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Abstract. Aridity indices have been widely used in climate
classification. However, there is not enough evidence for
their ability in identifying the multiple climate types in areas
with complex topography and landscape, especially in those
areas with a transition climate. This study compares a tra-
ditional meteorological aridity index (AI), defined as the ra-
tio of precipitation (P ) to potential evapotranspiration (PET),
with a hydrological aridity index, the evaporative stress index
(ESI) defined as the ratio of actual evapotranspiration (AET)
to PET in the Heihe River Basin (HRB) of arid northwestern
China. PET was estimated using the Penman–Monteith and
Hamon methods. The aridity indices were calculated using
the high-resolution climate data simulated with a regional cli-
mate model for the period of 1980–2010. The climate classi-
fied by AI shows a climate type for the upper basin and a sec-
ond type for the middle and lower basin, while three different
climate types are found using ESI, each for one river basin,
indicating that only ESI is able to identify a transition climate
zone in the middle basin. The difference between the two in-
dices is also seen in the interannual variability and extreme
dry/wet events. The magnitude of variability in the middle
basin is close to that in the lower basin for AI, but different
for ESI. AI had a larger magnitude of the relative interannual
variability and a greater decreasing rate from 1980 to 2010
than ESI, suggesting the role of local hydrological processes
in moderating extreme climate events. Thus, the hydrological
aridity index is better than the meteorological aridity index
for climate classification in the arid Heihe River Basin.

1 Introduction

Aridity indices combine one or several variables (indica-
tors) into a single numerical value to measure water deficit
over long periods (e.g., 30 years or longer) (Wilhite and
Glantz, 1985; Zargar et al., 2011). Aridity indices are a use-
ful tool for climate classification (https://en.wikipedia.org/
wiki/Climate_classificationin, last access: 8 October 2019).
In comparison with comprehensive tools such as the Köppen
climate classification (Peel et al., 2007), aridity indices do
not need complex information on the properties of ecosys-
tems and therefore are used more easily and often at local
and regional scales.

Aridity indices can be categorized into different types
including meteorological and hydrological indices, which
could be simply considered to be a lack of water due to
anomalous atmospheric and land-surface conditions, respec-
tively. Precipitation, temperature, and humidity are atmo-
spheric conditions often used to estimate meteorological
aridity indices. The earliest aridity index, developed more
than a century ago, reflects the effects of the thermal regime
and the amount and distribution of precipitation in determin-
ing the native vegetation possible in an area. By the middle
of the 20th century, attention turned to precipitation and po-
tential evaporation (Huschke, 1959). A typical index of this
type, the Budyko-type aridity index (AI) (Budyko, 1974), for
example, uses annual averages of precipitation and poten-
tial evapotranspiration (PET), which is mainly determined by
temperature.
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Land-surface conditions such as streamflow, runoff, and
actual evapotranspiration are often used to estimate hydro-
logical aridity indices (Maliva and Missimer, 2012). The
evaporative stress index (ESI), for example, defines dryness
degree based on the ratio of actual evapotranspiration (AET)
to PET over both short and long periods. A relatively low
ESI indicates water limitation to plants, and the actual rate
is way below the PET. In contrast, a relatively high ESI in-
dicates freely available water with the AET rate approaching
or close to the PET. The ESI has been used to evaluate the
irrigation need for crop growth and land classification (Yao,
1974). The ESI was used recently to evaluate water stress us-
ing remotely sensed hydrological and ecological properties
(Anderson et al., 2016).

There are many similarities between aridity indices and
drought indices, which measure water deficit over short pe-
riods (such as months, seasons, and years). Drought indices
also are categorized into meteorological, hydrological, and
other types. The percent of normal (PN) and standardized
precipitation index (SPI) (McKee et al., 1993) are simply
based on precipitation and can be used to measure anomalies
of a period over various lengths. The Palmer drought sever-
ity index (PDSI) (Palmer, 1965) and Keetch–Byram drought
index (KBDI) model (Keetch and Byram, 1968) are based
on water supply and demand estimated mainly using pre-
cipitation and temperature (Guttman, 1999). Both PDSI and
KBDI depend on precedent daily or monthly values, making
them specifically useful for a persistent event like drought.
Among various hydrological drought indices, the streamflow
drought index (SDI) (Nalbantis and Tsakiris, 2009) and sur-
face water supply index (SWSI) (Shafer and Dezma, 1982)
use streamflow as well as reservoir storage and precipitation
to monitor abnormal surface water (Narasimhan and Srini-
vasan, 2005). The standardized runoff index (SRI) (Shukla
and Wood, 2008) is standard normal deviate associated with
runoff accumulated over a specific duration.

Large river basins at continental and subcontinental scales
usually encompass multiple climate types related to com-
plex topography and landscape. Climate is more humid in
the upper basin near the river origins with high elevations
and forest and/or permanent snow cover than the lower basin
with low elevations and less vegetated lands. The climate
could be extremely dry in parts of a watershed under a pre-
vailing atmospheric high-pressure system. The subcontinen-
tal Colorado River watershed, for example, is dominated by
cold and humid continental climate in the upper basin of the
Rocky Mountains and cold semiarid or warm desert climate
in the lower basin of the southern intermountains (the states
of Utah and Nevada). This feature of multiple climate types
is also seen in some smaller basins. The Heihe River Basin
(HRB) in northwestern China, for example, has an area of
130 000 km2 with annual precipitation varying dramatically
from about 500 mm in the upper basin of the Qilian Moun-
tains with forest–meadow–ice covers in the south to less than
100 mm in the lower basin of the Alxa high plain with Gobi

and sandy lands in the north. Climate types change from cold
and humid continental to arid desert accordingly. The relative
high precipitation in the humid upper basin supports forests
and meadows and provides source water lower reach of the
Heihe River. In contrast, water is a major limitation factor in
the arid lower basin. In addition, more extreme weather con-
ditions, especially droughts, occur in the arid lower basin.
In the Colorado River basins, the reconstructed data show
decadal periods of persistently low flows during the past cen-
turies (Woodhouse et al., 2010). The drought severity in the
new millennia has been the most extreme over a century
(Cayan et al., 2010). The reconstructed precipitation series
in the HRB indicates that droughts were much more fre-
quent and lasted longer than floods in the past two centuries
(Ren et al., 2010). Droughts occurred more often in the dry
lower basin than the humid upper basin (Li, 2012). The wa-
tersheds with varied topography and landscape may have a
transition climate zone between the two zones. In the HRB,
for example, the Köppen climate classification, one of the
most widely used climate classification techniques at large
geographic scales and constructed based on the properties
of ecosystems, latitude, and average and seasonal precipita-
tion and temperature, shows polar tundra or boreal climate
in the upper basin of the mountain regions in the south, arid
desert climate in the lower basin in the north, and a transition
zone of steppe climate in the middle. Identifying this transi-
tion zone and understanding its unique climate features are
of both scientific and management significance. The com-
plex topography in the upper basin and harsh climate in the
lower basin make both regions unsuitable for human living.
The transition zone however is relatively flat in comparison
with the mountain region and less arid in comparison with
the dryland region. It therefore provides a favorable condi-
tion for industrial and agricultural development. Also, the
environmental conditions in this region are more dynamical
and localized because of human-induced rapid and fragmen-
tal landscape changes.

ESI is similar to AI but more related to surface hydrology.
However, unlike AI, ESI applications for climate classifica-
tion have yet to be conducted. In addition, many studies have
compared ESI with other drought indices in different climatic
environments. For example, Otkin et al. (2013) compared
the ESI with drought classification used by the U.S. Drought
Monitor (USDM) (Svoboda et al., 2002) and found that the
ESI anomalies led the USDM drought depiction by several
weeks, and large ESI anomalies therefore were indicative of
rapidly drying conditions. This finding was coincident with
the droughts that occurred across the United States in recent
years. Choi et al. (2013) compared the ESI with the Palmer
drought severity index in a watershed of the Savannah River
branch in the southeastern United States during 2000–2008.
They found that the ability of the ESI to capture shorter term
droughts was equal or superior to the PDSI when charac-
terizing droughts for the watershed with a relatively flat to-
pography dominated by a single land cover type. However,
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Figure 1. The study region of the Heihe River Basin (red box) in
China and the Köppen climate classification (from Peel et al., 2007).

the differences between ESI and meteorological indices in
capturing the spatial patterns under complex topography and
environments are not well characterized and understood.

This study is to compare the capacity of the hydrologi-
cal aridity index, ESI, and the meteorological aridity index,
AI, in climate classification, especially in identifying a pos-
sible transition climate zone in the HRB. These two indices
reflect the water (precipitation and evapotranspiration) and
heat (radiation) properties on the ground surface without the
need to obtain the complex vegetation and soil hydrological
properties. The surface properties needed to calculate ESI
and AI could be obtained from regional climate modeling,
which was an approach used in this study. The analysis of
the climate zones was made by comparing the spatial pat-
terns and regional averages. Their temporal variations were
also analyzed to understand the differences in the seasonal
and interannual variability and long-term between ESI and
AI.

2 Methods

2.1 Study region

The study region was the HRB and the adjacent areas
(Fig. 1). The Heihe River originates from the Qilian Moun-
tains in the northern edge of the Tibet Plateau and flows
northward to the China–Russia border. The HRB spans be-
tween 98 and 101◦30′ E and 38 an 42◦ N. The upper HRB is
within the mountains at an elevation of 2300–3200 m, mainly
covered with forests and mountain meadows. The middle
HRB is along the Hexi Corridor at an elevation of 1600–
2300 m, mainly covered with piedmont steppe grass, crops,
and residence and commercial uses. The lower HRB is in the
Alxa high plain at an elevation of below 1600 m, mainly cov-
ered with Gobi and desert sands.

Annual precipitation is over 400 mm in the upper basin,
with the maximum of 800 mm at extremely high elevations,

about 100–250 mm in the middle basin, and below 50 mm
in many lower basin areas. The annual precipitation in the
upper basin has high seasonal variability, and nearly 70 % of
the total annual rainfall occurs from May to September (Gao
et al., 2016). The upper basin generates nearly 70 % of the
total river runoff, which supplies agricultural irrigation and
benefits the social economy development in the middle and
lower basin reaches (Yang et al., 2015; Chen et al., 2005).
Annual mean temperature is about −4 ◦C in the upper basin,
7 ◦C in the middle basin, and nearly 9 ◦C in the lower basin.

2.2 Aridity indices

The meteorological aridity index is defined as AI=P /PET,
where P and PET are daily precipitation and potential evap-
otranspiration, respectively. AI is a variant of the index origi-
nally defined by Budyko (1974), which is the ratio of annual
PET to P . The average AI values were used to classify the
arid, semiarid, semihumid (subhumid), and humid climate
with the ranges of AI≤ 0.2, 0.2 < AI≤ 0.5, 0.5 < AI≤ 1.3,
and AI > 1.3, respectively (Ponce et al., 2000). The hydro-
logical aridity index is defined as ESI=AET/PET, where
AET is daily actual evapotranspiration. The ranges of aver-
age ESI values of ESI≤ 0.1, 0.1 < ESI≤ 0.3, 0.3 < ESI≤ 0.6,
and ESI > 0.6 were used to classify the arid, semiarid, semi-
humid, and humid climate, respectively (Yang, 2007). This
approach agrees with Anderson (2011), which showed that
the ESI values varying gradually from 0 to 1 correspond to
several USDM drought levels from “exceptional drought” to
“no drought” for each month from April to September across
the continental US.

Two methods were used to estimate PET (mm d−1). One
was the energy-balance-based FAO-56 Penman–Monteith
equation (Allen et al., 1998):

PETp =

0.4081(NRAD−G)+ 900γ u2(es− e)/(T+ 273)
1+ γ (1+ 0.34u2)

, (1)

where NRAD and G are net radiation and soil flux on the
ground (MJm−2 d−1), T is air temperature (◦C), es and e are
saturation and actual water vapor pressure (kPa), u2 is wind
speed at 2 m above the ground (ms−1),1 is the rate of change
of es with respect to T (kPa/◦C), and γ is the psychrometric
constant (kPa/◦C). The other method is the temperature based
on the Hamon formula (Hamon, 1963):

PETh = (k× 0.165× 216.7×N × es)/(T + 273.3), (2)

where k is proportionality coefficient= 1 and N is daytime
length. es is in 100 Pa here.

Monthly PET, precipitation, and actual evapotranspira-
tion, obtained based on daily values, were used to calcu-
late the aridity indices. It was assumed that daily PET= 0 if
daily T < 0 ◦C. Their monthly PET was not used if PET= 0
for more than 10 d in a month. In this case, no aridity in-
dices were calculated for the month. It was also assumed
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that daily ground energy was in balance, so NRAD−G=
H +L×AET, where H and L are sensible heat flux and po-
tential heat constant.

A T test was conducted to obtain the statistical signifi-
cance of the differences in the aridity index values between
two Heihe River reaches. The data used in calculation and
evaluation of the aridity indices are listed in Table 1.

2.3 Regional climate modeling

The climatic and hydrological data used to calculate the arid-
ity indices were created from a regional climate modeling
using the Regional Integrated Environmental Modeling Sys-
tem (RIEMS 2.0) (Xiong and Yan, 2013). The simulation
was conducted over the period of 1980–2010. The horizon-
tal spatial resolution was 3 km. A unique feature with this
simulation was that the model’s parameters, including soil
hydrological properties, were recalibrated based on observa-
tions and remote sensing data over the HRB that greatly im-
proved the model’s performance. The model evaluation indi-
cated that the model was able to reproduce the spatial pat-
tern and seasonal cycle of precipitation and surface T . The
correlation coefficients between the simulated and observed
pentad P were 0.81, 0.51, and 0.7 in the upper, middle, and
lower HRB regions, respectively (p < 0.01).

The historical T and P observations during the simulation
period at Yeniugou of the upper basin (38.25◦ N, 99.35◦ E,
3300 m a.s.l.), Zhangye of the middle basin (38.11◦ N,
100.15◦ E, 1484 m), and Dingxing of the lower basin
(40.3◦ N, 99.52◦ E, 1177 m) were used to compare with the
simulations. We also calculated SPI based on observed pre-
cipitation using a built-in function of the NCAR NCL (https:
//www.ncl.ucar.edu/, last access: 8 October 2019). The re-
sults with measured precipitation were used to evaluate the
model performance in simulating drought conditions.

3 Results

3.1 Simulated climate and hydrology

The spatial pattern of the simulated annual T averaged over
the simulation period is featured by the large changes be-
tween basin reaches, increasing from about −15 ◦C in the
tall mountains of the upper basin to over 10 ◦C in the
deserts of the lower basin (Fig. 2). The simulated average
annual P shows an opposite gradient, decreasing from about
2.5 mm d−1 in the mountains to less than 0.25 mm d−1 in the
deserts (Fig. 2). The simulated NRAD decreases from west
to east in the mountains, corresponding to an increasing trend
in precipitation. NRAD is small in the northeastern section
of the domain, probably due to large outgoing long-wave ra-
diation related to clear and relative hot weather. The simu-
lated average annual AET has a similar pattern to precipita-
tion (Fig. 2). The spatial variability is much larger within the
upper basin than the lower basin.

Figure 2. Spatial distributions of the simulated air temperature (T ,
◦C), precipitation (P , mm d−1), net radiation (NRAD, W m−2),
and actual evapotranspiration (AET, mm d−1) averaged over 1980–
2010. The Heihe River basins and weather stations are shown in (a).

An interesting feature is that both T and P in the middle
basin are very close to their corresponding values in the lower
basin but much different from those in the upper basin; the
AET difference between the middle and upper basin reaches
however is very small. As expected, the regional AET values
averaged over the simulation period are higher in summer
than in winter (Fig. 3). In the upper basin, for example, T
increases from about −15 ◦C in winter to 10 ◦C in summer,
P increased from about 0.25 to 4 mm d−1, and AET from
about 0.25 to 2.5 mm d−1. Again, T and P are close between
the middle and lower basin reaches in all seasons, and AET
is close between the middle and upper basin reaches during
winter and spring. While AET is close between the middle
and lower basin reaches during summer and fall, the differ-
ences between the middle and upper basin reaches are much
smaller than the differences in T or P . Net radiation has a
seasonal cycle similar to that of temperature. The changing
trends among the three basin reaches are the same between T
and NRAD in spring and summer but opposite in winter and
fall. The interannual variability of regional T and P is similar
between the middle and lower basin reaches (Fig. 4). A few
dry years (e.g., 1990, 2001, and 2008) and wet years (e.g.,
1981, 1989, 2002, and 2007) can be found. The amplitude
of variability is larger for P than T , especially in the upper
basin. NRAD values have large interannual variability with
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Table 1. The data used in calculation and evaluation of the aridity indices. H , AET, P , T , and e (RH) are sensible heat flux, actual evapo-
transpiration, precipitation, temperature, wind speed, and water vapor pressure (relative humidity). HRB stands for Heihe River Basin.

Source Parameter Time period Space Reference

Simulation H , AET, 1980–2010, HRB, 3 km Xiong and Yan (2013)
P ,T , u, e daily resolution

Observation P , T , RH 1980–2010, 3 sites in China National Met Sci
daily HRB Infrastructure (https:

//data.cma.cn/en/?r=
data/detail&dataCode=
SURF_CLI_CHN_
MUL_DAY_CES_
V3.0, last access:
8 October 2019)

Figure 3. Seasonal variations of the simulated air temperature (T ,
◦C), precipitation (P , mm d−1), net radiation (NRAD, W m−2), and
actual evapotranspiration (mm d−1) in three basin reaches averaged
over 1980–2010.

little difference among the regions. The variability of AET
is also similar between the lower and middle basin reaches,
but it differs from that in the upper basin during some peri-
ods (e.g., around 1985). The differences in AET between the
middle and upper basins are much smaller in the magnitude
than those for the meteorological properties.

The above features of close values and similar interan-
nual variability in the simulated T and P between the mid-
dle and lower basin reaches are also seen in the observa-
tions (Fig. 4). The simulated T in all basin regions and P
in the middle and lower basin reaches are close to the ob-
served ones. However, the simulated P is about 0.4 mm d−1

Figure 4. Interannual variations of the simulated air temperature (T ,
◦C), precipitation (P , mm d−1), net radiation (NRAD, W m−2) and
actual evapotranspiration (mm d−1), and observed air temperature
(T , ◦C) and precipitation (P , mm d−1) in three basin reaches over
1980–2010.

higher (about 1.6 mm d−1 for simulation vs. 1.2 mm d−1 for
observation). The weather site in the upper basin is located
in a relatively flat and low valley, while the simulation grids
have many points at high elevations where P is larger than
at the valley locations. The SPI for the 12-month timescale
also shows generally similar interannual variations over the
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Table 2. Mann–Kendall trends from 1980 to 2010 of the simulated
temperature (T ), precipitation (P ), actual evapotranspiration (AET)
and observed temperature (Tobs), and precipitation (Pobs). The bold
and italic numbers are significant at p < 0.01 and p < 0.05, respec-
tively.

Variable Upper Middle Lower

T (◦C) 0.4 0.4 0.4
P (%) 53.0 63.7 47.9
AET (%) 21.4 16.6 27.1
Tobs (◦C) 1.9 2.0 0.7
Pobs (%) −10.7 74.6 62.5

analysis period between the simulated and observed precipi-
tation in the three basins (Fig. 5). In the upper basin, for ex-
ample, the observed wet spells occurred around 30, 50, 120,
230, 290, 340, and 360 months, while the dry spells occurred
around 20, 30, 70, 100, 180, 200, 260, and 300 months. The
simulation reproduces most of the wet and dry spells. How-
ever, the simulation is too wet during about 40–80 months
and largely misses the dry events during 240–260 months.

The simulated P increases around 50 % over the simu-
lation period, which is statistically significant at p < 0.01
in all basin reaches (Table 2). The simulated AET also in-
creases, but at a smaller degree of around 20 % and p < 0.01
only in the upper basin. The simulated T shows increasing
trends, but they are insignificant in all reaches. The simu-
lated P trends are close to the observed ones in the middle
and lower basin reaches, but they are opposite to that in the
upper basin. The simulated T underestimates the observed
warming, which was about 2 ◦C at p < 0.01.

3.2 Spatial patterns of aridity indices

PET calculated using the Penman–Monteith method is
mostly 1.7–2.25 mm d−1 in the upper basin (Fig. 6). It in-
creases to above 3 mm d−1 in the middle and lower basins.
There is little difference between the two regions. The meteo-
rological aridity index, AI, shows a similar pattern but oppo-
site gradient (Fig. 6). It mostly has a humid climate in the up-
per basin but becomes mainly arid climate in two other basin
regions. The hydrological aridity index, ESI, has the same
gradient as AI, but with a different spatial pattern (Fig. 6).
It also mostly has a humid climate in the upper basin and
arid climate in the lower basin. However, it is largely semi-
arid climate in the middle basin. P and AET are the highest
in the upper basin and the lowest in the lower basin, while
T and PET have an opposite seasonal cycle. This explains
why AI and ESI are larger in the upper basin than the mid-
dle or lower basin. PET calculated using the Hamon method
has the same pattern as the one using the Penman–Monteith
method, but with smaller magnitude (Fig. 7). PET is mostly
about 1 mm d−1 in the upper basin and increases to about

1.5–1.75 mm d−1 in the middle basin and further to 1.75–
2.25 mm d−1 in the lower basin.

The different spatial patterns between AI and ESI seen
above are also found for the Homan method. AI is mostly
above 0.6 in the upper basin (Fig. 7). It is below 0.2 in the
middle and lower basins without apparent differences be-
tween the two regions. In contrast, while ESI remains large
with values of mostly above 0.9 in the upper basin and low
values of below 0.2 in the lower basin, the values in many ar-
eas of the middle basin are 0.4–0.9, which are much different
from those in the lower basin (Fig. 7).

3.3 Climate classification

The annual PET averages over 1980–2010 calculated using
the Penman method are 2.12, 3.91, and 4.76 (Table 3 and
Fig. 8). The corresponding AI values are about 0.9, 0.12,
and 0.04, falling into semihumid, arid, and arid climate. The
corresponding ESI values are 0.63, 0.22, and 0.07, falling
into humid, semiarid, and arid climate. The annual PET val-
ues averaged over 1980–2010 calculated using the Homan
method are 1.25, 2.33, and 2.65 mm d−1 for the upper, mid-
dle, and lower basin reaches. The corresponding AI values
are about 1.3, 0.18, and 0.07, falling into humid, arid, and
arid climate. The corresponding ESI values are 0.78, 0.31,
and 0.13, falling into humid, semihumid, and semiarid cli-
mate. The averages of PET or each of the aridity indices are
statistically significant (p < 0.01) between any two regions of
the Heihe River Basin.

Thus, the climate across the HRB classified using AI has
two types: (i) semihumid (the Penman method for PET) or
humid (the Homan method) in the upper basin and (ii) arid in
both middle and lower basin reaches. In contrast, the climate
classified using ESI has three types: (i) humid in the upper
basin, (ii) semiarid (the Penman method) or semihumid (the
Homan method) in the middle basin, and (iii) arid (the Pen-
man method) or semiarid (the Homan method) in the lower
basin. This indicates that only the hydrological aridity index
is able to identify the transition climate zone in the middle
basin. The difference between AI and ESI in classifying cli-
mate is related to the similar feature with the meteorological
variables. Annual P is 555 mm in the upper basin, which is
substantially different from 69–139 mm in the middle and
lower basins. The mean T is −4.0 ◦C in the upper basin,
which is well below 6.9–8.7 ◦C in the middle and lower basin
reaches. The corresponding PET values fall into two groups,
299 mm in the upper basin and 672–767 mm in the middle
and lower basin reaches. This explains why the AI falls into
two groups. In contrast, AET is 226, 161, and 80 mm, which
is substantially different not only between the middle and up-
per reaches but also between the middle and lower reaches.
This explains why the ESI falls into three groups.
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Figure 5. The standardized precipitation index (SPI) for the 12-month timescale over the analysis period. The left panels (a, c, e) and right
panels (b, d, f) are observation and simulation. From top to bottom are the upper (a, b), middle (c, d), and lower (e, f) basins. The horizontal
number is the month from the beginning of the analysis period.

Figure 6. Spatial distributions of potential evaporation (PET, mm d−1), aridity index (AI) and evaporative stress index (ESI) with PET
estimated using the Penman–Monteith method. Averaged over 1980–2010. The Heihe River basins are shown in panel (a). The color bars
from left to right for AI and ESI are arid, semiarid, semihumid and humid climate.

3.4 Temporal variations of aridity indices

3.4.1 Seasonal cycle

For the Penman–Monteith method, PET is the highest in
summer and smallest in winter (Fig. 8). Note that winter PET
in the upper basin is not shown because T is below zero on
too many days. The amplitude in the middle basin is close
to that in the lower basin but much larger than that in the
upper basin. Different from the upper basin where AI and

ESI are also the largest in summer, AI is the largest in fall,
while ESI is the largest in winter in the middle basin (as well
as lower basin). The seasonal variations of PET, AI, and ESI
estimated using the Homan method are similar to those using
the Penman method.

The seasonal AI and ESI cycles are related to those of the
meteorological and hydrological conditions. T , P and AET
(Fig. 3), and PET (Fig. 8) all increase from winter to sum-
mer. In the upper basin, the increases in P and AET from
spring/fall to summer are larger than the corresponding in-
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Figure 7. Spatial distributions of potential evaporation (mm d−1), aridity index and evaporative stress index with PET estimated using the
Hamon method. Averaged over 1980–2010. The Heihe River basins are shown in panel (a). The color bars from left to right for AI and ESI
are arid, semiarid, semihumid and humid climate.

Table 3. Regional average (AVE), standard deviation (SD), and coefficient of variation (CV) for potential evapotranspiration (PET, mm d−1),
aridity index (AI), and evaporative stress index (ESI). A, SA, SH, and H represent arid, semiarid, semihumid, and humid climate, respectively.

PET Basin PET AI ESI

AVE SD CV AVE SD CV AVE SD CV

Penman–Monteith Upper 2.12 0.12 0.06 0.90 (SH) 0.32 0.35 0.62 (H) 0.07 0.11
Middle 3.91 0.21 0.05 0.12 (A) 0.06 0.50 0.22 (SA) 0.06 0.26
Lower 4.76 0.29 0.06 0.04 (A) 0.03 0.64 0.07 (A) 0.03 0.41

Hamon Upper 1.25 0.04 0.03 1.30 (H) 0.37 0.29 0.78 (H) 0.05 0.07
Middle 2.33 0.11 0.05 0.18 (A) 0.08 0.43 0.31 (SH) 0.06 0.19
Lower 2.65 0.16 0.06 0.07 (A) 0.04 0.56 0.13 (SA) 0.04 0.31

creases in PET, leading to larger AI and ESI values in sum-
mer. In the middle as well as lower basin, however, PET in-
creases substantially from spring/fall, leading to a smaller AI
and ESI in summer than in spring/fall.

3.4.2 Interannual variability

PET in the middle basin calculated using the Penman–
Monteith method shows similar interannual variability over
the period of 1980–2010 to that in the lower basin but much
different from that in the upper basin (Fig. 9). The standard
deviation (SD) increases from the upper basin (0.12) to the
middle basin (0.21) and to the lower basin (0.29) (Table 2).
The coefficient of variation (CV) (the ratio of the standard
deviation to the average), a statistical property often used to
measure relative variability intensity, however, is compara-
ble among the reaches. The SD values of both AI and ESI
decrease from the upper basin to the middle basin and to the
lower basin. However, the SD of AI (ESI) in the middle basin
is much closer to that in the lower (upper) basin. The CV
values have an opposite gradient to SD, increasing from the
upper basin to the middle basin and to the lower basin. In ad-
dition, CV differs mainly not between the basin reaches but
between aridity indices: AI is larger than ESI.

3.4.3 Long-term trends

PET shows no clear trends over the simulation period (Ta-
ble 4). In contrast, aridity indices increased dramatically, by
60 % or more for AI and 15 %–50 % for ESI. The trends are
significant at p < 0.01 in the upper and middle basin reaches
and p < 0.05 in the lower basin. The results indicate a lower
dryness condition in the HRB, which is more remarkable in
the middle than upper basin and in the meteorological than
hydrological aridity index. Increase in precipitation is a ma-
jor contributor.

3.5 Extreme events

The aridity indices for four simulated dry years (1982, 1990,
2001, and 2008) and four wet years (1981, 1989, 2002, and
2007) (Figs. 10–11) and the averages over the dry or wet
years (Fig. 12) were analyzed. The annual AI values using
the Penman–Monteith method are 0.4–0.5 for the first two
dry years and 0.7–1.0 for the last two years in the upper val-
ley (Fig. 12). The average over the four years is about 0.65. In
comparison, the average is about 0.9 over 1980–2010 and 1.4
over the four wet years. The values are very small in spring
(except in 1982) and occasionally in fall (1990). The annual
AI values in the middle and lower basin reaches are below
0.2 for individual dry years and the average. The small val-
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Figure 8. Seasonal variations of the simulated potential evapotranspiration (mm d−1), aridity index, and evaporative stress index (from left
to right). Panels (a)–(c) and (d)–(f) are for the Penman–Monteith and Hamon method, respectively.

Figure 9. Interannual variations of potential evapotranspiration
(mm d−1), aridity index, and evaporative stress index. P and H in-
dicate the Penman–Monteith and Hamon method, respectively.

ues are found for individual seasons except the falls of the
last two years in the middle basin. In compassion, the annual
values are 0.4 or above in three falls of the four wet years.

The annual ESI values using the Penman–Monteith
method are 0.5 or larger in the upper valley. The average over
the four years is nearly 0.6. In comparison, the average is
about 0.62 over 1980–2010 and 0.7 over the four wet years.
The values are comparable from spring to fall, though rela-
tively smaller in spring. This is different from AI. The annual
ESI values are about 0.2 in the middle and below 0.1 in the
lower basin for individual dry years and the average. Thus,
the values are apparently different between the middle and
lower basin reaches. This is another difference from AI. The
lowest values mostly occur in summer in both basin reaches.
In compassion, the annual values are 0.25–0.35 in the middle
basin and 0.1 or larger in three of the four wet years in the
lower basin.

The same results can be found for the Hamon method.
In the upper basin, AI is substantially smaller than nor-
mal, especially in spring, while ESI does not change much
from normal and between seasons. In the middle and lower
basin reaches, AI does not change much from normal and
wet events (small in all cases), while ESI is much smaller
than wet events and different between the two basin reaches,
though AI and ESI values are slightly larger. The results sug-
gest that ESI is more representative of extreme dry conditions
in the middle basin but less sensitive to aridity in the upper
basin.
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Figure 10. Seasonal variations of the simulated aridity index and evaporative stress index using the Penman–Monteith and Hamon methods
(left to right) for the dry years of 1982, 1990, 2001, and 2008 (from top to bottom).

Table 4. Mann–Kendall trends from 1980 to 2010 of potential evap-
otranspiration, aridity index, and evaporative stress index (in %).
P(H) indicates the Penman–Monteith (Hamon) method. The bold
and italic numbers are significant at p < 0.01 and p < 0.05.

Index Upper Middle Lower

PET-P −7.3 −2.7 0.3
AI-P 72.5 98.6 80.9
ESI-P 24.8 51.4 47.8
PET-H 0.0 2.7 3.6
AI-H 62.6 84.3 66.3
ESI-H 16.2 40.8 40.5

4 Discussion

4.1 Support of the integrated
water–ecosystem–economy study in the HRB

The HRB is a typical inland river basin with a strong con-
trast in topography, landscape, climate, and human activities
from the headwater to end point along its drainage system.
Comprehensive monitoring, modeling, and data manipula-
tion studies have been conducted for several decades to un-
derstand the hydrological and ecological processes and inter-
actions in the HRB (Cheng et al., 2014). The middle HRB
is a special region with dynamic land cover and use changes
due to human activity. Different from the upper HRB regions
where climate change has been the controlling factor for hy-
drological and ecological processes, surface water condition
is extremely important in the middle HRB where irrigated
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Figure 11. Seasonal variations of the simulated aridity index and evaporative stress index using the Penman–Monteith and Hamon methods
(left to right) for the wet years of 1981, 1989, 2002, and 2007 (from top to bottom).

farmland is the largest land use and natural oases have been
gradually replaced by artificial oases (Li et al., 2001; Cheng
et al., 2014). According to our study, the hydrological ESI
should be a better indictor than the meteorological AI for
water supply and demand conditions in the middle HRB.
Zhang et al. (2015) found that the streamflow from the up-
per to middle HRB has risen due to climate change, but the
streamflow from middle to lower HRB has decreased. They
attributed this reduction to increasing water consumption by
human activities in the middle HRB. Our study indicates a
lower dryness trend in the middle HRB and therefore sup-
ports the analysis that climate change was not a major factor
for the reduction. Sun et al. (2015) found an increasing trend
in vegetation growth in the middle HRB and attributed it to
irrigation. Our study shows a lower drying trend in this re-
gion, suggesting that more net water was another contributor
to the increasing vegetation growth.

4.2 Importance of land-surface processes

The water shortage and frequent droughts are the biggest en-
vironmental threat to the ecosystems and human activities in
the HRB as well as all of northwestern China. This compari-
son study provides evidence for the importance of water and
energy interactions between land process and the atmosphere
and between upstream and downstream in determining cli-
mate types in an arid climate. Because the ESI values are
related to AET that is controlled by land-surface properties
and management practices (e.g., rainfall-fed crops vs. irri-
gated crops and natural wetlands vs. cultivated drained crop-
lands), our results suggest the land-surface processes play an
important role in affecting aridity conditions. The landscape
in the HRB, especially its transition zone, has changed re-
markably over the past several decades due to urbanization,
farming, and grazing activities (Hu et al., 2015). The irri-
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Figure 12. Seasonal variations of the simulated aridity index and evaporative stress index using the Penman–Monteith and Hamon methods
(left to right) for averages over the dry years of 1982, 1990, 2001, 2008 (top) and (bottom).

gation may have caused the lower basin more water stress
(higher ESI than AI) since stream water from the Heihe River
is intercepted and rivers go dry downstream. The ESI should
reflect this change since it is calculated partially based on the
land-surface hydrological conditions. Urbanization, farming,
and grazing would reduce vegetation coverage. This would
further reduce evapotranspiration and increase runoff. Irriga-
tion would play opposite roles. The RIEMS model uses the
Biosphere and Atmosphere Transfer Scheme (BATS) (Dick-
inson and Henderson-Sellers, 1993) to simulate the land-
surface hydrological processes. The vegetation and soil prop-
erties measured in the HRB in 2000 were used to replace the
universal BATS specifications, which improved precipitation
simulation (Xiong and Yan, 2013). However, the above dis-
turbances over time were not included in the simulation that
provided the data for this study. Numerical experiments with
this model are needed to provide quantitative evidence for
the hydrological effects of the disturbances.

4.3 Role in moderating climate

The magnitude of AI (ESI) interannual variability in the mid-
dle basin is (is not) very close to that in the lower basin,
which is additional evidence for the unique capacity of ESI
to separate the climate zones between the middle and lower
basin reaches. The magnitude of the relative interannual vari-
ability differs mainly between AI and ESI and is larger with
AI. In addition, both AI and ESI in the HRB decreased dra-
matically from 1980 to 2010, with AI decreasing at a greater
rate. Thus, the aridity conditions described using ESI are less
variable, suggesting the role of local hydrological processes
in moderating extreme climate events.

4.4 Future trends

One of the hydrological consequences from the projected cli-
mate change due to the greenhouse gas increase is more fre-
quent and intense droughts in watersheds of dry regions. In
the Colorado River Basin, global warming may lead to sub-
stantial water supply shortages (McCabe and Wolock, 2007),
and the climate models projected considerably more drought
activities in the 21st century (Cayan et al., 2010). In the HRB,
the climate of the upper HRB will likely become warmer and
wetter in the near future (Zhang et al., 2016), consistent with
the historical records. Correspondingly the basin-wide evap-
otranspiration, snowmelt, and runoff are projected to increase
over the same period. Many aridity indices, including the AI,
have been used to project future aridity trends (Paulo et al.,
2012). However, most of the recent ESI studies are based on
historical remote sensing for monitoring short-term drought
development, which limits the application of this index to
climate change impact research. Due to the unique ability of
the ESI to identify the transition climate zone as shown in
this study, it would be valuable to explore its potential for
future aridity projection study and compare with that of the
AI.

4.5 Uncertainty and future research

The regional climate simulation which generated data for
this analysis has many uncertainties (Xiong and Yan, 2013).
One of the contributing factors is the very limited number of
meteorological, hydrological, and ecological measurement
sites. A large-scale, multiple-year field experiment project
has been conducted in the HRB, which has generated exten-
sive datasets (Wang et al., 2014). These data are being used
to improve the regional climate modeling, which will in turn
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generate new high-resolution data for further aridity analy-
sis. Furthermore, the regional climate modeling has been ex-
panded into the middle 21st century, providing data for cal-
culating the aridity indices and comparing their future trends.
Comparisons of other meteorological and hydrological arid-
ity indices are also a future research issue.

5 Conclusions

This study has found that the ESI climate classification
agrees with the Köppen climate classification (Peel et al.,
2007). By using ESI, we found that the climate types are dif-
ferent among the upper, middle, and lower HRB. In contrast,
there is no difference between the middle and lower HRB
regions when the AI is used. The comparison results from
this study therefore suggest that only ESI is able to identify a
transition climate zone between the relatively humid climate
in the mountains and the arid climate in the Gobi desert re-
gion. We conclude that the hydrological aridity index ESI is
a better index than the meteorological aridity index AI for
climate classification in the HRB with a complex topography
and land cover. Selection of the most appropriate aridity in-
dex facilitates climate characterization and assessment, risk
mitigation, and water resource management in the arid re-
gion.
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