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Confirming presence and distribution of a species is necessary for effective conservation. However, obtaining
robust occupancy estimates and confidently identifying factors important to occupancy may be difficult for
rare and elusive species. Further, in surveys to assess presence, false-positive detections bias results; however,
false-positive occupancy models can resolve this bias and, thus, better support conservation. We assessed the
performance of false-positive versus standard occupancy models and important factors predicting presence for a
low-density bat population in the southern Appalachian Mountains. From May to August 2013-2015, we surveyed
35 sites for northern long-eared bats (Myotis septentrionalis) using both mist-net and acoustic methods. We
compared AIC_ values for 13 standard occupancy models and 13 corresponding false-positive occupancy models.
In our model comparison, false-positive models received more support, while none of the standard occupancy
models were plausible. False-positive occupancy models produced a wider range of probability of occupancy
estimates (0.004-0.998) and lower mean occupancy estimate (0.62) than standard models (0.482-0.970,
mean = 0.86). Weighted parameter estimates for important predictors in two plausible false-positive occupancy
models indicated the probability of occupancy for northern long-eared bats was higher at less-rugged, lower-
elevation sites. In contrast, there was more ambiguity regarding the most plausible standard occupancy models
and important predictors of occupancy from standard models. Due to low capture rates and the uncertainty of
acoustic identifications, we recommend coupling a certain method with uncertain methods when surveying rare
and elusive bat species. Applying false-positive occupancy models to our data yielded less-biased site-specific
occupancy estimates and informative predictors, and, hence, more reliable predictions to inform conservation
management plans.
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It is crucial to resource managers to be able to accurately and
efficiently monitor animal populations, but it can be difficult
to confirm presence for rare and elusive species (McDonald
2004). While mark-recapture methods are ideal for estimat-
ing abundance, this approach may be impractical for rare
species due to low recapture rates, as well as time and cost con-
straints. Cryptic species may go undetected even when present
(MacKenzie et al. 2004) and the probability of detection will
vary depending on the survey method used (e.g., Bailey et al.
2013). For example, when surveying for the red fox (Vulpes
vulpes), Vine et al. (2009) concluded that the efficacy of four
different methods varied seasonally; these authors advised the

appropriate method should be selected with consideration for
time of year and species’ biology. Likewise, detection prob-
ability varies with the method used to survey rare species, such
as the northern flying squirrel (Glaucomys sabrinus—Diggins
et al. 2016).

Surveying for bats, which tend to be cryptic (Weller 2007)
and increasingly uncommon (O’Shea et al. 2016), presents par-
ticular challenges. In eastern North America, Myotis bats are
small (4-14 g—Reid 2006), typically brown or gray, and use
high-frequency echolocation calls (around 40 kHz) that attenu-
ate rapidly (Jones 1999). During the summer, eastern Myotis
mainly roost in relatively small colonies (typically 10-80
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individuals), often hidden in cavities or crevices of dead trees
(Barclay and Kurta 2007). Adding to the challenge of detect-
ing these elusive bats, Myotis populations are in steep decline
in eastern North America, primarily due to disease, habitat
loss, and other anthropogenic factors (O’Shea et al. 2016). For
example, the fungal disease white-nose syndrome (WNS) has
decimated Myotis bat populations. Data from over 400 win-
ter hibernacula documented local extinctions for four Myotis
species, with local extinctions for northern long-eared bats
(Myotis septentrionalis) at 69% of 468 caves surveyed (Frick
et al. 2015). In the study described herein, we examined sum-
mer occupancy rates for the northern long-eared bat, now des-
ignated as federally threatened due to declines from WNS (U.S.
Fish and Wildlife Service 2016).

There are two primary methods used to survey for Myotis
bats in summer: mist-net surveys and acoustic surveys. While
each has limitations, combining methods alleviates some
known issues (Robbins et al. 2008). Biologists conduct mist-
net surveys in suitable habitat and count on the certain iden-
tification of a captured bat to assess site-specific presence or
probable absence of eastern Myotis (U.S. Fish and Wildlife
Service 2017). However, capture surveys may be less effective
for documenting presence for species that exist in dispersed,
low-density populations. For example, Murray et al. (1999)
documented Myotis presence during 43% of mist-net surveys
and 91% of acoustic surveys in the midwestern United States,
suggesting low detection probabilities during mist-net surveys.
Acoustic surveys, which are noninvasive, require less labor
per site than mist netting, and allow sampling of sites that are
impractical for capture surveys (e.g., open areas), are also rec-
ommended for detecting rare and cryptic Myotis bats (U.S. Fish
and Wildlife Service 2017). Using acoustic detectors, we can
record the unique echolocation calls of bats, some of which are
specific to the genus or species level; yet, we lack the identifica-
tion certainty associated with mist-net captures (Barclay 1999;
Britzke et al. 2013; Russo et al. 2018). For example, for three
eastern Myotis—M. sodalis, M. lucifugus, and M. septentriona-
lis—there is significant overlap in the characteristic frequency
and duration of their echolocation calls (e.g., Broders et al.
2004; Szewczak and Harris 2013). Automated identification
software programs allow consistent, unbiased measurements of
call parameters and decrease analysis time, but misidentifica-
tions still occur (Lemen et al. 2015; Russo and Voigt 2016).
Supplementing mist-netting methods with acoustic methods
could enhance the sensitivity of presence surveys, but due to
limitations in the accuracy of identification, acoustic surveys
should not simply replace mist-net captures (O’Farrell and
Gannon 1999; Robbins et al. 2008; Romeling et al. 2012).

Along with survey methods with high detection probabili-
ties, it is important to use appropriate analytical tools that
account for the difficulty of detecting rare and elusive species.
Sampling species to estimate detection and occupancy prob-
abilities yields informative survey data (e.g., identifying factors
affecting detection and presence), while also accommodat-
ing for multiple sampling methods and protocols (MacKenzie
et al. 2004; Bailey et al. 2013). Multiple studies have applied

occupancy models to estimate probability of detection and
probability of presence for bats (Yates and Muzika 2006;
Gorresen et al. 2008; Weller 2008; Hein et al. 2009; Kaiser
and O’Keefe 2015). Such models generate occupancy esti-
mates that include a probability of detection parameter, which
accounts for false negatives (i.e., not detecting a species when it
is present—MacKenzie et al. 2017). Standard occupancy mod-
els incorporate site-history data (number of surveys and detec-
tions) and probability of detection parameters for calculating
probability of occupancy. However, standard models assume
that all methods have complete certainty, e.g., detection from a
captured bat in the hand is equal to that of a recorded echoloca-
tion call, and do not account for misidentifications that lead to
false-positive detections. Although accounting for false nega-
tives can lessen biases, using a method prone to false positives
(e.g., acoustic recordings of bats—Kaiser and O’Keefe 2015)
without accounting for uncertainties might yield biased occu-
pancy estimates (Miller et al. 2011).

A new approach has emerged that accounts for false posi-
tives in occupancy models; this approach allows us to combine
mist-net and acoustic survey results, accounting for the uncer-
tainty in acoustic identification. Building on an idea first pre-
sented by Royle and Link (2006), Miller et al. (2011) devised
a method to improve occupancy estimates when some positive
detections are actually false positives. Unlike standard mod-
els, false-positive occupancy models include a parameter that
accounts for the probability of incorrectly detecting the species
at an unoccupied site. Miller et al. (2013) applied false-pos-
itive occupancy methods to a multi-season wolf study where
radiocollared gray wolves (Canis lupus) were considered cer-
tain detections and hunter surveys with potential for misiden-
tifications were considered uncertain detections. Clement et al.
(2014) used false-positive occupancy models in a single-season
study on little brown bats (M. lucifugus) in Oregon; here, mist-
net captures were certain detections, while acoustic surveys
yielded uncertain detections. Clement et al. (2014) recom-
mended the use of false-positive models over standard models
for bat surveys, as these models provide more robust occupancy
estimates. Early efforts to apply this method have demonstrated
that we can generate more accurate occupancy estimates by
treating certain and uncertain detections differently in the mod-
eling process. However, the single-season study conducted by
Clement et al. (2014) was with a relatively healthy population
of little brown bats in Washington and Oregon that had not been
impacted by WNS.

We assessed the performance of false-positive occupancy
models with a low-density Myotis population in the southern
Appalachian Mountains. Evidence of WNS was discovered
in this region during winter 2008-2009 (Samoray 2011; Ford
et al. 2012; Powers et al. 2015). Subsequently, winter captures
of northern long-eared bats decreased by 52% in northeastern
Tennessee (Bernard and McCracken 2017) and summer cap-
tures declined by 41% in West Virginia (Ford et al. 2012). We
used mist-net and acoustic survey data collected in 2013-2015
to compare the efficacy of standard and false-positive occu-
pancy models for predicting northern long-eared bat presence
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across a seven-county area. Our main objective was to assess
which models (standard or false positive) produced the most
plausible northern long-eared bat occupancy estimates. We
also aimed to determine, based on our plausible models, what
parameters were important for detecting and predicting occu-
pancy by northern long-eared bats.

MATERIALS AND METHODS

Study area.—Our study was conducted in the northern dis-
tricts of the Cherokee National Forest (NCNF) in northeastern
Tennessee. The 140,350 ha of the NCNF is encompassed within
the southern Appalachian Mountains and ranges from 457 to
1,487 m a.s.l. in elevation. The major forest type was chestnut
oak (Quercus montana), with oak-yellow pine (Pinus subgenus
Diploxylon) and poplar (Liriodendron)-oak as secondary for-
est types (Southeast Gap Analysis Project 2010). From May to
August 2013-2015, monthly mean temperatures ranged from
16°C to 23°C and monthly mean rainfall accumulation ranged
from 81 to 263 mm (monthly mean 129 mm); June and July
2013 were the rainiest months, with mean accumulations of
205 and 263 mm, respectively, across multiple weather stations
(see “Environmental data”—National Ocean and Atmospheric
Administration 2016a, 2016b).

Site selection.—We selected survey sites that were on gravel
roads and under a closed forest canopy. We used tools in
ArcMap (v10.3.1—Esri 2015) to select roads < 100 m from

perennial water (stream or pond, based on demonstrated suc-
cess for O’Keefe and Loeb 2017), using a road layer from the
U.S. Forest Service (excluding sections that were U.S. or state
routes, paved, or private roads; A. Bailey, U.S. Forest Service,
Cleveland, Tennessee, pers. comm.) and a water layer from
the National Hydrography Dataset (U.S. Geological Survey
Hydrography 2013). For locations that met the initial criteria,
we assessed roads in the field for accessibility, safety, and to
affirm that all sites were comparable in forest structure, with
closed-canopy corridors. We assessed 100 locations, and after
identifying 51 suitable sites, we divided the NCNF into four
sections and used a random number generator to select 9-11
sites to survey within each of the sections. For our occupancy
analyses, we used 35 sites (Fig. 1) that met the minimum cri-
teria for number of surveys (i.e., both mist-net and acoustic
surveys in at least two of the three summers). Although it is
possible to create occupancy models using data for sites where
only one survey method was used, for our analysis all sites
were surveyed with two methods.

Mist-net surveys.—We used mist nets to survey 35 sites
(Fig. 1) from May to August 2013-2015, with each site netted
a minimum of two nights during the 3 years (total of 74 survey
nights). Following the standard Indiana bat (Myotis sodalis)
survey protocol (U.S. Fish and Wildlife Service 2017), we net-
ted each site for 5 h (21:00-02:00 EDT) per night, using two to
five single- or double-high mist nets (2-12 m widths; Avinet,
Inc., Dryden, New York) set across roads, trails, or along pond
edges. In the event of hazardous weather resulting in partial
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Fig. 1.—Site-specific false-positive occupancy estimates shown for northern long-eared bats (Myotis septentrionalis) using capture and acoustic
data collected at 35 sites during surveys in the northern districts of the Cherokee National Forest, Tennessee, May to August 2013-2015. Survey
sites are indicated by diamonds, color-coded by conditional probability of occupancy estimates. A black X indicates a site where northern long-

eared bats were captured in mist nets.
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surveys (< 5 h), we returned to conduct a full survey and did
not include data from incomplete surveys in occupancy models.
We checked mist nets for bat captures at 8-min intervals and
used key features (e.g., presence of keeled calcar, fur color)
and measurements (e.g., forearm, tragus, and foot length) to
confirm species identification (Reid 2006). Prior to release,
we secured a unique aluminum band (2.9 mm; Porzana, Ltd,
East Sussex, United Kingdom) to the forearm of each northern
long-eared bat. We required only a single mist-net capture of a
northern long-eared bat at a site to consider the species pres-
ent for that night. Field studies were conducted under federal
(ID: TE206872) and state (TN ID: 3148) permits following
Institutional Animal Care and Use Committee (IRBNet pack-
age ID: 531861-4) regulations and the American Society of
Mammalogists’ guidelines (Sikes et al. 2016).

Acoustic surveys.—We used acoustic detectors to survey the
same 35 sites from May to August 2013-2015, surveying each
site over at least 2 years for a minimum of five nights total (2-9
nights per survey). Detectors were < 50 m from a mist net (never
between nets) and, generally, at least one night of an acoustic sur-
vey coincided with a mist-net survey. Data were recorded auto-
matically between 20:00 and 08:00 Eastern Daylight Time (EDT)
onto compact flash cards using Titley Anabat SD2s (henceforth,
“Anabat”; Titley Scientific, Columbia, Missouri). A 10-m water-
proof cable connected the Anabat device to a weatherproofed
microphone (all hi-type microphones; one was replaced in the
third summer with new stainless steel model) housed inside a
31.75-mm polyvinyl chloride (PVC) tube with a 40° axis angle
(Titley Scientific, Columbia, Missouri) and mounted atop a
2-m tall PVC post. We set the microphone > 1 m from the near-
est vegetation, directed at a 30° angle across the road corridor.
Prior to the start of each field season, Titley Scientific quality
checked microphones; we then used an ultrasonic device (Dazer
International, London, United Kingdom) to standardize sensitiv-
ity settings at ~6.5 for each microphone and its associated Anabat
acoustic detector (Larson and Hayes 2000).

Environmental data.—We gathered data on nightly tempera-
ture, wind, and precipitation from two weather stations located
in the NCNF and monitored by the U.S. Forest Service, with data
access through National Oceanic Atmospheric Administration’s
National Weather Service Weather Forecast Office (National
Ocean and Atmospheric Administration 2016a, 2016b). The
Nolichucky station (ID: PGVT1; elevation: 701 m—National
Ocean and Atmospheric Administration 2016a) was in Greene
County, while the Watauga weather station (ID: UNIT1; eleva-
tion: 878 m—National Ocean and Atmospheric Administration
2016b) was in Unicoi County. We assigned data from the near-
est functional weather station to each survey site and night.

We used ArcMap (v10.3.1—Esri 2015) to measure multi-
scale characteristics associated with each survey site, assuming
land cover was static across the 3 years of our study. Using
digital elevation models (DEMs; 10 m resolution, 7.5 min)
sourced from Tennessee Geographic Information Council
(2016), we extracted the elevation (m) for each survey site. To
determine site terrain ruggedness, we calculated Topographic
Position Index (TPI; using a 10-cell DEM grid—Weiss 2001);

values range from O to 1, with 1 being the most rugged. The
TPI uses classifications (e.g., low, medium, high) based on the
natural breaks in the output data. Based on these natural breaks,
we used the following index for ruggedness: sites with TPI <
0.3 were least rugged, sites with TPI > 0.6 were most rugged,
and values between 0.3 and 0.6 were moderately rugged. We
downloaded and filtered forest layers from the Southeast Gap
Analysis Project (30 m resolution—Southeast Gap Analysis
Project 2010) and combined three forest classes (Deciduous
Forest, Evergreen Forest, and Mixed Forest) from the 29 broad
land cover classes in our study region; we then calculated the
proportion of combined forest within a 2-km buffer around
each site (based on typical northern long-eared bat home range
size—Henderson et al. 2008). We also calculated the area of
developed land (km?; filtered from Southeast Gap Analysis
Project 2010) in a 4-km buffer around each site; we used 4 km
because this was the minimum buffer size at which there were
noticeable differences among our largely forested sites. We cal-
culated distance (km) to nearest permanent large stream or river
(U.S. Geological Survey Hydrography 2013) for each site.
Stationary acoustic analysis.—For acoustic analyses, we
used automated identification software, Bat Call Identification
(BCID; v2.7c—Bat Call Identification 2016), to identify bat
echolocation calls to species from BCID’s default Tennessee
list of 13 species. BCID’s default setting is to discard files that
have noise or no bat pulses, where a pulse is defined as an indi-
vidual sound wave that is a part of the larger bat echolocation
call sequence; files that pass the filter are identifiable sequences
of search phase calls. For species identification, we required
call sequences with a five-pulse minimum within 15 s, an 80%
species confidence level (at least four pulses identified as one
species), and minimum discriminant probability of 0.35. If the
minimum discriminant probability was not met, BCID marked
the file as unknown. BCID presents a maximum likelihood
estimate (MLE) of the probability of presence for each spe-
cies on each survey night; this estimate is the probability of
presence given the number of files recorded during the survey
and the suite of potential species considered (Allen 2015). We
concluded northern long-eared bats were detected at a site on
a particular night when P < 0.05 for the likelihood ratio test.
While the calculation of the MLE within BCID has some limi-
tations (Allen 2015), this method is currently recommended for
presence determinations for federally endangered Indiana bats
during acoustic surveys (U.S. Fish and Wildlife Service 2017).
Occupancy modeling.—We selected covariates for prob-
ability of detection and occupancy () or psi) models based
on hypotheses developed using published literature. The prob-
ability of detection at an occupied site using a certain method
(mist netting) is represented by parameter r// (Miller et al.
2011). Two probability of detection estimates with an uncer-
tain method (acoustics) are included with false-positive occu-
pancy models: p/1 represents the detection probability using
an uncertain method (acoustics) at an occupied site and pl0
is the false-positive detection probability at an unoccupied
site (Miller et al. 2011). The temporal probability of detec-
tion covariates included the following weather measurements:
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minimum nightly temperature (°C), maximum wind gust (m/s),
and precipitation (1/0, coded as 1 when the nearest weather sta-
tion recorded > 1 h of rain during survey night; 20:00-08:00
EDT). We chose temperature as a covariate rather than sam-
pling date because mean nightly temperature was the better
predictor of detection probability for Myotis bats in Indiana
(Kaiser and O’Keefe 2015). In the current study, we found
minimum nightly temperature and day of year were correlated
(Il =0.4, P <0.001), with temperatures increasing as the sum-
mer progressed. We surveyed sites with similar structure and
vegetation, and thus, assumed detection probabilities were sim-
ilar across space. Occupancy covariates included elevation (m),
terrain ruggedness (TPI), proportion of forest in a 2-km buffer,
area of developed land (km?) in a 4-km buffer, and distance to
large stream or river (km; Table 1). We tested for covariate cor-
relation using Spearman’s rank correlation tests (R v3.3.2—R
Core Team 2015) and found Irl ranged from 0.07 to 0.45; we
did not include the most highly correlated variables (Irl > 0.4,
P < 0.05) in the same models. We normalized all occupancy
covariates using the normalize function in program Presence
(v.11.5—Hines 2016) which calculates a new covariate value
using a linearly transformed Z-score.

We created a binary detection history for northern long-eared
bats for each method (capture or acoustics), site, and survey
night. For false-positive occupancy models, mist-net captures
were coded as “certain” detections, whereas acoustic detections
were coded as “uncertain” detections (Clement et al. 2014).
Subsequently, we used the information-theoretic approach
(Burnham and Anderson 2002) to develop and test hypotheses
regarding factors that could affect detection and occupancy
probabilities for northern long-eared bats.

For detection models, we compared five models with one
or two weather variables per model using program Presence;
we tested all single-variable detection models, a precipita-
tion + wind model, and a null model. As per MacKenzie et al.
(2017), we fit all detection models using a global occupancy
model (elev + tpi + strm). We considered detection models to
be plausible only if they had substantial support (AAIC_ < 2.0);
we included important detection parameters from the plausible
models in the occupancy models described below.

Next, we fit 26 occupancy models using program Presence;
these models included probability of detection (weather) and
occupancy (landscape). Given our limited sample size, we did
not assess extinction-colonization rates. Instead, we combined

the three seasons and tested single-season occupancy models.
We compared Akaike’s Information Criterion (AIC ; corrected
for small sample sizes) values for 13 standard models and 13
corresponding false-positive models. We tested models with
all possible combinations of one to three covariates, exclud-
ing correlations; both standard and false-positive candidate sets
included a null model.

To identify the plausible set of occupancy models, we
required models to have substantial support (AAIC, < 2.0);
models with an Akaike weight (w,) within 10% of the top mod-
el’s weight were in the confidence set (Arnold 2010). To iden-
tify important factors predicting presence, we model-averaged
estimates for parameters in plausible models across the confi-
dence set of models (Burnham and Anderson 2002). A param-
eter was considered important if the 85% confidence interval
(CI) values of the parameter estimate did not cross 0; using
this threshold is more appropriate for the information-theoretic
approach, as it reduces the risk of excluding legitimate param-
eters (as demonstrated in Arnold 2010). We present means + 1
SE where appropriate.

RESULTS

Survey efforts were similar across years; however, mist-net and
acoustic detections of northern long-eared bats decreased annu-
ally (Table 2). We did not observe the same rate of decline with
the two methods. The greatest difference in detections between
the methods was in 2015, when northern long-eared bats were
detected 28% of the time with acoustic surveys, but only 4%
with mist-net captures.

Northern long-eared bats were only 7% of all captures and
mist-net detections decreased by 89% over the course of the
3-year study (Table 2). We captured 19 northern long-eared
bats at 12 sites; 10 individuals were captured during the first
year, while only one individual was captured in the final year
(Table 2). We captured an additional 266 bats, including 149
big brown bats (Eptesicus fuscus), 94 eastern red bats (Lasiurus
borealis), four tri-colored bats (Perimyotis subflavus), four
silver-haired bats (Lasionycteris noctivagans), one seminole
bat (Lasiurus seminolus), and one Rafinesque’s big-eared bat
(Corynorhinus rafinesquii). We captured two other Myotis spe-
cies: nine eastern small-footed bats (M. leibii) and four gray
bats (M. grisescens). We recaptured individual big brown bats

Table 1.—Occupancy covariate means, SDs, minimum, and maximum values for 35 sites surveyed for northern long-eared bats (Myotis sep-
tentrionalis) using mist-net and acoustic sampling methods in the northern districts of the Cherokee National Forest, Tennessee, May to August
2013-2015. We tested false-positive occupancy models and standard occupancy models with the following occupancy covariates: elevation (elev),
terrain ruggedness (tpi), proportion of forest in a 2-km buffer around site (for), area of development (km?) in a 4-km buffer around site (dev), and

distance (km) to nearest large stream or river (strm).

Variable Description Mean SD Minimum Maximum
elev Elevation (m) 748 185 460 1057
tpi Terrain ruggedness (Topographic Position Index) 0.43 0.08 0.29 0.64
for Proportion of forest in a 2-km buffer around site 0.87 0.11 0.49 0.98
dev Area of development (km?) in a 4-km buffer around site 263 821 0 4870
strm Distance (km) to nearest large stream or river 3.52 2.05 0.61 9.23
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Table 2.—Number of sites sampled and detection data for northern long-eared bats (Myotis septentrionalis) by year for mist-net and acoustic
sampling surveys in the northern districts of the Cherokee National Forest, Tennessee, May to August 2013-2015. Each of the 35 sites was sur-
veyed at least two nights with mist-net methods and at least five nights with acoustic methods during the entire 3-year survey period. Calls were

identified using Bat Call Identification software (v2.7c).

Year Sites surveyed Mist-net method Acoustic detector method
Survey Survey detections® Detection Individuals Survey Survey detections® Detection Call files
nights® proportion® captured nights? proportion®
2013 28 28 10 0.36 10 108 49 0.45 286
2014 23 23 6 0.26 8 102 31 0.30 104
2015 23 23 1 0.04 1 96 27 0.28 57
Total 35 74 17 19 306 107 447

*One mist-net survey night is 5 h.

®Defined as > 1 capture per survey.

¢Proportion of surveys in which bat was detected.

4One acoustic survey is 12 h, pre-dusk to post-dawn.

¢Defined as P < 0.05 for maximum likelihood estimate for species detection.

during our surveys, but never recaptured northern long-eared
bats or other species.

During acoustic surveys, we recorded 6,566 identifiable
call sequences of 12 species (19,823 files were classified as
unknown); 447 of the identifiable call sequences were identified
as northern long-eared bats. When determining presence at a site
we excluded 12 of the 447 files BCID identified as northern long-
eared bat files because they were recorded on survey nights that
did not meet our MLE standards (P < 0.05). While we did not
apply the same MLE method to identify other bat species, BCID
results showed the following species present: big brown bats,
eastern red bats, tri-colored bats, silver-haired bats, Rafinesque’s
big-eared bats, gray bats, little brown bats, Indiana bats, evening
bats (Nycticeius humeralis), and hoary bats (Lasiurus cinereus).

Seven percent of identifiable acoustic call sequences were
northern long-eared bats; acoustic detections decreased by 38%
during our survey period (Table 2). Declines in acoustic detec-
tions were not as drastic as for capture detections; overall, we
detected northern long-eared bats more often with acoustic sur-
veys (Table 2). Of the 107 acoustic survey nights, 35% contained
at least one northern long-eared bat sequence. When they were
detected at a site, we detected northern long-eared bats during
four nights, on average. During the 3-year period, five sites did
not have northern long-eared bat detections and eight sites had
only one detection night (sites surveyed 6—11 nights each). For
the remaining 22 sites, northern long-eared bats were detected
on 2—-11 nights (sites surveyed 5—17 nights each).

Of the five probability of detection models we tested,
only the rain model was supported (AAIC_ for next closest
model = 4.74). Detection rates for northern long-eared bats
were higher on nights without significant rainfall (parameter
estimate = —1.02 = 0.37). Therefore, we included rain as a
detection covariate in all occupancy models described hereafter.

False-positive occupancy models received more support than
standard models (lower AIC_ scores and higher weights; Table 3).
AIC, values were large for standard models (AAIC > 35) and,
thus, none were plausible. Two false-positive models were plau-
sible (AAIC, < 2) and four false-positive models were in the con-
fidence set (w, within 10% of the top model’s weight; Table 3).

We model-averaged estimates for the three parameters in
the plausible false-positive occupancy models (elev, tpi, and
strm), using parameter estimates from the four models in the
confidence set in our calculations (Table 4). Weighted param-
eter estimates indicated that the probability of occupancy for
northern long-eared bats was higher at less-rugged, lower-ele-
vation sites. Probability of occupancy for northern long-eared
bats was higher at lower elevations; bats were more likely to be
present at sites < 800 m a.s.l. in elevation (Fig. 2A). Probability
of occupancy was below 0.5 when the site was moderately to
highly rugged (TPI > 0.4; Fig. 2B). Distance to large stream
or river was an uninformative parameter as indicated by CIs
crossing O (Table 4).

False-positive occupancy models produced a wider range of
occupancy estimates that were generally lower than estimates
for standard models. For one plausible false-positive model,
FP (elev + tpi) rlI(rain) plI(rain) p/O(rain), site-specific
occupancy estimates ranged from 0.004 to 0.998 (Fig. 1), while
estimates from the corresponding standard model, Std y(elev
+ tpi) p(rain), ranged from 0.482 to 0.970 (Supplementary
Data SD1). Across all sites, the mean occupancy estimate was
lower for the false-positive model (meang, = 0.615) than for
the standard model (meang, = 0.859; Supplementary Data
SD1).

The probability of detecting northern long-eared bats when
they were present was similar for certain (mist net) and uncer-
tain (acoustics) methods, although there was a low but not
trivial probability of false-positive detection during acoustic
surveys. For one plausible false-positive model, FP y(elev +
tpi) rlI(rain) plI(rain) pl0(rain), the probability of detecting
northern long-eared bats at an occupied site with mist-net meth-
ods (r11) ranged from 0.372 to 0.566 (mean = 0.479 + 0.006;
Supplementary Data SD1). The probability of detecting a bat
using uncertain acoustic methods given the site was occupied
(p11) ranged from 0.244 to 0.600 (mean = 0.437 = 0.076;
Supplementary Data SD1). The probability of a false-positive
detection (pI0) of northern long-eared bats with the acoustic
method ranged from 0.067 to 0.332 (mean = 0.204 + 0.091;
Supplementary Data SD1).
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DI1SCUSSION

False-positive occupancy models account for the probability of
not detecting a species when it is present (false negative) and

Table 3.—Multi-method occupancy models using detection data
for northern long-eared bats (Myotis septentrionalis) collected during
mist-net and acoustic surveys at 35 sites in the northern districts of the
Cherokee National Forest, Tennessee, May to August 2013-2015. We
tested false-positive (FP) models and standard (Std) models with the
following occupancy (1) covariates: elevation (elev), terrain rugged-
ness (tpi), proportion of forest in a 2-km buffer around site (for), area
of development (km?) in a 4-km buffer around site (dev), and distance
(km) to nearest large stream or river (strm). Rain, the only important
factor in detection models, was used as a probability of detection
covariate (p, r1l, pll, pl0) in all occupancy models. Null models
lacked occupancy covariates. The difference in the value of Akaike’s
Information Criterion between the focal model and the top-ranked
model (AAIC ), model weights (w), and number of model parameters
(K) are presented.

Model AAIC, w, K
FP (elev + tpi) r/1(rain) p11(rain) pI0(rain)*® 0 0.509 13
FP (elev + tpi + strm) 1 1(rain) pII(rain) p/O(rain)*®  1.88 0.199 14
FP 1 (tpi + for) r/I(rain) p11(rain) pl0(rain)® 2.70 0.132 13
FP (tpi + for + strm) r/1(rain) p11(rain) pl0(rain)® 4.02 0.068 14
FP (tpi) r11(rain) p11(rain) p10(rain) 5.39 0.034 12
FP (tpi + dev) r/I(rain) p/I(rain) p/0(rain) 6.02 0.025 13
FP (for) r11(rain) pI1(rain) pI0(rain) 7.09 0.015 12
FP (elev + strm) r//(rain) p1(rain) p10(rain) 8.37 0.008 13
FP y(elev) r/(rain) p/1(rain) pI0(rain) 9.31 0.005 12
FP 1 (strm) r/I(rain) p11(rain) p/0(rain) 11.17 0.002 12
FP 1(dev + strm) r/1(rain) pI1(rain) pI0(rain) 12.03 0.001 13
FP y(null) r//(rain) p/(rain) p0(rain) 12.30 0.001 11
FP 1(dev) rlI(rain) pl1(rain) pl0(rain) 12.64 0.001 12
Std 1 (dev) p(rain) 35.05 <0.001 7
Std (tpi + dev) p(rain) 3578 <0.001 8
Std 1 (null) p(rain) 36.30 <0.001 6
Std 1 (elev) p(rain) 36.74 <0.001 7
Std y(dev + strm) p(rain) 37.01 <0.001 8
Std 1(tpi) p(rain) 3722 <0.001 7
Std 1p(for) p(rain) 37.54 <0.001 7
Std y(elev + tpi) p(rain) 37.80 <0.001 8
Std 1 (strm) p(rain) 38.14 <0.001 7
Std 1p(elev + strm) p(rain) 3830 <0.001 8
Std Y(tpi + for) p(rain) 38.65 <0.001 8
Std 1 (elev + tpi + strm) p(rain) 39.65 <0.001 9
Std 1p(tpi + for + strm) p(rain) 40.64 <0.001 9

aPlausible set.
"Confidence set.

misidentifications (false positive). We demonstrated that false-
positive occupancy models produce a broad range of occupancy
estimates when compared to standard occupancy models for
the rare and cryptic northern long-eared bat, which appeared
to decline in abundance during our 3-year study. Our results
indicated that federally threatened northern long-eared bats
were more likely to occupy less-rugged, lower-elevation sites
in northeastern Tennessee. Due to the uncertainty of acoustic
identifications and bats’ ability to avoid capture, we recom-
mend combining acoustic and capture methods when conduct-
ing bat surveys, and using false-positive occupancy models to
predict occupancy across survey areas, when possible.
Compared to false-positive occupancy models, standard
occupancy models produce a narrower range of estimates and,
when tested in simulation where occupancy is known, false-
positive occupancy models yield more accurate estimates
(Miller et al. 2013; Clement et al. 2014). The results of our
comparison of standard and false-positive occupancy esti-
mates were similar to those of Clement et al. (2014) and Miller
et al. (2013). While our site occupancy estimates for standard
models ranged from 0.482 to 0.970, false-positive occupancy
models yielded a wider range of estimates, from 0.004 to 0.998
(Supplementary Data SD1). In addition, there was more model
uncertainty with standard occupancy models; two false-posi-
tive occupancy models were within 2 AIC_ of the top model
(i.e., plausible) while five standard models were plausible when
considering only the set of standard models (Table 3). Clement
et al. (2014) obtained similar results for little brown bats in
the Pacific Northwest; site occupancy estimates from standard
occupancy models were always 1.0, while estimates from false-
positive occupancy models ranged from 0.02 to 1.00. Likewise,
in a study of gray wolves in Montana, site-specific occupancy
estimates from standard models ranged from ~0.45 to 1.0, while
the range of estimates from false-positive occupancy models
was almost double, < 0.1-0.8 (Miller et al. 2013). While a nar-
rower range of estimates would seem to be more precise, these
similar results across multiple studies suggest false-positive
occupancy models actually provide more accurate estimates of
species occupancy. A simulation study with known occupancy
provides additional support. When true occupancy is known
(simulated), standard models overestimate occupancy by
nearly 80%, while models that account for detection certainty
accurately estimate occupancy (Miller et al. 2011). Comparing
false-positive and standard occupancy models for three frog
species, Miller et al. (2011) found false-positive models were

Table 4.—Model-averaged estimates, SEs, and 85% confidence levels for parameters in the two plausible false-positive models for capture and
acoustic data collected at 35 sites during surveys for northern long-eared bats (Myotis septentrionalis) in the northern districts of the Cherokee
National Forest, Tennessee, May to August 2013-2015. Parameter estimates were averaged across four models in confidence set. Distance to large
stream or river was not important, as 85% CIs crossed 0. Estimates presented are for normalized covariate values. Parameter names defined in Table 1.

Parameter Estimate SE 85% confidence level

Lower Upper
Intercept 0.59 +0.32 -0.27 1.44
tpi -1.95 +0.94 -3.36 -0.53
elev -1.45 +0.88 -2.76 -0.13
strm 0.12 +0.26 -0.64 0.88
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Fig. 2.—Important predictors of northern long-eared bat (Myotis
septentrionalis) occupancy. Elevation (A) and terrain ruggedness
(Topographic Position Index; B) are shown as non-normalized val-
ues in relation to conditional probability of occupancy estimates for
the highest ranked model (where values closer to 1 indicate a higher
probability of occupancy). Data are from acoustic and capture sur-
veys for northern long-eared bats at 35 sites in northern districts of the
Cherokee National Forest, Tennessee; surveys were conducted May
to August 2013-2015. Shaded areas display 95% ClIs for occupancy
estimates.

generally more plausible than standard models and produced
lower (more realistic) occupancy estimates; in some cases,
standard site-specific occupancy estimates were double the val-
ues predicted by false-positive models.

Although we selected our sites to optimize our ability to cap-
ture northern long-eared bats, the covariates in our occupancy
models varied widely across sites (Table 1). The false-positive
occupancy models showed that the probability of northern
long-eared bat occupancy was higher at less-rugged, lower-
elevation sites. In contrast, standard occupancy models pre-
dicted that elevation and terrain ruggedness were uninformative
parameters for predicting probability of northern long-eared
bat presence. If we had relied on predictions from standard
occupancy models, we would have concluded that develop-
ment was the main driving factor affecting occupancy, as this
parameter was in three of the top five standard models. Further,
the standard models indicated a high probability of occupancy
at most sites; only four of the 35 sites surveyed had site-specific
occupancy estimates below 0.75 (mean = 0.859), of which the

lowest was 0.482. False-positive occupancy estimates should
be more accurate, which will enable managers to focus future
surveys and management efforts on the most probable areas for
northern long-eared bat occupancy (i.e., low-elevation sites in
our study area).

Predictions of the false-positive model fit with prior knowl-
edge on the importance of elevation and terrain to bats. The
higher probability of northern long-eared bats at lower eleva-
tions is likely attributable to warmer temperatures being more
suitable for reproductive females (Grindal et al. 1999; Cryan
etal. 2000) and to greater prey availability (Grindal and Brigham
1999; Erickson and Adams 2003). In a nearby region of south-
ern Appalachia, northern long-eared bats roost at relatively low
elevations (mean elevation =473 + 78 m) even though available
habitat ranges in elevation from low to quite high (250 to 2,025
m—~Rojas et al. 2017). In the southern Appalachian Mountains,
large colonies of northern long-eared bats may use large trees
as roosts (Rojas et al. 2017). The size of a tree can limit cavity
volume and the size of available bark patches, and, thus, may
impact the size of a bat maternity colony (Barclay and Kurta
2007). Soils are more favorable for the development of large
trees in areas of low terrain ruggedness (Carmean 1975), which
could explain the significance of this factor.

We recommend coupling capture and acoustic methods when
surveying rare and elusive bat species; combining a certain and
uncertain method is an optimal survey approach when the prob-
ability of detection is relatively high (> 0.6) for the uncertain
method (Clement 2016). With acoustic surveys we were able
to survey more nights and had more detections than with mist-
net surveys. Using only acoustic methods has disadvantages,
such as long analysis times and inconsistencies in identifica-
tion when calls are identified manually (Barclay 1999; Russo
et al. 2018). We used conservative, automated filtering methods
for acoustic identifications and the results of our comparison
of standard and false-positive occupancy model performance
suggest we should have less confidence in our acoustic identifi-
cations compared with our capture results. However, this does
not mean these uncertain acoustic data lack value. In fact, as
noted above, incorporating uncertain detections into occupancy
models can improve model performance (Miller et al. 2011;
Banner et al. 2018). When surveying for bats, we agree with
Robbins et al. (2008), Clement et al. (2014), and Ford et al.
(2016) that a multi-method approach will produce more useful
data on occupancy and habitat preferences. However, we note
that when occupancy is low, uncertain detection probability is
low, and the probability of false-positive detections is high, it
may be advisable to focus resources on certain survey meth-
ods instead (Clement 2016). Further, heterogeneity in detec-
tion probabilities across space and time can still lead to bias in
false-positive occupancy models. Selecting appropriate survey
methods or modifying existing methods might help to reduce
this bias (Clement 2016).

Limitations.—Accounting for false-positive detections
requires additional parameters in occupancy models and, hence,
a larger sample size and more effort in the field. The effort will
pay off, however, with less-biased and more accurate estimates.
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Because we combined seasons and used a single-season model
approach, we were unable to test for year-to-year changes in
detection and occupancy estimates. Further, estimates from our
single-season models may be biased by the ongoing extinction
of northern long-eared bats in our study area. For multi-season
studies, we recommend running multi-season models and esti-
mating extinction and colonization rates. Such models allow
assessment of the impact of abiotic or biotic factors that may
affect population size and provide valuable data on population
dynamics. To facilitate parameterizing multi-season models,
we recommend increasing sample sizes (e.g., more sites even
at the expense of fewer surveys at each site). A simulation study
can be used to identify the sample size required for desired lev-
els of accuracy (Clement et al. 2014; Clement 2016). Clement
(2016) addresses the trade-offs of adding additional parameters
to account for false-positive detections; we recommend review-
ing the scenarios presented in that study prior to implementing
an occupancy study.

Management implications.—By accounting for imper-
fect detections, occupancy models can improve the accuracy
of species monitoring programs. We observed capture and
acoustic declines for northern long-eared bat detections, pre-
sumably due to WNS, and had few certain detections. Miller
et al. (2011) emphasized that false-positive occupancy models
were an improvement on standard occupancy models when
species occupancy was low, certain detections were few, and
when sites were surveyed a large number of times. While not
accounting for false negatives may lead to an underestimation
of occurrence, not accounting for false positives may lead to
overestimation of occurrence (Miller et al. 2013); these biased
estimates may result in poor management decisions when sites
with true high occupancy are more likely to be overlooked. To
avoid depleting limited resources on sites with low probability
of occupancy, managers should use the results of false-positive
occupancy modeling to target sites with high probability of
occupancy for continued monitoring and conservation efforts.

Future directions.—Although false-positive occupancy esti-
mates require more effort in the field, there are multiple ways
to achieve our recommendations. With the standardized proce-
dures of the North American Bat Monitoring Program, acous-
tic surveys can be supplemented with paired mist-net surveys
within a defined survey unit (Clement et al. 2014; Loeb et al.
2015). If researchers reduce time spent on analyses of call iden-
tification by using automated identification software rather than
manual identification and use false-positive occupancy models
to account for potential misidentifications, then they should be
able to increase acoustic survey efforts (Banner et al. 2018).

Data collected by citizen scientists can also be incorporated
into occupancy analyses with the reassurance that it is possi-
ble to account for uncertain identification (Miller et al. 2013).
A recent extension of false-positive occupancy models includes
a calibration design that is useful for citizen science studies as
it allows for testing observation error rates by use of reference
sites where true occupancy is known (Chambert et al. 2015).
For rare and elusive species such as the northern long-eared
bat, we recommend testing presence data collected from novel
survey methods (e.g., scent-tracking dogs, thermal imaging of

potential roosts, and guano analysis) in false-positive models.
Ultimately, the application of false-positive occupancy models
should yield less-biased site-specific occupancy estimates and,
hence, better predictions of suitable habitat for bats and other
species of conservation concern.
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SUPPLEMENTARY DATA

Supplementary data are available at Journal of Mammalogy
online.

Supplementary Data SD1.—Site characteristics, probability
of occupancy, and probability of detection for multi-method
occupancy models using detection data for northern long-
eared bats (Myotis septentrionalis) collected during mist-net
and acoustic surveys at 35 sites in the northern districts of the
Cherokee National Forest, Tennessee, May to August 2013—
2015. We tested standard (Std) models and false-positive (FP)
models with the following occupancy () covariates: elevation
(elev, m), terrain ruggedness (tpi, Topographic Position Index),
proportion of forest in a 2-km buffer around site (for), area of
development (km?) in a 4-km buffer around site (dev), and dis-
tance (km) to nearest large stream or river (strm). We present
conditional occupancy estimates and 95% CIs for standard and
FP occupancy models. We define r/ 1 as detection probability at
an occupied site using mist-net surveys, pI 1 as detection prob-
ability using acoustic surveys at an occupied site, and p10 as FP
detection probability using acoustic surveys at an unoccupied
site. Rain (> 1 h of precipitation during survey night; 20:00-
08:00 EDT) was used as a probability of detection covariate
for r11, pl1, and pI10 in FP occupancy models and we pres-
ent mean survey night detection probabilities for each of these
parameters. Summarizing data across all sites, we also present
means, SDs, and minimum (Min) and maximum (Max) values
for each column.
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