Effect of Bark Application With Beauveria bassiana and Permethrin Insecticide on the Walnut Twig Beetle (Coleoptera: Curculionidae) in Black Walnut Bolts

Albert E. Mayfield III,1,6 Jennifer Juzwik,2 Jamison Scholer,3 John D. Vandenberg,4 and Adam Taylor5

1USDA Forest Service, Southern Research Station, 200 W.T. Weaver Blvd., Asheville, NC 28804, 2USDA Forest Service, Northern Research Station, 1561 Lindig Street, St. Paul, MN 55108, 3University of California Riverside, Department of Entomology, 417 Entomology Bldg., Riverside, CA 92521, 4USDA Agricultural Research Service (Retired), Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, 5University of Tennessee, Center for Renewable Carbon, 2506 Jacob Drive, Knoxville, TN 37996, and 6Corresponding author, e-mail: albert.e.mayfield@usda.gov

Subject Editor: Timothy Schowalter

Received 11 February 2019; Editorial decision 6 May 2019

Abstract

Formulations of entomopathogenic (insect-killing) fungi represent alternatives to synthetic insecticides in the management of forest and shade tree insects. We evaluated bark spray applications of the entomopathogen Beauveria bassiana (Balsamo) Vuillemin (Hypocreales: Cordycipitaceae) strain GHA (BotaniGardES), permethrin insecticide (Astro), and water (control) on colonization of black walnut (Juglans nigra L.) (Fagales: Juglandaceae) bolts by the walnut twig beetle (Pityophthorus juglandis Blackman) (Coleoptera: Curculionidae), vector of the fungus that causes thousand cankers disease. Treated bolts were baited with a P. juglandis aggregation pheromone lure and deployed in infested walnut trees. Bark application of permethrin prevented P. juglandis colonization of the phloem. Although treatment of bolts with the B. bassiana suspension did not reduce P. juglandis colonization or short-term emergence relative to the control treatment, it increased the B. bassiana infection rate from 25 to 62% of emerged adults. Results suggest that commercial applications of B. bassiana strain GHA may help augment natural levels of infection by this entomopathogen in the eastern United States, and support continued exploration of entomopathogens for biological control of the walnut twig beetle.

Key words: entomopathogen, thousand cankers disease, biological control, Juglans nigra, Pityophthorus juglandis

Practical and environmental limitations on the use of synthetic insecticides in natural ecosystems have generated interest in using entomopathogenic (insect-killing) fungi for control of forest and shade tree insects (Hajek and Bauer 2007). Entomopathogenic fungi such as Beauveria bassiana (Balsamo) Vuillemin (Hypocreales: Cordycipitaceae) Vuillemin and Metarhizium brunneum Petch (formerly M. anisopliae) (Hypocreales: Clavicipitaceae) occur in nature worldwide, and various strains of these fungi are used as active ingredients in formulations of registered biological insecticides (Shah and Pell 2003). Formulations of B. bassiana have exhibited pathogenicity against several important species of bark and ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) (Kreutz et al. 2004, Castrillo et al. 2013, Carrillo et al. 2015, Seri et al. 2017), suggesting that entomopathogenic fungi are worthy of consideration as biological control agents for other scolytine beetles.

The walnut twig beetle, Pityophthorus juglandis Blackman (Curculionidae: Scolytinae) transmits a fungal associate (Geosmithia morbida) Kolářík, Freeland, Utley and Tisserat) (Hypocreales: Bionectriaceae) that causes cankers on walnut (Juglans spp.) and wingnut (Pterocarya spp.) (Tisserat et al. 2009, Hishinuma et al. 2016). Synergistic activity of both biotic agents causes dieback and mortality in various species of both tree genera (Kolářík et al. 2011, Serdani et al. 2013, Hishinuma et al. 2016, Seybold et al. 2019). This syndrome, known as thousand cankers disease, develops as a consequence of numerous P. juglandis brood galleries and subsequent cankers in the phloem caused by G. morbida and potentially Fusarium solani (Tisserat et al. 2009, Kolářík et al. 2011, Montecchio et al. 2015). Thousand cankers disease and P. juglandis have been detected in the eastern United States on black walnut (Juglans nigra L.) (Fagales: Juglandaceae) (Seybold et al. 2019), a host with high economic and ecological value (Newton et al. 2009). Because J. nigra produces nuts that may be consumed by both humans and wildlife, options to protect live trees from P. juglandis attack using systemic or traditional, topically applied synthetic insecticides are limited.
(Daniels et al. 2016). Biologically based management options that reduce the population density of *P. juglandis* on individual trees would be useful for minimizing the impacts of thousand cankers disease.

In a preliminary survey in 2011, natural occurrence of *B. bassiana* was detected on 15% of *P. juglandis* adults (*n* = 41) collected from infested *J. nigra* trees in Knox Co., Tennessee that had no history of commercial *B. bassiana* treatments (J. Juzwik, unpublished data). A pilot study was therefore initiated to determine whether application of a commercial formulation of *B. bassiana* could augment the natural rate of fungal infection in *P. juglandis*. The pilot study was followed by a more extensive, 2-yr study which demonstrated that applications of two entomopathogenic fungi (*B. bassiana* strain GHA and *M. brunneum* strain F52) significantly reduced the number of attacks, brood production, and emergence of *P. juglandis* from treated *J. nigra* bolts (Castrillo et al. 2017). Here, we report the results of the pilot study that evaluated *P. juglandis* colonization, emergence, and *B. bassiana* infection rates in bolts sprayed with 1) a commercial formulation of *B. bassiana* strain GHA, 2) a synthetic insecticide registered for bark beetle stem treatments (permethrin), and 3) water only (control).

Materials and Methods

In June 2013, 54 bolts (60 cm long, mean [SE] diameter 10.9 [0.2] cm) were cut from healthy, asymptomatic *J. nigra* trees in a plantation in McDowell County, NC, 113 km east of any known *P. juglandis* infestations or trees symptomatic of thousand cankers disease. Thousand cankers disease was first detected in North Carolina in 2012, but has not been detected outside of the northwestern portion of Haywood County (North Carolina Forest Service 2017). Bolts were arranged into three groups of 18 bolts of equal group mean diameter (*F* = 0.10; *df* = 2,53; *P* = 0.906), and each group was randomly assigned to one of three spray treatments: 1) BotaniGardES (a.i. *B. bassiana* strain GHA 11.3%; Laverlam International Corp., Butte, MT), 2) Astro Insecticide (a.i. permethrin 36.8%, FMC Corp., Philadelphia, PA), and 3) control (water only). Prior to treatment, the viable *B. bassiana* conidial content of BotaniGardES was 8.6 × 10^6 conidia per ml, estimated by plating 100 µl aliquots of a 10^2 dilution of the stock suspension on 0.25 strength Sabouraud dextrose agar with yeast extract. For bolt treatment, BotaniGardES was diluted in tap water (946 ml product in 7.6 liters total volume) producing a suspension containing 1.08 × 10^8 *B. bassiana* conidia per ml. Astro was diluted in tap water (9.46 ml product, 7.6 liters total volume) producing a solution containing 4.8 mg permethrin per ml. Bolts were sprayed by using a pressurized, hand operated tank sprayer delivering approximately 10 ml per second to the point of runoff, and delivering approximately 1.85 × 10^8 *B. bassiana* conidia and 0.83 mg permethrin per cm² of bark surface, respectively. Control bolts were sprayed with tap water only. Spray times per bolt (range 23–45 s) were calibrated by 1) spraying three practice bolts to the point of runoff and calculating the average surface area (cm²) covered by 1 ml of spray (bolt surface area/tank fluid volume loss), 2) dividing the surface area of each treatment bolt by this value to determine the target spray volume, and 3) dividing the target spray volume by the sprayer delivery rate.

After treatment, one *P. juglandis* pheromone lure (product #30000736, Contech Enterprises Inc., Delta, BC) was stapled to the midpoint of each bolt to attract flying beetles, and a white adhesive card (7.6 × 17.5 cm, AlphaScents Inc., West Linn, OR) was attached to the opposite side to assess *P. juglandis* landing rates (estimate of beetle pressure). One cut end of each bolt was fitted with a steel screw eye, which was attached to a rope and raised into the crown of a live, infested *J. nigra* tree. Three bolts per tree (one of each treatment) were raised into three infested *J. nigra* trees at each of six sites in Knox County, TN (18 tree replicates, 54 bolts total). Within each tree, bolts of different treatments were randomly assigned to spots within the crown, separated by ≥ 3 m and hung 5–8 m above ground. On days 10 and 19 post-deployment, bolts were lowered, adhesive cards were replaced, and the number of *P. juglandis* per card were counted. Counting with adhesive card replacements, bolts in the *B. bassiana* treatment only were re-sprayed with the BotaniGardES suspension, based on label recommendation to re-treat on 5–10 d intervals (permethrin and control bolts were not re-treated).

After 28 d, each 60 cm bolt was returned to the laboratory at the University of Tennessee, Knoxville, and cut into two 30 cm pieces. One piece was randomly assigned to a ventilated rearing container (described in Mayfield et al. 2014) and the dry collection cups were checked daily for adult *P. juglandis* emergence for 10 wk. Emerged adults were placed individually into 1.5-ml microcentrifuge tubes, stored at 10°C, and shipped every 5 d to the USDA Forest Service Northern Research Station laboratory in St. Paul, MN. Each adult was plated on dodine wheat germ agar (DWGA) in 100 mm dia Petri plates and incubated at 24°C. Ingredients of DWGA were 1,000 ml aqueous extract of 30 g wheat germ, 0.25 g chloramphenicol, 0.3 g dodecyl (65% n-dodecyl-guanidine acetate), 10 mg crystal violet, and 15 g granulated agar per 1 liter agar. Presence of *B. bassiana* sporulation on each beetle cadaver was determined after 5, 10, and 15 d. The fungus was identified based on colony morphology and microscopic features (conidia and conidiophores; Dugan 2006) and compared with those of reference cultures. The other 30-cm piece was peeled of its bark and assessed for *P. juglandis* nuptial chambers, egg galleries, adults, and larvae. Numbers of nuptial chambers and egg galleries observed were recorded. Length of larval tunnels emanating from egg galleries were measured by using a Scalex MapWheel (Scalex Corp., Carlsbad, CA) and summarized by bolt. *P. juglandis* larvae and adults (not exceeding 24 specimens of each type per bolt) were plated on DWGA and assessed for *B. bassiana* sporulation as described above.

Mixed-model analysis of variance (ANOVA) was conducted by using the Fit Model procedure in JMP 14.0.0 (SAS Institute Inc. 2018) to test whether means of the following *P. juglandis* variables differed by treatment: adults trapped per week on adhesive cards, number of nuptial chambers and egg galleries per peeled bolt, total length of larval tunnels per bolt, and number of adults emerged per containerized bolt. Treatment and tree (i.e., the infested *J. nigra* in which bolts were hung) were modeled as fixed and random effects, respectively. Models were fit by using a Standard Least Squares approach and the Restricted Maximum Likelihood (REML) method. A contingency table analysis was conducted by using the Fit Y by X procedure in JMP 14.0.0 to test whether the control and *Beauveria* spray treatments differed in the proportion of *P. juglandis* beetles infected with *B. bassiana* post-treatment. Separate analyses were performed for adults emerged from containerized bolts, and adults and larvae extracted from peeled bolts. Bolts treated with permethrin were not colonized and so were excluded from contingency analyses.

Results and Discussion

The number of *P. juglandis* adults trapped on the adhesive sticky cards did not differ by spray treatment (Table 1), indicating that the treatments did not affect the attractiveness of the bolts in the field. No *P. juglandis* were found within the phloem peeled from bolts treated with permethrin (Astro), and with the exception of one adult recovered from one collection cup, no emergence was detected from
The table below shows the mean (SE) and ANOVA statistics comparing *Pityophthorus juglandis* landing rate, colonization, and emergence variables for *Juglans nigra* bolts (*n* = 18 per treatment) subjected to different bark spray treatments in Knox County, TN, 2013.

<table>
<thead>
<tr>
<th>Spray treatment</th>
<th>Permethrin</th>
<th>Beauveria</th>
<th>Control</th>
<th>F</th>
<th>df</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adults trapped per week on adhesive cards</td>
<td>23.6 (6.6)</td>
<td>19.1 (4.8)</td>
<td>22.1 (4.4)</td>
<td>0.50</td>
<td>2,34</td>
<td>0.611</td>
</tr>
<tr>
<td>Nuptial chambers per peeled bolt</td>
<td>0.0 (0.0)</td>
<td>23.2 (3.8)</td>
<td>22.2 (2.9)</td>
<td>0.06</td>
<td>1,17</td>
<td>0.805</td>
</tr>
<tr>
<td>Egg galleries per peeled bolt</td>
<td>0.0 (0.0)</td>
<td>72.4 (12.9)</td>
<td>57.0 (8.1)</td>
<td>1.39</td>
<td>1,17</td>
<td>0.255</td>
</tr>
<tr>
<td>Larval tunnel length (cm) per peeled bolt</td>
<td>0.0 (0.0)</td>
<td>98.5 (22.3)</td>
<td>85.7 (22.9)</td>
<td>0.38</td>
<td>1,17</td>
<td>0.547</td>
</tr>
<tr>
<td>Adults emerged per containerized bolt</td>
<td>0.05 (0.05)</td>
<td>73.3 (22.3)</td>
<td>65.3 (22.9)</td>
<td>0.07</td>
<td>1,17</td>
<td>0.798</td>
</tr>
</tbody>
</table>

The permethrin treatment (Astro insecticide) was excluded from ANOVAs for beetle colonization and emergence variables because means and variances in this treatment were nearly or equal to zero. For these variables, summary statistics reflect the comparison between the Beauveria (BotaniGardES, *B. bassiana* strain GHA) and control (water) treatments only.

Table 2. *Beauveria bassiana* (*Bb*) infection rates in *P. juglandis* beetles emerged from containerized *J. nigra* bolts (*n* = 18 per treatment), and extracted from peeled bolts, for *Beauveria* and control spray treatments applied in Knox County, TN, 2013

<table>
<thead>
<tr>
<th>Response variable</th>
<th>Total no. P. juglandis beetles assessed</th>
<th>No. beetles Bb positive</th>
<th>Infection rate (percent Bb positive)</th>
<th>χ²</th>
<th>Prob > χ²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adults emerged (containerized bolts)</td>
<td>764</td>
<td>691</td>
<td>476</td>
<td>171</td>
<td>62.3%</td>
</tr>
<tr>
<td>Adults extracted (peeled bolts)</td>
<td>345</td>
<td>338</td>
<td>149</td>
<td>9</td>
<td>43.2%</td>
</tr>
<tr>
<td>Larvae extracted (peeled bolts)</td>
<td>172</td>
<td>378</td>
<td>18</td>
<td>1</td>
<td>10.5%</td>
</tr>
</tbody>
</table>

The Pearson chi-square (χ²) statistic was used to test the null hypothesis of no difference between the Beauveria (BotaniGardES, *B. bassiana* strain GHA) and control (water) spray treatments in the proportion of beetles infected with *B. bassiana*.

In contrast, *P. juglandis* readily colonized and initiated reproduction in both the Beauveria-treated (BotaniGardES) and control bolts. The mean length of larval tunnels and the mean numbers of nuptial chambers, egg galleries, and adult *P. juglandis* emerged per bolt did not differ between the Beauveria treatment and the control (Table 1). However, *B. bassiana* infection rates were greater in *P. juglandis* larva and adults recovered from Beauveria-treated bolts than from control bolts (Table 2). Beetles infected with *B. bassiana* in the control treatment likely represented naturally infected beetles, but it is also possible that some flying *P. juglandis* adults visited Beauveria-treated bolts in the field before visiting control bolts. We maximized the distance between bolts within tree crowns to minimize this possibility.

The voltinism of *P. juglandis* in eastern TN is uncertain but is presumed to include at least two overlapping generations per year; adults and larvae are known to overwinter and adult flight occurs primarily from late spring through the fall (Nix 2013, Daniels et al. 2016). Because *P. juglandis* can complete a generation within 7 wk (Tisserat et al. 2009), emerging adults in this study may have included both founder adults that attacked the bolts in the field and some adults of the next generation that completed development in the bolt. Although the Beauveria treatment in this experiment had no significant effect on total *P. juglandis* emergence, a subsequent study showed that application of BotaniGardES drastically reduced the number of adults emerging from treated bolts over a 5-mo period (Castrillo et al. 2017). Our emergence results may have differed from those of Castrillo et al. (2017) either because emergence monitoring ended too early to reveal treatment differences, or due to a longer period of treated bolt exposure to sunlight in the field. Viability of *B. bassiana* conidia is reduced by exposure to ultraviolet light (Inglis et al. 1995) and despite our retreatment of bolts in the field every 9–10 d, the bolts may have been subject to sufficient sunlight during the 28-d field exposure to reduce conidial viability. Nonetheless, our results support those of Castrillo et al. (2017) in demonstrating that commercial applications of *B. bassiana* strain GHA can augment natural entomopathogen infections in the field, and deserve continued exploration as biologically based, environmentally acceptable alternatives to synthetic insecticides in the management of *P. juglandis* and thousand cankers disease.

Acknowledgments

We thank Robert Camp and Jackson Audley (formerly University of Tennessee), Corrine Fretwell (formerly University of North Carolina at Asheville) and Andrew Tait (formerly North Carolina State University) for field and laboratory assistance associated with this project. We also thank Louela Castrillo (USDA ARS Collection of Entomopathogenic Fungal Cultures) for reviewing and providing helpful comments on a pre-submission draft of the manuscript. This project was supported by the USDA Forest Service Northern Research Station, Southern Research Station, Washington Office Forest Health Protection, and the University of Tennessee Center for Renewable Carbon.
References Cited

