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Understanding climatic influences on annual basal area growth (ABAG) rates of individual trees is necessary
to predict future stand dynamics. We fitted nonlinear ABAG models for shortleaf pine (Pinus echinata Mill.)
with climate variables linearly added to the arguments of logistic and exponential multiplicative functions of
climate variables as climate modifiers to incorporate 14 growing seasons and 30 month-specific climate vari-
ables including standardized precipitation index. Data were collected from permanently established plots in
Arkansas and Oklahoma. Six re-measurement events collected between 1985 and 2014 provided five growth
periods (GPs) and ABAG models were fitted using a mixed-effects approach. Model performance was evalu-
ated using likelihood ratio tests and fit statistics. Climate variables from GPs expressed as deviations from
long-term means that performed better than other candidate variables included (1) month-specific: June
mean maximum air temperature (°C) (DTMAX6), and September precipitation (mm) (DPPT9); and (2) growing
seasons: mean maximum air temperature (°C) (DGTMAX) and precipitation (mm) (DGPPT). ABAG models fitted
with multiplicative climate modifiers provided improved growth predictions compared with models fitted with
climate variables linearly added to the argument of a logistic function. There was positive correlation with
DGTMAX and negative correlation with DMPPT. In addition, 1°C increase in mean maximum temperature had
a greater cumulative effect on ABAG rates of young versus old trees. Fitting ABAG models with climate modi-
fiers are useful for assessing variations in productivity due to climate change in the future.

Introduction
Prediction of annual tree growth is often improved using climate
variables in the model because they account for a significant por-
tion of the variation in annual growth rate (Pokharel and Dech,
2012; Subedi and Sharma, 2013; Jiang et al., 2015; Manso et al.,
2015). Such variation in an annual diameter growth or basal area
growth (ABAG) rate over a period is usually studied using tree-ring
analysis where significant correlations are often found with cli-
mate variables such as summer temperature, precipitation, and
drought index (Graumlich, 1993; Biondi, 2000). For example,
strong correlations exist between average summer temperature
and tree diameter growth at high northern latitudes (Briffa et al.,
1998), and extended high temperatures during the growing sea-
son that induce drought stress affect radial growth (Barber et al.,
2000; Wilmking et al., 2004; Anderegg et al., 2013). As a result,
climate variables such as precipitation and temperature are often
regressed against annual tree ring growth rates in developing
climate-based growth models (Biondi, 2000; Jump et al., 2006;
Chhin et al., 2008; Duchesne et al., 2012; Foster et al., 2015) to
explain variations in annual diameter or basal area increment
responses for the period of study (Way and Oren, 2010).

Annual diameter increment responses may vary among tree
species and tree size when exposed to climatic stressors (Callaway
et al., 1994; Hanson and Weltzin, 2000). The largest diameter trees
in a forest stand provide the best insight into growth–climate rela-
tionships (Chhin et al., 2008), but show highly variable growth
rates (Hanson and Weltzin, 2000; Carrer and Urbinati, 2004), as
mature trees are affected by severe drought stress and warmer
temperatures (Hanson and Weltzin, 2000; Lloyd and Fastie, 2002;
Jump et al., 2006). These factors can also induce tree mortality.
Regional conditions and site-specific limiting factors also affect
the lengthened growing seasons in ways similar to the effects of
variation in precipitation and temperature (Graumlich, 1993;
Hanson and Weltzin, 2000; Boisvenue and Running, 2006).
Therefore, monitoring and evaluating responses of trees from per-
manent plots to changes in climate is useful for understanding
limiting factors of forest growth on particular sites (Boisvenue and
Running, 2006; Moore et al., 2006; Williams et al., 2013).

Shortleaf pine (Pinus echinata Mill.) grows in more than 22
states in the USA and is second in volume among the southern
pines to loblolly pine (Pinus taeda L.), but its abundance is
declining due to replacement by plantations of other commer-
cially viable southern pine species (Lawson, 1990). It is more
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drought tolerant than loblolly pine and is found to grow well
where total annual precipitation averages between 100 and
150 cm and average annual temperature ranges between 9 and
21°C (USDI Geological Survey, 1970). Studies focused on growth
and yield of naturally grown shortleaf pine include Murphy et al.
(1992), Lynch et al. (1991), Lynch et al. (1999), and Budhathoki
et al. (2008), which are based on permanent plots established in
even-aged naturally-occurring shortleaf pine forests in western
Arkansas (Ozark and Ouachita National Forest) and south-
eastern Oklahoma (Ouachita National Forest).

Most fitted climate-based tree diameter growth models use
tree ring data which provides annual growth information.
Climate data have been used less frequently for models fitted
to periodic re-measurement data. Although national inventory
or permanent plot data have frequently been used for modelling
individual tree growth and developing growth simulation models
(e.g. Wykoff et al. 1982; Pretzsch et al. 2002; Weiskittel et al.,
2011), individual tree growth models from such data have been
rarely fitted with climate variables included. However, recently
Zell (2018) used periodic re-measurement data from experi-
mental forest management trials in Switzerland to study the
impact of climate variables on individual tree growth. Saud et al.
(2016) also used this type of data. Further, most studies have
used climate variables as linearly added terms to the argument
diameter growth or ABAG models and have shown modest
improvement in model prediction. Although Saud et al. (2016)
fitted ABAG model for shortleaf pine with climate variables
(terms linearly added to the argument of a logistic function),
investigation of the potential improvement from using climate
variables and climate-based ABAG model sensitivity to climate
change scenarios was lacking. Moreover, studies investigating
the use of climate variables to show potential improvement in a
climate-based growth model with re-measurement data to fit
ABAG models are lacking as well. Therefore, this study aims to
develop and compare the climate-based ABAG model by fitting
climate variables as linearly added terms to the argument of a
nonlinear growth model and in a multiplicative exponential
function (multiplied by a base growth model) to show the
potential influence of climate variables on ABAG of an individual
tree. For this purpose, we used data from permanent plots mea-
sured six times over 25 years in naturally occurring even-aged
shortleaf pine forests in Ozark and Ouachita National Forests,
USA. Our specific study aims were: (1) to update the existing
ABAG model with multilevel mixed-effects model including a
variance function and an autocorrelation structure; (2) to
develop a climate-based ABAG model with linear terms and
multiplicative exponential functions of climate variable; (3) to
show the correlation of climate variables with ABAG of an indi-
vidual tree; and (4) to evaluate the sensitivity of prediction to
different climate change scenarios in the climate-based ABAG
model.

Methods
Tree data
Data were obtained from 208 permanent plots located in even-aged nat-
ural stands of shortleaf pine in the Ozark and Ouachita National Forests
in western Arkansas and southeastern Oklahoma. The area ranged from
north of Russellville, AR on the Ozark National Forest to east of Idabel, OK

on the Ouachita National Forest (Latitudinal range: 33.801380
to 35.662309; longitudinal range: −92.959581 to −94.916550). In
1985–1987, the Department of Forestry (now, Department of Natural
Resource Ecology and Management) at Oklahoma State University (OSU)
and USDA Forest Service Southern Research Station (USFS) at Monticello,
Arkansas jointly established these research plots to monitor long-term
growth and yield performance of managed naturally occurring shortleaf
pine stands (Lynch et al. 1991; Budhathoki et al., 2008).

Permanent plots were circular in size with a radius of 16.06m. At an
interval of 4–6 calendar years, each plot was measured with the last
(sixth) measurement made between 2012 and 2014. The dataset con-
tains six measurements and five growth periods (GPs). At the time of
plot establishment, diameter at breast height (dbh) ranged from 2.78 to
61.98 cm and the plot age ranged from 18 to 93 years. Diameters for
individual trees on each plot were recorded at each measurement peri-
od. Using the ring count method, ages of dominant and codominant
trees were determined and then averaged to obtain a stand age for
each plot.

Most of the plots were thinned to their original basal area just after
the third measurement (1995–1997) while a portion was left unthinned.
Given that re-measurement periods were short and thinning effects are
often time-lagged by 1–2 years with maximum effects occurring often
4–5 years later, we could have used the basal area at the beginning of
the period. However, we deducted thinned basal area from the total
stand basal area at the third measurement (for additional information
see Saud et al. 2016) to account for the effect of reduced stand basal
area on individual tree growth. In 2001, during the early phase of the
fourth measurement, an ice storm damaged some of the plots.
Individual trees recorded as having ice damage (crown damage) or
otherwise not suitable (crown damage >25%) for growth calculation
were not included in the growth model development process. Summary
statistics of tree and stand level variables based on measurements are
shown in Table 1. Summary statistics based on GPs are shown in
Table 2.

Climate data
We used latitude and longitude coordinates of each plot to obtain cli-
mate information from 1980 to 2014 using four km resolution grids
from Parameter-elevation Relationships on Independent Slopes Model
(PRISM) (PRISM Climate Group, 2015). Climate attributes obtained over
34 years were air temperature (°C) [maximum (TMAX), mean (TMEAN),
and minimum (TMIN)] and rainfall precipitation (PPT). To understand
whether the variability in mean climate response exists among plot level
or not, we grouped plots into 47 microclimate clusters based on similar
climate means for plots in the first GP. On average, there were four plots
per cluster. Unique climate identifiers (CLMID) were assigned to each
microclimate cluster, and plots were assigned with the same CLMID in
subsequent GPs, assuming that microclimate would not vary between
plots of a climate cluster.

Variance in climate response among climate clusters was tested
using one-way ANOVA. Results showed mean climate response vari-
ables: TMAX (df = 46, F = 15746. P < 0.001), TMEAN (df = 46, F = 80901,
P ≤ 0.001), TMIN (df = 46, F = 2026.6, P < 0.001), and PPT (df = 46, F =
586.5, P < 0.001) were significantly different among CLMIDs for GP1.
Similarly, one-way ANOVA also showed that mean climate response was
significantly different (P < 0.0001) for each CLMID among the remaining
GPs. The above results supported our research efforts to : (1) use the cli-
mate variables to fit the models based on groups of plots with similar
climate variability and (2) exhibit that the geographical spread of sam-
ples is large enough that the temporal variation within growth periods is
not too strongly correlated across sites (plots).

The active growing season of shortleaf pine was presumed to be
from April to September, which is the normal length for calculating the
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standardized precipitation index (SPI). The SPI is a surrogate for the
effects of both temperature and precipitation and can be used as an
alternative to the Palmer drought index (Guttman, 1999). The SPI based
on 6 months shows seasonal to medium-term trends for precipitation
by comparing it with the precipitation of the same 6-month period for
long-term data (20–30 years). The SPI index was estimated using the
‘spei’ package in R (Beguería et al., 2013) and indicates wet and dry
events using scales: ≤−2.0 (extremely dry), ≤−1.5 (moderately dry),
≤−1.0 (dry), <1.0 (neutral), <1.5 (wet), <2.0 (moderately wet) and >2
(extremely wet).

We constructed seven candidate climate variables for the GPs: (1)
GPTMAX = average maximum temperature, (2) GPTMEAN = average
mean temperature, (3) GPTMIN = average minimum temperature, (4)

GPPPT = average monthly precipitation, (5) GPSPI = average standardized
precipitation index, (6) GPTPPT = average total precipitation and (7)
GPTSPI = average total standardized precipitation index. Additionally, we
created 30 climate variables specific to calendar month of GP using
TMAX, TMEAN, TMIN, PPT and SPI. Hereafter, the latter 30 climate vari-
ables are termed ‘month specific climate variables’ and labelled with a
number to indicate the respective month.

Mean climate response variables over 34 years are shown in Figure 1.
Over the period of 34 years, mean monthly climate response during the
growing season were as follows: PPT of 111.36 ± 25.13mm (mean ±
standard deviation (SD)) with a range of 37.14–209mm; TMAX of
28.95°C ± 1.20°C with a range of 25.84–33.43°C; TMEAN of 22.63 ±
0.88°C with a range of 20.18–26.25°C; and TMIN of 16.29 ± 0.85 with

Table 2 Summary statistics (mean and standard deviation) of tree and stand level variables related to growth periods (GP) used for model
development

Variables Growth Periods (GPs)

GP1 GP2 GP3 GP4 GP5

ABAG (m2/tree)/year 0.00121 0.00135 0.00150 0.00153 0.00138
(0.0001) (0.0011) (0.0011) (0.0011) (0.0011)

Mid dbh (cm) 19.9 21.4 26.3 28.2 29.7
(9.9) (10.3) (9.5) (9.8) (10.3)

Mid basal area (m2) 0.039 0.044 0.061 0.070 0.078
(0.037) (0.040) (0.044) (0.048) (0.052)

Mid stand basal area (m2 ha−1) 23.37 27.89 23.34 26.07 29.22
(6.87) (7.79) (7.80) (3.31) (8.87)

Mid ratio of QMD to dbh 1.12 1.16 1.09 1.06 1.08
(0.34) (0.20) (0.17) (0.26) (0.31)

Mid stand age (year) 44.2 49.2 54.0 62.0 64.0
(19.7) (19.8) (19.5) (20.2) (20.3)

ABAG = annual basal area growth; QMD = quadratic mean diameter; Mid = averages of the two consecutive measurements; n = individual tree
observations.

Table 1 Summary statistics (mean and standard deviation) of tree and stand level variables measured six times (excluding ice damage) in naturally
occurring even-aged shortleaf pine stands in Oklahoma and Arkansas, USA

Variables Measurement (years)

M1 (85–87)1 M2 (90–93) M3 (95–97) M4 (00–01) M5 (06–08) M6 (12–14)
(n = 8290) (n = 8088) (n = 7587) (n = 4722) (n = 4403) (4286)

Dbh (cm) 18.8 20.7 23.2 27.12 29.22 30.82

(9.9) (9.9) (10.1) (9.7) (10) (10.4)
Basal area (m2) 0.035 0.041 0.050 0.0652 0.0752 0.0852

(0.35) (0.038) (0.042) (0.045) (0.05) (0.055)
Plot age (years) 41.4 46.3 52.0 59.6 65.2 71.0

(19.6) (19.67) (19.8) (20.1) (20.0) (20.1)
Site index3 (m) 17.45 17.23 17.30 17.54 17.42 17.40

(2.89) (2.98) (3.01) (3.04) (3.02) (3.0)
Stand basal area (m2 ha−1) 21.31 25.75 29.72 25.36 27.95 30.20

(6.69) (7.38) (8.40) (8.37) (8.70) (9.07)

1M with number refers to measurements; two-digit number in parentheses is corresponding year of measurement; dbh = diameter at breast height.
2Tree level estimate excludes ice-damaged trees.
3The base age for site index was 50 years.
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range of 14.00–19.55°C. In addition to these climate variables, we intro-
duced new climate variables that represented the deviation in climate
response from its long-term mean (over the study period). For example:
DGTMAX = GPTMAX of GP minus mean of TMAX during growing season
over the period of 34 years; DGPPT = GPPPT of GP minus mean of PPT
during growing season over the period of 34 years; where the letter ‘D’
indicates the deviation or difference. One-way ANOVA results also
showed mean deviation of climate: DGTMAX (F = 992.4, P < 0.0001),
DGTMEAN (F = 329.5, P < 0.0001), DGTMIN (F = 922.4, P < 0.0001) and
DGPPT (F = 2249.7, P < 0.0001) were significantly different among
CLMIDs indicating that deviation of climate from normal for a given
growth period was not similar between plots grouped in different
CLMIDs.

Model formulations

(a) Base model. Annual basal area growth (ABAG) of an individual tree
was estimated as the ratio of total basal area growth during a GP
divided by the length of measurement interval in years. ABAG was pre-
dicted using the model given by Lynch et al. (1999) for shortleaf pine
and that model was considered as the base ABAG model (Eq. (1)). This
ABAG model is based on a potential-modifier framework, i.e. predicted
growth equals to the growth function times potential growth modifier
(e.g. Murphy and Shelton, 1996) and produces sigmoid shaped growth
curves for individual trees. Eq. (1) is of the potential-modifier form in
which a Chapman-Richards (Richards, 1959) curve constrained by max-
imum basal area (Shifley and Brand, 1984), which represents potential
tree growth and is multiplied by a logistic modifier. Murphy and Shelton
(1996) constrained the modifier function to take on value between zero
and one so that it reduces potential growth based on the variables

representing tree and stand attributes and site conditions. An example
of this general type of individual-tree basal area growth model is used in
TWIGS, a forest growth and yield simulation programme (e.g. Miner
et al. 1989) for the north central states, although TWIGS uses a different
modifier. The logistic function in our application is non-negative and
restricted to be less than one and the denominator acts to reduce the
maximum possible growth of a tree of a given basal area based on con-
ditions on the plot. The base ABAG model (Model 1) given by Lynch et al.
(1999) for shortleaf pine is shown below:

β β

β β β β β
ε=

− ( )

+ ( + + + + )
+ ( )

β β−

y
B B B

B A R k B

/

1 exp
1ijk

ijk ijk

s jk ijk ijk
ijk

1 1 max
1

3 4 5 6 7jk

2 2

where i, j, k are tree, plot, and GPs, yijk = average ABAG(m2 yr−1) of a
tree; Bijk = growth interval midpoint basal area (m2) of tree; Bmax =
0.656683(m2) (the maximum expected basal area for a shortleaf pine
tree); Bsjk = stand basal area per hectare (m2 ha−1) at the growth inter-
val midpoint; Ajk = stand age (years) of plot at the growth interval mid-
point; Rijk = is the ratio of a tree i diameter to the quadratic mean
diameter of plot at the growth interval midpoint; β1, β2,…, β7 are the
fixed parameter estimates; and ɛijk is within-plot error, residual for tree i
in the plot j for the GPs k where ɛijk~N(0,σ

2). Values of variables at the
growth interval midpoint were obtained by averaging initial and final
values because we assumed that competition pressure during the
growth interval should be a major influence on growth during that time.
Alternatively the basal area at the beginning of the period can be used
instead of midpoint values. Maximum basal area came from averaging
the largest known Shortleaf pine and the maximum diameter at breast
height in our data (see Lynch et al. 1999).

Figure 1 Temperature and precipitation distribution between 1980 and 2014: (a) mean maximum, minimum and mean air temperature during
growing season; (b) mean growing season temperature over the length of the study period (1984–2014); (c) mean total monthly perception and
monthly standardized perception index during growing season; (d) mean precipitation and standardized precipitation index of month of the growing
seasons over the length of the study period (1984–2014). Months ‘4–9’ represents April–September.
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(b) Climate-based model. Candidate climate variables were selected
using randomForests (RF) in R (Liaw and Wiener, 2002). RF reports vari-
able importance scores by the percentage increases in mean square
errors (%incMSE) of the model computed for not permuted versus ran-
domly permuted predictors (Liaw and Wiener, 2002; Jiang et al., 2015).
Variables with higher %incMSE are the most promising predicting vari-
ables as linear predictors in terms of reducing the model mean square
error. Because the randomForests fits the variables in a linear regression
framework (Liaw and Wiener, 2002), the selected predictors not be com-
pletely reliable for nonlinear models. However, the variables with higher
%incMSE of deviation in growing season climate variables (Figure 2a)
and month specific climate variables (Figure 2b) were considered rea-
sonable candidate variables for use in a climate modifier.

All possible candidate climate variables with %IncMSE (Figure 2)
were tested in the ABAG model as terms linearly added to the argument
of the exponential multiplicative function to Eq. (1). The combination of
climatic variables that produced the best fit were selected. Hereafter, we
called the model with climatic variables as the ‘climate-based ABAG
model.’ Two different sets of climatic variables (growing season and
month specific) were fitted to the base model as linearly added terms
to the arguments of logistic portion of Eq. (1) and as variables in an
exponential multiplicative function. Climate variables added as linear
terms that represent deviation in seasonal climate variables resulted in
Model 2 and deviation in month specific climate variables resulted in
Model 3. Hereafter ‘linearly added’ means the climate variables added
to the argument of the logistic function in the denominator of the mod-
el (e.g. Eqs. (2 and 3 ) below).

Similarly, a climate-based ABAG model fitted with an exponential
multiplicative function of deviation in seasonal climate variables resulted
in Model 4 and a model with month specific climate variables resulted in
Model 5. We also fitted all potential climate variables as variables in a
multiplicative exponential function and found that the best fit was
obtained with climate variables similar to those fitted to the logistic
function. Hereafter, a climate-based ABAG model with an exponential
function is called a ‘climate modifier’ (Eqs. (4 and 5 ) below). The climate
modifier is designed to be equal to one when the GP means are equal to
the long-term climate means otherwise the weight of the climate modi-
fier will be greater than or less than one.

β β

β β β β β β β
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+ ( + + + + + + )
+
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+
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=
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/

1 exp

8 9
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1 2
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Figure 2 Random forest plots showing importance value of each growing season climate variable and month specific climate variable (from top to
bottom in order) when used for predicting annual basal area growth. Variable importance is measured by %IncMSE, which refers to mean decrease
in accuracy (i.e. the greater the value, the better the prediction); (a) growing season climate variables over growth period, and (b) month-specific cli-
mate variables, where numbers indicate the corresponding month of a calendar year such as 4–9 indicates April–September. TMIN = minimum tem-
perature; TMAX = maximum temperature; TMEAN = mean temperature; PPT = precipitation; TPPT = total precipitation; and SPI = standardized
precipitation index. ‘D’ as initial letter indicates difference between mean responses of a climate variable during growth period from their mean
response over 34 years; GP = Growth periods; DG = Deviation in climate during growth period.
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where β8, and β9 are the parameters to be estimated corresponding to
climate variables. The remaining terms are described as above.

DTMAX6jk is the difference between the average maximum tempera-
tures of June (MTMAX6) for the plot j during the GP k minus the mean
maximum temperature of June (TMAX6) for the plot j over the period of
34 years. DPPT9jk is average precipitation of September (MPPT9) of the
plot j during the GP k minus the mean precipitation of September (PPT9)
for the plot j over the period of 34 years.

Model 4 and 5 in which climate effects are contained in a multiplica-
tive term might have promise as a method for updating legacy, already
existing basal area growth models. The climate multiplier could be fitted
with a smaller ancillary dataset by using a two-stage process in which
the climate factor is multiplied by the prediction from an already exist-
ing legacy basal area growth prediction model. This might provide a way
to introduce climate effects into already existing individual tree growth
and yield simulation programmes.

Note that for climate equal to the average during the 34-year period,
the difference in climate variables are equal to zero so that Eqs. (2–5)
reduce to the form of the base model of Eq. (1) in that case.

Mixed-effects model

The issue of autocorrelation between measurements for individual trees
was evaluated using the first order of autoregressive (AR (1)) structure
with the residuals of Model 1 suggest no serious correlation issue
between errors with individual tree observations. The homoscedasticity
assumption of residuals was evaluated by plotting standardized resi-
duals against predicted ABAG. Additionally, we also fitted power variance
functions with all models as suggested by Pinheiro and Bates (2000, p.
391) to address the issue of heteroscedasticity of errors. The error vari-
ance was modelled with the covariate, individual tree basal area (B)
because this covariate was associated with smaller AIC values than
alternatives and there were convergence issues with alternative variance
function structures. Also, non-constant variances for regressions
between individual tree attributes have often been observed to be asso-
ciated with individual tree size in previous studies (e.g. Budhathoki et al.
2008). The power variance function is defined as σ2(v) = |v|2ϴ, where ϴ is
the variance function coefficient and σ2(v) is variance function evaluated
at covariate v.

We used a mixed-effects approach to fit two different models, i.e. (1)
base-ABAG model and (2) the best climate-based ABAG model. Because
we wanted to provide optimal estimates that can be easily applicable in
the absence of climate variables, we fitted Model 1 with mixed-effects
approach. For the climate-based ABAG model, Model 5 with exponential
form was fitted with mixed-effects approach because of better-fit statis-
tics than Model 4.

The random-effect (u7) associated with the fixed-effect (β7) per-
formed better than fitting random effects with other variables. Because
we are using a plot level random effect, we need to associate the ran-
dom effect with a variable that is not constant for all trees within a plot,
so we cannot use stand level covariates, which might be confounded
with the stand level random effect. For example, site index age and
basal area per hectare are the same for all trees within a given plot, but
the tree diameters and hence individual tree basal areas of course vary
from tree to tree within a plot. For all mixed-models we studied, we
associated the random effect with individual tree basal area. The result-
ant mixed-effects models for the base ABAG is Model 6 and for the
climate-based ABAG is Model 7 are:
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where u7jk is the random parameters specific to jth plot associated with
the mid-tree basal area fixed effect coefficient β7, and the rest of the
terms are described as above for Model 1. It is assumed that u7jk ∼ N (0,
σu2), εijk ∼ (N, σ2) and cov (μ7jk, εijk) = 0. The variances are an indication of
the spread of the random coefficients and we would usually be inter-
ested in estimates of the variance of μ( )jk7 , i.e. σ̂u2.

Model evaluation

All models were fitted as a generalized nonlinear regression model using
nlme package (Pinheiro et al., 2018) of R (R Core Team, 2018) and mod-
els were compared goodness of fit statistics primarily using the likeli-
hood ratio test (LR). We also reported the Akaike Information Criteria
(AIC) value for each model. Another criterion for model selection was
the growth prediction accuracy of each model, which was evaluated fit
index (pseudo R2), root mean square error (RSE), and bias. Fit index esti-
mation is based on observed and predicted growth by nonlinear models
and by mixed-effects models without random effects, so that both
models have equal numbers of parameters involved in model prediction
comparison criteria. We have also reported fit index based on mixed
effect model fit. The AIC of a mixed-effects model can be improved by
the use of estimated random parameters. However, unless the mixed
model is calibrated by estimating random parameters for applications,
only the fixed effects can be used in prediction. Some authors
(Temensgen et al., 2008; Saud et al. 2016) have argued that nonlinear
least squares models can be superior for prediction unless it is possible
to calibrate mixed model alternatives.

We also used Spearman rank (rho) correlation to show the relation-
ship between the deviation in climate response with ABAG over the
study period and during each growth period. The correlation is shown
using head scatter plot based on a two-dimensional kernel density
estimation.

Predictions under different climatic scenarios

To demonstrate possible variability in the ABAG prediction by two differ-
ent forms of fitted climate-based ABAG models, we simulated ABAG of
an individual tree for fifty years under four different climate scenarios.
We selected Model 2 & 4 instead of Model 3 & 5 because the projected
climate values by general circulation Model (GCM) were available as year
specific to characterize decade’s midpoint not as month-specific climate
variables. Future climate predicted by GCMs model are based on several
development scenarios, or storylines formulated by the IPCC (2007).

For the first two scenarios, we used climate values of mean (μ) and
upper quartile (UQ) with SD of the growing season between 1980 and
2014. The value at μ, UQ, and SD were 28.95, 29.77 and 3.29°C for tem-
perature and 111.36, 126.39 and 25.13mm for precipitation, respect-
ively. The latter two-scenarios represent GCM prediction models
storylines of two extreme future climate change scenarios. CGCM3-A1B
(Canadian Center for Climate Modeling and Analysis with storyline A1B)
projects future climate under the secenario of global rapid economic
growth with balanced energy fossil fuel and non-fossil fuel technology.
HADCM3-B2 (Hadley Center/World Data Center with storyline B2)
projects future climate under the secenario of local envorinment sutai-
nablitly with different patterns in demographic, social, economic,
technological and environmental development worldwide. We obtained
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the future climate data at the year 2060 for a sample plot location from
Moscow Forestry Sciences Laboratory (2015) under these GCM model
scenarios. Mean precipitation was of 103.8 ± 32.5 and 89.1 ± 25.7mm
and mean maximum temperature was of 31.6 ± 4.5 and 32.5 ± 4.9°C
for the respective scenarios.

Individual tree growth was simulated for 50 years using values of
tree variables measured during the final (i.e. 6th) re-measurement
event. We simulated individual tree growth rather than growth of entire
plots because a climate-based survival function to simulate plot or
stand growth was not available for shortleaf pine. We selected an indi-
vidual tree that represented the lower quantile (25 per cent) and upper
quantile (75 per cent) of stand age distribution of 38-years and 78-
years, respectively. Both the 38-year old tree (dbh = 20.2 cm) and the
78-year old tree (dbh = 32.9 cm) were grown for the next 50 years with
an annual average increment of all covariates in the model assuring
that simulated growth would follow biological expectation within range
of the existing dataset. The values of the input variables for the 38 year
old tree were: Bi = 0.0321m2, Bsj = 14.7543m2 ha−1, Rij = 0.5788, and
for the 78 year old tree were: Bi = 0.0851m2, Bsj = 11.7767m2 ha−1,
Rij = 0.5825.

In the simulation process, both climate variables were randomly
generated using SD of the data over the period of 34 years, and sub-
tracted from the μ of the corresponding climate variable. The simulation
of each scenario was conducted with five different cases (levels): (1)
with multiplicative climate modifier (Eq. (4)); (2) with linearly added
term (Eq. (2)); (3) Model 1 without climate variables (Eq. (1)); (4) climate
modifier equation but without using estimates of climate (Eq. (4)) with
multiplier set to (1); and (5) climate variables linearly added to
equation argument but without using estimates of climate (Eq. (2) with
climate variables set to zero). The latter cases 4 and 5 were used to
demonstrate how well the climate based-ABAG model in the absence of
climate coefficients predicts with base ABAG model. These four different
climate sensitivity scenarios on ABAG were simulated for 10 000 runs
with the five different cases.

Results
Annual basal area growth
Average annual basal growth rate of individual shortleaf pine
trees was 0.001395m2 yr−1 over the period of 25 years. The
periodic mean ABAG rate of individual shortleaf pine trees was
0.00121, 0.00135, 0.00150, 0.00153 and 0.00138m2yr−1

respectively for GP1, GP2, GP3, GP4 and GP5 (Table 2).
Comparison of all periodic mean ABAG rate with the mean
ABAG of GP1 showed positive difference in the growth rate was
of 11.6, 24, 26.4 and 14 per cent for the consecutive GPs,
respectively.

ABAG models

According to the likelihood ratio test, the goodness of fit indi-
cated that fitted climate-based ABAG models (Model 2–5) were
significantly different from the base ABAG Model 1 (Table 3).
However, climate-based ABAG models fitted with either vari-
ables based on growing season climate (Model 2 & 4) or vari-
ables based on month specific climate (Model 3 & 5) were not
significantly different from each other according to the likeli-
hood ratio test (Table 3). Although the climate-based ABAG
models (Model 2–5) were not significantly different, the fit-
statistics (Table 4) of the ABAG models fitted with climate modi-
fier (Model 4 & 5) were slightly better than ABAG fitted with
terms of climate variable linearly added to the
equation argument (Model 2 & 3). Models 4 & 5 fitted with cli-
mate modifier showed improved ABAG prediction by showing
increased in fit indices of 1.1 and 2.5 per cent, respectively, for
ABAG prediction over the Model 1. Similarly, increased fit indices
were 1.0 and 2.1 per cent for linearly added climate-based
ABAG Model 2 and Model 3, respectively when compared with
the fit index of Model 1. Although all models are practically
equivalent, the improved ABAG prediction and reduced bias per-
centage of both Model 3 and 5 indicated that deviation in
month specific climate variables performed slightly better than
deviation in growing season climate variables for modelling the
effect of climate on ABAG of individual trees using re-
measurement data from the long-term study.

The parameter estimates of Models 1–5 were highly signifi-
cant (Table 5) and were similar to each other for the variables
which all the models had in common. The mean growth (coeffi-
cient β3) was higher for the ABAG Models 2 & 3 with linearly
added terms of climate as compared with ABAG Models 4 & 5
with climate modifier (Table 4). Models 4 & 5 showed a negative
parameter estimate for temperature and a positive parameter
estimate for precipitation, while Models 2 & 3 showed the
opposite parameter signs due the differences in mathematical
form, although the effect on predictions was similar. The differ-
ence in sign of parameters was due to the fact that climate
variables were in the denominator of Models 2 & 3 compared
with Models 4 & 5. Moreover, climate-based models fitted with
month specific climate variables (Models 3 & 5) had a lower
standard error associated with climate variables than the ABAG
models fitted with growing season climate variables (Table 4).
Standardized residual distribution patterns were similar between
the base ABAG model (Figure 3a) and climate-based ABAG mod-
els (Figure 3b, c) and the climate-based model fitted with

Table 3 Matrix of likelihood ratio test statistics of the fitted ABAG models for shortleaf pine

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Model 1 – 891.6 1041.4 1081.3 1203.8 3297.7 4970.9
Model 2 – NS NS NS 2256.3 4079.3
Model 3 – NS NS 2256.3 3929.5
Model 4 – NS 2216.4 3889.6
Model 5 – 2093.9 3767.1
Model 6 – 1673.2
Model 7 –

NS indicates non-significant likelihood ratio test between fitted ABAG models otherwise significant (P < 0.0001).
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mixed-effect approach (Figure 3d). No serious issues in the
homogeneity of residuals were displayed with the corresponding
ABAG models fitted respectively and all ABAG models had a
similar power variance function.

ABAG models with mixed-effects

The LR statistics showed that climate-based ABAG models fitted
with the mixed-effects approach (Model 6–7) were significantly
different from all other fitted models (Table 3). Both mixed-
effects models had a lower AIC value than the models fitted
without mixed-effects (Table 4). Results showed (Tables 4 and 5)
increases in fit indices and decreases in both bias (%) and RMSE
(%) in the model based fit statistics for mixed-effects models.
The model based fit indices for Model 6 & 7 were 69.1 per cent
and 71.1 per cent respectively, which was an increase of 9.4 per
cent and 9.7 per cent in fit indices to the corresponding model
without mixed-effects (Model 1 and 5). However, the mixed-
effects models showed increases in bias and RMSE (percentage)
and decreases in fit-indices (Table 4) when fit statistics were
computed setting the random effects set to zero to make mod-
els comparable with the models that did not contain random
effects.

The parameter estimates of all mixed-effects models were
highly significant and are shown in Table 6. Results showed a
reduced constant effect on growth (coefficient β3) and midpoint
basal area (coefficient β7), but increased effect of individual tree
status (coefficient β6) in predicting ABAG. Model 7 showed more
negative effect of temperature than models without mixed-
effects (Model 5) in ABAG; however, the positive effect of precipi-
tation was similar between Model 5 (Table 5) and Model 7
(Table 6). Variability in ABAG prediction attributed to the random
effects associated with plot was high in the Model 6 than in the
Model 7 (Table 6). The performances of the climate-based
ABAGs Model 5 without the mixed-effects approach and Model
7 with the mixed-effects approach were judged better than
other models because of better fit-statistics (Table 4, refer to fit
indices).

ABAG and climate correlation

Over 25 years, the Spearman rank (rho) correlation between
ABAG and deviation in climate response was significant (P-

value <0.0001) but small in magnitude. The correlation was
positive to DGTMAX (0.02), and negative to DGPPT (−0.06). In
contrast, the correlation and its significance vary for each GP
(Figure 4). The correlation was positive between ABAG and
DGTMAX, when all observations were around the mean (zero)
or lower than the mean (–ve DGTMAX) level, though statistically
not significant (Figure 4). GP5 showed increase in DGTMAX had
a significant but negative correlation with ABAG (Figure 4e) and
increases in DGPPT had a significant positive correlation with
ABAG (Figure 4e).

ABAG sensitivity with climate change

The simulation study of ABAG sensitivity showed similar growth
patterns under four different climate change scenarios for
climate-based ABAG Model 2 fitted with the linearly added term
and Model 4 fitted with climate modifier (Figure 5). Although
ABAG prediction under the long-term mean temperature scen-
ario by both models was close to the ABAG predicted by Model 1
(base model), the simulated ABAG curves for both stand ages by
Model 2 (Figure 5a and c) were slightly higher than those of
Model 4 (Figure 5b and c). This result was also supported by
Wilcox matched-pairs signed rank test indicating significant
differences in ABAG predicted between Model 2 and Model 4
(V = 61, P-value < 0.0001) and also with Model 1 (V = 1275,
P-value < 0.0001). In the remaining three scenarios, the simu-
lated ABAG curve for both stand ages by Model 4 was slightly
higher than that for Model 2, and Wilcox matched-pairs signed
rank test also indicated a significant difference in ABAG pre-
dicted between models for the similar stand ages under the
respective climate sensitivity scenarios.

Differences in ABAG simulation of both stand ages between
the beginning and the end of the 50-year period was high for
Model 2, but it was low in the Model 4 when compared with
Model 1 (Table 7). Similarly, the largest difference in ABAG rate
was observed in the simulation scenario of long-term mean
temperature change, while the smallest difference in ABAG was
in the HADCM3-B2 scenario for both models. In all scenarios, dif-
ferences in ABAG at the end of 50 years was less with Model 4
than with Model 2 when compared with Model 1 (Table 7). At
the end of 50 years, under the long-term mean temperature
change scenario, a positive gain in ABAG rate was higher for
Model 2 than for Model 4 for both stand ages, and it was a

Table 4 Summary of fit-statistics with and without climate variables of fitted basal area growth models for shortleaf pine

Model AIC1 Bias Bias (%) RMSE2 RMSE (%) Fit indices (%)

1 −328136 −1.252976 × 10−5 0.922 0.003406 48.56 63.18
2 −329024 1.548767 × 10−5 1.140 0.003359 48.14 63.81
3 −329173 1.479791 × 10−5 1.089 0.003249 47.66 64.52
4 329 213 1.549838 × 10−5 1.140 0.003381 48.08 63.89
5 −329336 1.348799 × 10−5 0.993 0.003248 47.49 64.77
6 −331432 −3.246186 × 10−5 −0.239 0.002990 50.10 60.80
7 −333101 3.563285 × 10−5 2.623 0.002829 49.35 61.98

Fit-statistics for mixed-effects models are based on parameter estimates with random-effects set to zero to make comparable with other models.
1AIC = Akaike Information Criteria.
2RMSE = Root mean square error.
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Table 5 Parameter estimates (EST) and standard errors (SE) of fitted base annual basal area growth (ABAG) prediction model (Model 1) of shortleaf
pine with long-term deviation in growing season climate (Model 2 & 4) and in month specific climate (Model 3 & 5) as linearly added terms (Model
2, 3) and multiplicative exponential (climate modifier) (Model 4 & 5)

Parameters Base Linear Multiplicative exponential
Model 1 Model 2 Model 3 Model 4 Model 5
Est (SE) Est (SE) Est (SE) Est (SE) Est (SE)

β1 0.045333 0.056660 0.044311 0.044651 0.031282
(0.002431) (0.003258) (0.002312) (0.002376) (0.001493)

β2 0.626412 0.651761 0.610007 0.638146 0.572312
(0.010777) (0.011049) (0.011142) (0.010844) (0.010762)

β3 –3.011162 –2.595969 –2.765213 –3.109814 –3.235068
(0.107396) (0.104662) (0.100223) (0.101859) (0.095199)

β4 0.136035 0.133542 0.141733 0.144687 0.151407
(0.002816) (0.002709) (0.002757) (0.002827) (0.002736)

β5 0.024693 0.023009 0.023859 0.025087 0.025548
(0.000675) (0.000622) (0.000642) (0.000668) (0.000669)

β6 2.398520 2.205123 2.329420 2.354085 2.476926
(0.051204) (0.047482) (0.047237) (0.048762) (0.047639)

β7 –9.938124 –9.137884 –10.053112 –10.473871 –11.848415
(0.362780) (0.323247) (0.344926) (0.368203) (0.390949)

β8 – 0.170810 0.202255 –0.102785 –0.128153
(0.013407) (0.009719) (0.007964) (0.005619)

β9 – –0.008197 –0.007730 0.006275 0.005144
(0.000582) (0.000285) (0.000348) (0.000145)

θ 0.562496 0.563268 0.554116 0.566401 0.554924

θ is power in σ2(v) = v2θ power variance function.

Figure 3 Standardized residuals of fitted annual basal area growth (ABAG) models for shortleaf pine: (a) Model 1: base model; (b) Model 2: linearly
added deviation in growing season climate variables to the arguments of the logistic function; (c) Model 5: climate modifier with deviation in month
specific climate variables; (d) Model 7: mixed-effects model using climate modifier with deviation in month specific climate variables.
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substantial positive gain for stand age 78 years grown under
similar climatic conditions. Likewise, differences in total ABAG at
the end of 50 years, when compared with Model 1, was also
higher for Model 2 than for Model 4 under simulation scenario
for long-term mean temperature (Table 7).

Except the long-term mean temperature scenario, all other
climate sensitivity scenarios showed negative differences in
ABAG values at the end of 50 years and in total ABAG at the
end of 50 years. The smallest negative difference was observed
with long-term upper quartile temperature indicating that one-
degree centigrade (°C) increment in long-term mean tempera-
ture could significantly (V = 0, P-value < 0.0001) reduce ABAG
over the period. Other climate sensitivity scenarios such as
HADCM3-B2 and CGCM3-A1B showed the most substantial
negative differences indicating a more stressed growth rate in
young trees with an increase in temperature and decrease in
precipitation than compared with older trees grown in similar
climatic conditions (Table 7). It should also be noted that differ-
ences in basal area and social status influenced the growth
rate. Therefore, variability in ABAG rate within different climate
sensitivity scenarios was higher for the younger stand than for

the older aged stand at the end of a prolonged period of climate
change.

Discussion
ABAG models
Improved AIC values and large LR statistics indicated that the
mixed-effects model was a reasonable choice for modelling
ABAG using repeated measurements compared with models fit-
ted by OLS. Mixed-effects models in association of both an AR
(1) structure and variance power function are often used to
address the problems of heteroscedasticity of errors and corre-
lated measurements (Subedi and Sharma, 2013; Saud et al.,
2016). We used variance power function to address the homo-
scedasticity issue of residuals in the ABAG model, but the smal-
ler autocorrelation of residuals and similar residual distributions
of all fitted models indicated it was not necessary to model
repeated measurement correlation issue among individual tree
in addition to mixed-effect modelling techniques. All climate
based models behave in a very similar manner, however the
model precision was somewhat better with a multiplicative cli-
mate modifier (Eq. (4 and 5)).

Unless the mixed-effects model is calibrated by estimating
random parameters for applications, only the fixed effects can
be used in prediction. Some authors (Temensgen et al., 2008;
Saud et al. 2016) have argued that nonlinear least squares
models can be superior for prediction unless it is possible to cali-
brate mixed model alternatives. It is true that predictions pro-
duced by using the fixed effect estimates from nonlinear mixed-
models (i.e. marginal predictions) may be biased. However this
can be corrected by weighing a set of conditional predictions by
the distribution of the random effects (Fortin, 2013). If the ran-
dom effects are predicted and used, the growth prediction will
improve, but it may be difficult to predict the random effect
associated with a new site, new tree or especially a new interval
measurement. In that case, only the marginal but corrected
prediction (Fortin, 2013) would be expected to be better than
uncorrected prediction.

Climate based ABAG models

Previously, modellers have formulated climate-based growth
models by introducing climate variables linearly within the argu-
ment of existing growth models. This might be because most of
the studies have been formulated either on tree-ring chronolo-
gies or on annual measurement data where climate variables
are regressed against annual growth (Biondi, 2000; Jump et al.,
2006; Chhin et al., 2008; Duchesne et al., 2012; Foster et al.,
2015). However, Zell (2018) has recently investigated the effects
of climate on growth from multi-year periodic measurements of
forests in Switzerland. Additionally, the growth models in some
of these studies are already linear in form of their arguments
(Subedi and Sharma, 2013; Manso et al., 2015) and added cli-
mate variables performed better than was the case with our
nonlinear model. The model reported by Saud et al. (2015) was
a nonlinear model with linearly added climate variables to the
argument of the model for shortleaf pine. However, in this study
linearly added climate variables did not perform quite as well as
the climate modifier did in our growth model.

Table 6 Parameter estimates (Est) and standard errors (SE) of fitted
mixed-effect models of base model (Model 6) and climate based annual
basal area growth (ABAG) prediction model (Model 7) for shortleaf pine.
Model 7 is the mixed-effect model form that uses long-term deviation in
month specific climate as multiplicative exponential function (climate
modifier)

Parameters Model 6 Model 7
Est (SE) Est (SE)

β1 0.028657 0.026210
(0.001524) (0.001483)

β2 0.538394 0.516379
(0.013301) (0.013705)

β3 –3.616600 –3.365396
(0.091737) (0.090125)

β4 0.153460 0.178038
(0.002988) (0.002985)

β5 0.010896 0.010049
(0.000801) (0.000757)

β6 3.485150 3.129876
(0.060986) (0.057617)

β7 –4.455328 –4.627350
(0.661377) (0.583578)

β8 – –0.152973
(0.005292)

β9 – 0.006302
(0.000157)

σ2(u7jk) 6.894065 5.810658
ɛijk 0.002990 0.002829
θ 0.546061 0.538699
Fit Indices (%) 69.11 71.08
Bias (%) 0.307 0.466
RMSE (%) 44.48 43.03

ε = error; u7 = plot level random effect; i = tree; j = plot & k = growth
period; θ is power in σ2 (v) = v2θ.
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Using the climate modifier has a major advantage over the
linearly added term in that its weight was adjusted to greater or
less than one depending on deviations from long-term climate
and becomes equal to one if there is no deviation so that it
behaves as Model 1. An additional property of the multiplicative
climate modifier structure (Eq. (4 and 5)) is that it might be
used in future studies to add climate sensitivity to legacy indi-
vidual tree diameter and basal area functions which are already
embedded in forest growth prediction systems and software.
One could collect ancillary diameter growth and climate data,
possibly from increment cores, and then parametrize a climate

modifier using a two-stage estimation process, where the par-
ameter estimates for legacy diameter increment functions are
the first stage and the parameters of the climate modifier are
the second stage:

β β ε= ⌢ × ( ⋯ ) +y y x xexpi L n n i1 1

where yi is individual tree basal area or diameter increment
measured from ancillary data ⌢yL is the basal area or diameter
increment prediction from a previously existing legacy prediction
equation and xi are climate variables with corresponding

Figure 4 Heat scatter plots showing non-parametric Spearman rank (rho) correlation and Kernel density (values associated with six different colour
gradient densities) of annual basal area growth (ABAG) of an individual tree with deviation from the long-term mean temperature (DGTMAX; zero is
no deviation) (left) and the precipitation (DGPPT) (right) for each growth period (GP). DGTMAX usually has positive effect on ABAG unless it has large
positive deviation (GP5). However, correlation of DGPPT with ABAG varies depending upon response of DGTMAX. Used 10 000 as division factor to
convert cm2 yr–1 to m2 yr–1. *Significant correlation at α = 0.05 level.
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Figure 5 Simulated (10 000-runs) climate sensitivity scenarios of climate-based ABAG models fitted with linearly added term of climate variables to
the logistic function (Model 2) and multiplicative exponential function of climate variables as climate modifier (Model 4) for stand age 38 (a & b)
and 78 (c & d) years for the next 50 years. Climate sensitivity on the predicted ABAG were compared with base model (Mode 1) and four different cli-
mate scenarios deviating from long-term (1980–2014) mean climate response; temperature (°C) and precipitation (mm). The climate scenarios are:
(1) long-term mean temperature (temp: μ = 28.94, σ = 2.42; ppt: μ = 111.36, σ = 25.13); (2) long-term upper quartile temperature (temp: μ = 29.77,
σ = 2.42; ppt: μ = 111.36, σ = 25.13); (3) CGCM3 A1B scenario (temp: μ = 31.6, σ = 4.5; ppt: μ = 103.8, σ = 32.5); and HADCM3-B2 scenario (temp:
μ = 32.5, σ = 4.9; ppt: μ = 89.1, σ = 25.7).

Table 7 Percentage difference (%) based on annual basal area growth (ABAG) rate of an individual tree at stand age 38 and 78 years at the end of
50 years under four different climate sensitivity scenarios using Model 2 (linearly added climate variables) and Model 4 (climate modifier) as
compared to Model 1 without climate effects

Percentage (%) difference in
ABAG

Stand age 38 years Stand age 78 years

Model 2: Linearly added climate
[Model 4: Climate modifier]

Model 2: Linearly added climate
[Model 4: Climate modifier]

CGCM3-
A1B

HADCM3-
B2

Long-term
mean temp

Long-term upper
quartile temp

CGCM3-
A1B

HADCM3-
B2

Long-term
mean temp

Long-term upper
quartile temp

Between beginning and end of
50 years

92.61 93.43 91.89 92.57 93.32 94.00 92.93 93.29
[94.39] [94.59] [93.19] [93.97] [94.83] [95.04] [94.42] [94.58]

At end of 50 years compared to
Model 1

−23.78 −51.85 14.90 −3.54 −21.38 −49.44 14.78 −1.43
[−42.50] [−62.59] [−9.65] [−21.74] [−38.78] [−59.14] [−7.67] [−19.25]

Total ABAG at end of 50 years
compared to Model 1

−32.05 −53.98 2.58 −11.23 −29.81 −51.47 3.86 −9.81
[−30.25] [−48.88] [−2.74] [−12.69] [−27.93] [−46.41] [−1.25] [−10.90]

Note: CGCM3-A1B = Canadian Center for Climate Modeling and Analysis with storyline A1B for future climate scenario (IPCC, 2007); HADCM3-B2 =
Hadley Center/World Data Center with storyline B2 for future climate scenario (IPCC, 2007); Long-term mean and upper quartile temperature scen-
ario represents climate of 1980–2014.
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parameters βi. Two stage regression techniques are frequently
applied in econometrics and have been used in forestry applica-
tions. Furnival and Wilson (1971) and Borders and Bailey (1986)
have proposed use to two-stage and three-stage regression for
forest growth modelling. Recently Zhao et al. (2019) modelled
biomass components for slash pine (Pinus elliottii) using a two-
stage component ratio approach in which predicted total bio-
mass was multiplied by a ratio function fitted with Dirichlet
regression. However, this proposal does differ from classical
two-stage regression applications in that the ancillary dataset
could be a completely different dataset than the dataset used
to fit the legacy increment model.

Climate-based growth models may perform differently for
different tree species. For example, Subedi and Sharma (2013)
reported 0.34 per cent and 1.56 per cent reductions in RSE of
annual diameter growth model of jack pine (Pinus banksiana
Lamb.) and black spruce (Picea mariana [Mill.] B.S.P.) respectively
in boreal Ontario, Canada. However, Manso et al. (2015)
reported substantial reduction (15 per cent) in the AIC value in
an annual diameter increment model of beech (Fagus spp.) and
oak (Quercus spp.) even-aged stands across France. Saud et al.
(2015) reported 3.4 per cent improvement in the fit index of the
climate-based growth model with the addition of climate vari-
ables for shortleaf pine. The variation in results could be influ-
enced by the nature of climate variables used for modelling.
Differences in the performance among climate based ABAG
model indicates the choice of climate variables and climate vari-
ables fitting approach can greatly affect degree of model
improvement. It may be possible to achieve greater reductions in
RMSE using tree ring data and climate data associated with
growth rings than with periodic re-measurement data such as
used here, because within a growth period, variations due to cli-
mate tend to be ‘averaged out’ during a 5-year or similar growth
period. However, much if not most of the data available worldwide
for tree and forest growth models comes from periodically remea-
sured plots, with period lengths longer than one year. Therefore, it
is crucial to explore integration of climate effects in these models
if they are to be responsive to future climate change scenarios. As
indicated in the test scenarios above, even rather small climate
effects on annual growth can have a substantial cumulative effect
over a period of several years or decades.

The above discussion suggests improvement in climate-
based growth models not only depends on characteristics of
tree species growth rate but also the nature of climate variables
used. For example, precipitation and temperature, which are dic-
tated by regional conditions (altitudinal and latitudinal range)
and site-specific factors (microclimate), limits forest productivity
(Hanson and Weltzin, 2000; Boisvenue and Running, 2006;
Williams et al., 2013). Because of this, climate variables that are
often expected to be influential including mean temperature,
maximum temperature, and total annual precipitation (Subedi
and Sharma, 2013; Manso et al., 2015), did not always perform
well in climate-based growth models. However, the interacting
effects of climate variables on the tree growth are largely influ-
enced by the individual tree status, stand level competition and
site quality while interpreting the biological growth (Zell, 2018).
In our study also, change in the coefficient magnitudes for indi-
vidual tree status, stand age, and stand level competition indi-
cates that climate variables also influence the biological growth
pattern of this species.

Influence of climate variables

The reason for fitting climate-based ABAG model with the
month specific climate variables was to avoid over parameter-
ization of the model and to illustrate the influence of the month
specific climate variation on ABAG since such influences have
not been evaluated with repeated measurement permanent
plot data. Our results indicated that deviation in month specific
climate variables were better for improving statistics of fit than
deviation in growing season climate for climate-based growth
models. This may be because air temperature in warmer areas
during the growing season is stable and greater which limits
plant productivity by inducing water stress (Lloyd and Fastie,
2002; Way and Oren, 2010). However, if there is a drop in high
temperature (i.e. maximum air temperature during the growing
season) it may show a significant effect on plant growth.
However, for ABAG sensitivity with climate change scenarios,
deviations in growing seasonal climate variables are preferred in
order to be consistent with the data structures associated with
those climate change scenarios.

Month specific climate variables have also been found to be
important predictors of tree growth by Carrer and Urbinati
(2004). Month specific climate variables are commonly used in
tree ring data study because of greater tree ages used for tree
ring studies that increase the total number of observations for
the month specific climate variables and reduce variability.
Additionally, month specific climate variables would be useful
for addressing early and latewood tree growth.

Shortleaf pine, which is more drought resistance than other
southern pines (Lawson, 1990), had an annual growth rate that
responded well to month specific climate variables (i.e. DTMAX6
and DPPT9). These variables indicated moderate temperature
and rainfall later in the growing season favour growth, which
also corresponds to the period of latewood formation in tree
rings. It also indicated moderate water stress conditions during
the growth season. The interrelationship between temperature
and precipitation is probably ecologically significant with respect
to shortleaf pine because annual average temperature varies
widely across the natural range of this species from 7°C to 23°C
than average annual rainfall throughout its range (Guldin,
1986). In the northeastern part of its range, temperature varies
considerably with the seasons, but rainfall is more-or-less uni-
formly distributed throughout year while in the southwestern
part of the range, temperatures are warmer and less variable
and precipitation is more sporadic (Guldin, 1986). Thus, this spe-
cies could be very sensitive to a large reduction in precipitation
during key months for ring development but not as sensitive to
monthly temperature; the temperature playing a more long-
term role. These climate patterns not only define shortleaf’s
physiological environment, but also could affect its ability to
compete with other species. Studies have shown that warmer
growing season or an extended growing season, and either
spring warm up or late fall warmup favours growth of drought
resistant tree species. For examples, jack pine in boreal forest of
Ontario, Canada (Subedi and Sharma, 2013) and rocky moun-
tain juniper (Juniperus scopulorum Sarg.) on the volcanic bad-
lands of western New Mexico, USA (Spond et al., 2014). Biondi
(2000) also indicated Douglas fir (Pseudotsuga menziesii [Mirb.])
in Idaho, USA grown on an arid site had moisture stress during
the growth period because annual growth had a negative
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response to summer temperature and a positive response to
late spring/early summer precipitation.

ABAG and climate relationship

The correlation between climate variables and growth based on
periodic measurement data was small but studies with tree-ring
chronologies often show strong correlation between annual
growth rate and climate variables; however, the magnitude var-
ies with tree species and location (Biondi, 2000; Spond et al.,
2014). Usually, the correlation of annual growth rate with mean
temperature and precipitation during the growth season is posi-
tive for some tree species at higher northern latitudes (Briffa
et al., 1998), Alaskan region (Barber et al., 2000) and mid-
western USA (Biondi, 2000); France (Manso et al., 2015).
However, sometimes this correlation can be negative in
response to temperature and positive to precipitation, for
example tree species of southern European regions (Jump et al.,
2006) and the southern Rocky Mountains, USA (Chhin et al.,
2008). The contrasting effect of climate variables on climate-
based ABAG models could be the resultant effect of both geo-
graphical distribution of this species and the use of different
approaches of fitting climate variables in a model. In our study,
the negative correlation of DGPPT with ABAG during the GP was
partially governed by DGTMAX indicating the possibility of an
interaction effect.

Although the correlation between climate variables and
ABAG is small, tree growth is a cumulative process so that
modest effects may have a more substantial cumulative effect
over numerous years as was indicated by the simulation results
reported above. The noticeable differences between individual
tree growth rates of different ages due to use of different cli-
mate variable fitting approaches and variability in climate vari-
ables accounted by those models. The deviation in maximum
temperature influenced the basal area growth rate more than
deviation in precipitation. As a result, the simulation showed
decreased annual growth rate compared with Model 1 due
more to increased temperature than to increased precipitation
(Figure 5), and a slight change in temperature-affected growth
of the young-aged tree more than old trees (Table 7) in combin-
ation with basal area and age.

Studies have shown that older stand age or larger diameter
stands are more responsive to climate variation than younger
stands (Callaway et al. 1994; Hanson and Weltzin 2000; Carrer
and Urbinati, 2004; Chhin et al., 2008). However, young stands
exposed to changing climate scenarios (increased temperature
and deceased precipitation) could have more negative growth
responses than older stand ages. The negative growth differ-
ence from Model 1 represented a stressed response in annual
growth rate due to the positive deviation from long-term mean
maximum temperature and the negative growth difference
represents vice versa. ABAG growth response could be signifi-
cantly reduced by an increase in temperature of one-degree
centigrade. Simulation results also suggested that the decrease
in ABAG rate is associated with a combination of decreased pre-
cipitation and increased temperature during the growing sea-
son, which was also discussed by Barber et al. (2000), Jump
et al. (2006) and Anderegg et al. (2013). In the changing climate

scenario, that predicts warmer temperature with variable and
intense precipitation (Mitchell et al. 2014), the ability of shortleaf
pine to withstand drought should allow it to thrive in these
changing conditions (Guyette et al., 2007; Campbell, 2015).
Under several global climate models and two emissions scen-
arios, it is expected that shortleaf pine will increases its current
range and expand northward (Landscape Change Research
Group, 2014) which indicates, as our finding suggests, that
reduced temperature and higher precipitation would increase its
productivity with the appropriate ecological and silviculture
management. Although it is difficult to establish the effects of
changing climate on growth conclusively, Boisvenue and
Running (2006) demonstrated positive impacts on forest prod-
uctivity if water was not limiting. Hence, the climate simulations
indicated that the cumulative effects of climate over a rather
long period of years could lead to important effects in tree
growth even though gain in fit statistics on annual basal area
growth is not very large.

Conclusions
Although the climate-based ABAG model showed modest
improvements in RSE, this improvement could play a significant
role in understanding the dynamics of growth change in
response to climate variability. The month specific climate vari-
ables can be used as a proxy for seasonal climate variables
while establishing annual growth relationships with climate
change for repeated measurement data. It is expected that the
level of accuracy and precision of climate-based growth models
would increase if measurement data were reconstructed to
annual growth or were obtained from dendrochronology.
However, it is assumed the developed climate-modifier can be
easily replicated with tree ring width data that may be more
useful in providing estimates of future forest growth response.
Although annual growth measurements may be optimal for cor-
relation with climate variables, annual growth data are rarely
available for development of comprehensive forest growth and
yield models, which are usually based on periodic measure-
ments similar to our dataset. Therefore, the approach used here
may be helpful for incorporating climate variation in forest
growth and yield models. The climate-based ABAG model with
climate modifier provides a somewhat better estimate of future
growth response than linearly added climate terms in the model
argument showing a negative effect of increased temperature
and a positive effect of precipitation on growth. We believe such
climate-based ABAG modelling approach should be helpful to
improve our understanding of stand structure changes over the
time under different climate change scenarios.
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