are all symmetrical around the intended observation interval of five years, they are
increasingly asymmetrical (from d1 to d3) from the one-year basis for Estimand 1.

Figure 7, for Estimand 2, shows that there is not much need for bias adjustment or inverse-MSE
weighting for d1 and d2. Recall that d1 uses the interval lengths of 4, 4.5, 5, 5.5, and 6 years, and d2
uses lengths of 3, 4, 5, 6, and 7 years. This would seem to indicate that these interval lengths, when
symmetrically distributed, are not sufficiently far from the five-year mid-year basis to have a negative
impact on estimation of Estimand 2. In fact, when examining Figure 7a, one can see that attempts at
bias adjustment resulted in bias plots which are less symmetrical around zero, which could indicate a
tendency to increase overall bias. For d3, the bias adjustment appears to have had a small advantage,
resulting in more symmetrical plots around the zero line than the sample mean in Figure 7e, which, for
four of the five years, contributed to the small reduction in MSE seen in Figure 7f.

In considering Estimand 3 with a five-year EoP basis, Figure 8 shows some advantage to bias
adjustments given sampling interval distributions d2 and d3, and a clear additional benefit to the use
of inverse-MSE-weighted composite estimation is seen for all three distributions d1, d2, and d3 over
use of the naive sample mean.

These simulation results show that, if the estimand of interest and the center of the target
observation interval are in close correspondence, then a symmetrical distribution of actual observation
intervals can have a level of deviation from the target interval length that would arise from logistically
driven changes in the order of field plot observation without adversely affecting growth estimates.
This is arguably the case when observation distribution d1 is applied to the five-year mid-year
basis and closely represented by the simulation results in Figure 7a,b. The advantages afforded by
observation intervals which are approximately symmetrical to the basis of interest are further reinforced
in the remainder of Figure 7. Figures 6 and 8 show substantial improvement in terms of MSE for the
alternative estimators over the naive estimator, while that improvement is less obvious in Figure 7.
This improvement was not necessary for Estimand 2, while it was necessary for Estimands 1 and 3.
This is due solely to the fact that only for Estimand 2 is the distribution of the varying growth intervals
symmetrical with respect to the estimand.

Forest growth is an inherently non-linear phenomenon, while many forest inventory algorithms
in NFI systems rely implicitly on linearity assumptions. These linearity assumptions are often useful
and pragmatic; however, their limitations often go untested. For instance, the class of sample designs
being considered in this paper (temporally overlapping panelized designs) does not have an inherent
assumption of linearity, but both the implementation of the design and the choice of data aggregation
methods almost always do have linearity assumptions. This work recognizes that the “realized”
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sample is often different from what was intended by the sample design, while the theory justifying
or underlying most forest monitoring estimation systems relies solely on a description of the sample
design rather than on the “actual” or “realized” sample. The work reported here is a further exploration
of the bias that can arise as a result of these differences and a mitigating bias adjustment procedure.
Note that, if forest growth actually was a linear phenomenon and all growth intervals were actually
symmetric with respect to the intended interval, then the bias investigated in this series of simulations
with respect to all three estimands would not exist.

As in previous work, the idea of an established set of target estimands proved useful in that
it provided a forum for discussion about how estimators can be modified to address various users’
expectations when they encounter the term “average annual growth”.

5. Conclusions

The simulation results demonstrate that, even if the distribution of the varying-length observation
intervals is symmetric with respect to the intended observation interval length, the degree to which
the procedures described here will be necessary or helpful depends both upon the degree of local
curvilinearity of the underlying growth function and upon the degree of symmetry between the
estimand of interest and the actual observation intervals. The relative advantages of bias adjustment
and composite estimation depend upon at least three factors: the temporal length of the estimand of
interest, the locus of the observation intervals relative to the locus of the estimand of interest, and the
variability in observation interval lengths. Specifically, we see that there can be substantial advantage
to bias adjustment and inverse-MSE-weighted composite estimation when the mean observational
interval length is substantially different from the length of the basis (as in Estimand 1) and when the
basis interval center does not correspond to the differing-length observation interval centers (as in
Estimand 3).
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