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Loblolly pine (Pinus taeda L.) is one of the most widely planted tree species globally. As the reliability of estimating
forest characteristics such as volume, biomass and carbon becomes more important, the necessary resources
available for assessment are often insufficient to meet desired confidence levels. Small area estimation (SAE)
methods were investigated for their potential to improve the precision of volume estimates in loblolly pine
plantations aged 9–43. Area-level SAE models that included lidar height percentiles and stand thinning status as
auxiliary information were developed to test whether precision gains could be achieved. Models that utilized both
forms of auxiliary data provided larger gains in precision compared to using lidar alone. Unit-level SAE models
were found to offer additional gains compared with area-level models in some cases; however, area-level models
that incorporated both lidar and thinning status performed nearly as well or better. Despite their potential gains
in precision, unit-level models are more difficult to apply in practice due to the need for highly accurate, spatially
defined sample units and the inability to incorporate certain area-level covariates. The results of this study are
of interest to those looking to reduce the uncertainty of stand parameter estimates. With improved estimate
precision, managers, stakeholders and policy makers can have more confidence in resource assessments for
informed decisions.
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Introduction
In the southern United States, managed pine plantations occupy
∼14 million hectares of forest land (Zhao et al., 2016). Of the
major pine species, loblolly pine (Pinus taeda L.) is the most
widely planted and has seen large improvements in productivity
beginning in the 1950s (Fox et al., 2007). Plantation loblolly pine
is important not only as a productive timber species but also for
multiple use forest management purposes (Schultz, 1999). The
extensive planting and intensive management of loblolly pine
have significant implications for wildlife management (Andreu et
al., 2008) and the global carbon cycle (Johnsen et al., 2001). In
recent years, ownership patterns have seen changes resulting
in frequent acquisitions and dispositions of timberlands (Fox
et al., 2007). Due to commercial and ecological implications,
plantation forestry requires accurate, reliable and expeditious
information at the stand-level for informed management
decisions. Forest inventory is a primary tool used to obtain
estimates of stand parameters. Ground-based forest inventory
is typically conducted using either fixed- or variable-radius plots
as sample units established with a specific sampling intensity
and spatial arrangement with the goal of achieving a certain
targeted precision. Common sample measurements include

species, diameter at breast height (d.b.h.), total height: (Ht) and
stem quality assessments (Burkhart et al., 2019). In practice, it
is common for design-based estimates (i.e. estimates derived
only from the ground-based sample units) to lack the precision
required for management purposes. This is often due to logistical
and budgetary constraints which limit the planned sample
intensity. In these cases, a class of model-based statistical
estimation techniques known as small area estimation (SAE)
is an option that can be used to reduce the uncertainty of
inventory estimates. SAE models can be broadly classified as
‘area-level’ and ‘unit-level’. Area-level models relate area-based
direct estimates to area-level covariates, while unit-level models
relate sample unit values to the corresponding sample unit
covariates (Rao and Molina, 2015). For many areas where loblolly
pine is grown commercially, auxiliary data are available that can
be leveraged for use in SAE models.

Light detection and ranging
Light detection and ranging, referred to as lidar, is a form of
active remote sensing that includes a scanning laser, an inertial
measurement unit, a global positioning system (GPS) which is
a form of a global navigation satellite system and a computer
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containing timing systems and storage (Campbell and Wynne,
2011). Generally, lidar systems are installed on fixed-wing aircraft
or helicopters. In aerial lidar analysis, a ‘point cloud’ contains
three-dimensional data that include x-y-z coordinates represent-
ing both horizontal and vertical structure referenced above the
Earth’s ellipsoid. In many applications, the point cloud is nor-
malized by subtracting the ground elevation from the heights
above the ellipsoid. Starting in the 1980s with work by Nelson
et al. (1984) and Nelson et al. (1988), lidar has been extensively
demonstrated to provide useful information in forestry applica-
tions. When utilized for forest inventory purposes, two general
approaches have seen both research and application: (1) area-
based approaches and (2) individual-tree detection approaches.
Both methods have been demonstrated to be effective and are
recommended for use in plantation forest inventory applications
(Maltamo et al., 2014).

Area-based approaches have been successfully applied to
estimating mean dominant tree heights in a variety of forest
conditions (e.g. Næsset, 1997a, 2004a, b, 2007; Means et
al., 2000). In addition to dominant height, the area-based
approach has been used to predict total stand volume and
biomass through regression approaches with lidar-derived height
and canopy cover metrics as predictors (e.g. Næsset, 1997b,
2002, 2004a, b, 2007; Holmgren, 2004). Biomass and volume
were estimated by van Aardt et al. (2006) through an object-
oriented approach. Area-based methods have also been utilized
to parameterize models that predict stem density, average
diameter and basal area (Means et al., 2000; Næsset, 2002,
2004a, b, 2007; Holmgren, 2004).

All the studies mentioned up to this point have focused on
estimating forest characteristics through area-based methods.
These techniques do not rely on the detection and delineation
of individual tree stems or crowns; rather, they rely on quantiles
and distributional features of lidar data as predictors for a given
area (Yu et al., 2010). The individual tree detection methods rely
on algorithms to locate and measure trees in a point cloud.
While they typically require higher pulse densities and greater
computational resources, individual tree detection requires less
data from field measurements to calibrate (Yu et al., 2010).
Successful examples of predicting stand characteristics using the
individual tree approach include McCombs et al. (2003), Popescu
and Wynne (2003), Popescu et al. (2003) and Yu et al. (2010).

Area-level SAE
The area-level SAE approach was first proposed by Fay III and
Herriot (1979) for use in predicting income in low population
areas. Using U.S. Census data and other auxiliary information,
they were able to improve the estimation precision with their
proposed composite estimators. The area-level approach has
seen multiple forest research applications. Goerndt et al. (2011)
used lidar-derived auxiliary information to improve the precision
of stand-level estimates of density, quadratic mean diameter,
total height and total volume in a variety of cover types in coastal
Oregon. Several area-level SAE composite estimators were found
to provide comparable gains in precision with the aforemen-
tioned stand variables. In addition, Magnussen et al. (2017) pre-
sented three case studies using lidar and one case study using
photogrammetrically derived point clouds as ancillary data in

area-level analysis. In a variety of European locations including
Spain, Germany, Switzerland and Norway, both forms of auxiliary
data provided increased precision of total volume estimates.

Unit-level SAE
The unit-level approach was first introduced for the prediction
of crop area in selected Iowa counties. Using Landsat imagery
as auxiliary information, the standard errors for the estimates
were reduced compared with the direct estimate alone (Battese
et al., 1988). In addition, unit-level SAE models have seen appli-
cation in the forestry literature. Weighted unit-level SAE models
were used to estimate the total area occupied by olive trees in
Navarra, Spain, using Landsat imagery as auxiliary information
(Militino et al., 2006). Using Norwegian National Forest Inventory
data, Breidenbach and Astrup (2012) used a photogrammet-
rically derived point cloud as auxiliary information and found
significant improvements in the precision of above-ground forest
biomass estimates. Goerndt et al. (2013) utilized a variety of aux-
iliary data including Landsat variables, land cover class, tree cover
and elevation to successfully improve the precision of a variety of
county-level forest attributes in the Oregon Coast Range.

Unit vs area comparisons
Several research studies have compared the effectiveness of
the two SAE methods. Mauro et al. (2017) investigated area-
and unit-level models in predominately coastal coniferous
forests located in the Oregon Coast Range. Using auxiliary
lidar data, unit-level approaches were found to produce more
precise estimates compared with area-level and design-based
approaches for all stand variables of interest. Area-level models,
however, were found to produce more precise estimates when
compared to the direct estimates. In addition to lidar, a
comparison between area- and unit-level estimators using
photogrammetrically derived point clouds found greater stand-
level estimate precision with unit-level models compared with
area-level models in most cases (Breidenbach et al., 2018).

Research objectives and questions
To our knowledge, no studies have focused on using SAE tech-
niques specifically in intensively managed loblolly pine planta-
tions. The overall objective of this work was to demonstrate the
potential for using SAE techniques to improve the precision of
stand-level estimates of total planted volume in operationally
managed loblolly pine plantations across a range of common
inventory entry points. Specific objectives/questions include:

1. Do lidar-derived auxiliary data improve total planted volume
estimate precision with area-level SAE analysis?

2. Do lidar-derived auxiliary data improve total planted volume
estimate precision with unit-level SAE analysis?

3. How do area- and unit-level SAE approaches compare in
plantation pine forest inventory?

4. What other sources of auxiliary data improve estimates with
area- and/or unit-level SAE analysis?
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Figure 1 Locations of state forests used in this study.

Data and methods
Study location and ground data
Locations

State forests in the Commonwealth of Virginia are under the
administration of the Virginia Department of Forestry (VDOF)
and are managed with multiple use objectives including tim-
ber management. Three state forests, Appomattox-Buckingham
(ABSF), Cumberland (CUSF) and Prince Edward-Gallion (PESF),
were selected for this study (Figure 1).

These forests are located in the central portion of the state
and are representative of a variety of Piedmont physiographic
conditions. ABSF is representative of the upper Piedmont with
higher elevations than the other sites evaluated and is on the
edge of the natural range of loblolly pine. CUSF exhibited great
topographic diversity with many areas that resembled upper
Coastal Plain topography. PESF was generally representative of
common Piedmont conditions. Managed loblolly pine plantations
are prevalent throughout this area, and the VDOF generally fol-
lows management strategies common throughout the Piedmont
region of the Southeast (e.g. site preparation, planting densities,
planting stock and thinning type).

Forty stands were selected within the state forests to cover
the range of forest inventory entry points typical of managed
pine in the Southeast. Specifically, stages of development that
commonly require inventory information for planning decisions
include: canopy closure, immediate pre-first thinning, immedi-
ate post thinning and pre-final harvest. Both unthinned and
thinned stands established from 1976 to 2010 were considered
for study (Figure 2). Stands selected varied in initial planting den-
sity, genetic origin and silviculture treatments. Apart from three
stands nearing rotation age, all thinned stands were thinned
within the past 2 years prior to ground measurements in the
winter and early spring of 2019.

Sample design and ground data

Stands selected for inventory in the winter and early spring of
2019 were allocated sample units using QGIS Development Team
(2019). Approximately 1 sample plot per 1.2 ha were arranged
at random with a minimum distance of ∼70 to 80 m between
plot centers. This was assumed to produce an equal probability
sample. Due to time constraints, the full sample intensity was
measured for only 22 stands of 40. In stands that did not receive
the full sample intensity, measurement plots were randomly
chosen while still maintaining spatial coverage. Unthinned stands
were inventoried with 0.013 ha fixed-radius plots. In cases where
excessive natural regeneration was present, 0.01 ha fixed-radius
plots were used instead. Thinned stands were all inventoried
with 0.02 ha fixed-radius plots. Plot center locations were estab-
lished with a Trimble Geo7x GPS capable of submetre accuracy.
A minimum of 50 GPS points were collected at each plot center
and were differentially post processed based on the nearest
continuously referenced base stations. A total of 267 plot loca-
tions were measured and 260 locations were collected using
the Trimble Geo7x. Missing plot centers were due to a combi-
nation of missed field collections and GPS data post-processing
limitations.

On each sample unit, all living planted stems were recorded
and measured for d.b.h. Only living natural stems d.b.h. ≥ 7.62 cm
were recorded and measured for d.b.h.. A subset of planted trees
was measured for total height. With few exceptions, a minimum
of 25 planted tree heights across the diameter distribution were
measured in each stand with at least one height measured per
plot (except for plots with no trees). For natural loblolly pine, Vir-
ginia pine (Pinus virginiana Mill.) and shortleaf pine (Pinus echinata
Mill.) a subset of heights was measured across the diameter dis-
tribution. Planted pine heights not measured were predicted with
heights measured at the stand level using equation (1). Natural
pine heights measured were pooled region-wide and used to fit
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Figure 2 Stands at Appomattox-Buckingham (a), Prince Edward-Gallion (b) and Cumberland (c) state forests inventoried for study. Each stand is labeled
with the year it was established (all ground measurements taken in the winter/early spring of 2019). The fill of the polygons indicates thinning status.

the regression model for predicting unmeasured heights, also
using the model form in equation (1).

ln(Ht) = b0 + b1(DBH−1
) (1)

In addition to all coniferous species, hardwood trees (d.b.h. ≥
7.62 cm) were measured for d.b.h. and a subset of heights was
measured. Following definitions of dominant height given by
Gyawali and Burkhart (2015), the top 80 per cent of planted pine
heights per plot were used in place of mean dominant height.
For all trees, volumes were estimated using allometric equations
presented in Table 1.

All field data were processed using R (R Core Team, 2018).
Additional R packages used for graphics and data processing
include the following: ggplot2 (Wickham, 2016), xlsx (Dragulescu
and Arendt, 2018) and reshape2 (Wickham, 2007).

Auxiliary information
For the entire study area, 1-m digital elevation models (DEMs)
and the associated lidar point clouds used to generate them were
obtained from publicly available data maintained by the United
States Geological Survey (USGS). ABSF and CUSF were part of the
2015 ‘Chesapeake Bay’ lidar campaign, while PESF was part of the
2014 ‘Sandy’ campaign. Details of these two lidar collections are
found in Table 2. The DEMs and the associated lidar point clouds
are available from the USGS National Map (USGS, 2017a, b).

Additionally, stand thinning status was used as auxiliary infor-
mation for both area- and unit-level analysis. Stands and plots
that had received at least one thinning treatment (not including
pre-commercial thinning) were classified as thinned. No distinc-
tion was made between plots and stands that had one thinning
treatment and those that had received multiple. Thinning status
was obtained from stand attribute information and confirmed
during the field inventory.
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Table 1 Sources of allometric equations used to estimate total stem volume.

Species/species group Source

Planted loblolly pine Tasissa et al. (1997) (unthinned coefficients)
Natural loblolly, Virginia, and shortleaf >= 12.7 cm d.b.h. Tasissa et al. (1997) (unthinned coefficients)
Natural loblolly, Virginia, and shortleaf <12.7 cm d.b.h. Warner and Goebel, 1963
Hardwoods with no measured total height Clark III et al. (1986) (table 10 coefficients)
Hardwoods with measured total height Clark III et al. (1986) (table 14 coefficients)

Table 2 Lidar specifications for the Chesapeake Bay and Sandy projects.

Chesapeake Bay Sandy

Collection dates 15 November 2015–30 March 2016 24 March 2014–21 April 2014
Sensor Riegl 680i Leica ALS60 or Leica ALS70
Scan angle (degrees) 60 unreported
Point density (pulses m2) 2.3 unreported
Nominal pulse spacing (m) 0.66 0.7
Flight line overlap 55% 30% (ALS60) or 20% (ALS70)
Pulse rate (kHz) 200 154.3 (ALS60) or 301.6 (ALS70)

Processing auxiliary information

USGS delivers elevation data in tiles that were smaller than the
areas of interest for this study. Stand boundaries often over-
lapped into multiple tiles. To facilitate and simplify analysis, the
individual DEM tiles were merged and mosaicked using QGIS to
produce a single 1-m DEM for each state forest. The lasmerge tool
in the LAStools suite (LAStools, 2018) was used to combine the
individual lidar tiles into a single lidar dataset for each state for-
est. The merged lidar dataset was clipped to each area of interest
(stands for area-level analysis and plots for unit-level analysis)
using lasclip in the LAStools suite. The DEMs were converted
from ascii to DTM format using the ASCII2DTM tool in FUSION
needed for further analysis with other FUSION tools (McGaughey,
2018). For all lidar analyses, an area-based approach was utilized
due to its relatively low computational demands and ability to
accurately estimate stand parameters of interest. Lidar metrics
were generated using the FUSION GridMetrics and Cloudmetrics
tools. For area-level analysis, each stand was tessellated into a
regular grid where the grid size was set to approximately the
same size as the sample units used for the specific stand. Unit-
level analysis used the Clipdata tool to normalize the lidar point
clouds followed by Cloudmetrics to generate plot-level metrics.
Lidar metrics were summarized using R. Returns ≥ 30.5 m above
ground were excluded as all measured heights were lower than
this value. Following this subset, any heights > third quantile
+1.5∗(Interquartile range) were removed in the gridded metrics
for area-level analysis. The subsets were to account for overlap-
ping, large canopies from remnant trees and adjacent stands
that may have caused an overestimation of height percentiles.
Filtered grid cell percentiles were averaged to produce stand-level
lidar attributes (e.g. a stand level 80th percentile lidar height). A
variety of R packages were used for geospatial processing tasks
such as reprojecting and subsetting spatial layers throughout the
workflow. These packages include the raster package (Hijmans,

2019), the sp package (Pebesma and Bivand, 2005; Bivand et al.,
2013) and the rgdal package (Bivand et al., 2019).

Direct estimators
Under the assumption of an equal probability simple random
sample in stand i for the parameter of interest θi, the direct
estimate of the mean is

θ̂i = yi = n−1
i

ni∑
j=1

yij (2)

and the variance of the estimate is

Ψ̂i = Var
(
θ̂i

)
= n−1

i

∑ (
yij − yi

)2

ni − 1
(3)

where yij is sample plot j in stand i and ni is the sample size for
stand i.

Small area estimators
Area-level

Given a properly designed sample in area i, a direct estimator for
parameter of interest θi is available (equation 4)1:

θi + ei (4)

where the individual random errors ei in equation (4) are iid
N (0, Ψi). In many cases, however, an insufficient sample intensity
leads to a direct estimate that is not reliable enough for a given

1 The proceeding descriptions of area-level small area estimators incorporate a combi-
nation of notation used in Goerndt et al. (2011) and Rao and Molina (2015).
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management objective (i.e. an inflated variance Ψi leading to an
unacceptably wide confidence interval). In cases where auxiliary
information is available for area i, we assume the parameter of
interest θi can be linearly related to a set of m auxiliary covariates
z through equation (5):

θi = zT
i β + bivi (5)

where zi is a vector of area-specific covariates, β is the vector
of regression coefficients, bi are positive constants (assumed to
equal 1) and area-specific random effects vithat are iid N

(
0, σ 2

v
)
.

Combining equations (4) and (5) leads to the following mixed
model:

θ̂i = zT
i β + bivi + ei (6)

where all terms are as previously described in equations (4) and
(5).

Prior to estimation, sampling error variance (Ψi) and random
error variance (σ 2

v ) must be estimated and partitioned. In this
study, variances calculated directly from the sample units were
used as an estimate for Ψi. The estimated sample variance (Ψ̂i)
was utilized to estimate σ̂ 2

v using the restricted maximum like-
lihood (REML) method as implemented in the R SAE package
(Molina and Marhuenda, 2015). The empirical best linear unbi-
ased predictor (EBLUP) was then obtained with the composite
estimator in equation (7):

θ̂H
i = γ̂iθ̂i +

(
1 − γ̂i

)
zT

i β̂ (7)
where γ̂ is a weight using both sources of error accounted for
previously and is given in equation (8).

γ̂i = σ̂ 2
v /

(
σ̂ 2

v + Ψ̂i

)
(8)

Final EBLUP and Mean squared error (MSE) estimates were
obtained through the ‘mseFH’ function in the R SAE package. The
default REML method was used, as were the default maximum
iterations (100) and the default precision (0.0001). The MSE
estimation involves three components:

gi1

(
σ̂ 2

v

)
= γ̂iΨ̂i (9)

gi2

(
σ̂ 2

v

)
= (

1 − γ̂i
)2zT

i

⎛
⎝(

γ̂

σ̂ 2
v

Z
)T

Z

⎞
⎠

−1

zi (10)

gi3

(
σ̂ 2

v

)
= (

1 − γ̂i
)2 2

∑ (
γ̂

ˆ
σ2

v

)2

(
σ̂ 2

v Ψ̂i

)−1
(11)

where Z is an I x m matrix of zT
i for each domain and γ̂ is an I-

dimensional vector of γ̂i for each domain. The combination of the
components leads to the final MSE estimate:

MSE
(
θ̂H

i

)
= gi1

(
σ̂ 2

v

)
+ gi2

(
σ̂ 2

v

)
+ 2gi3

(
σ̂ 2

v

)
(12)

The previous notation was reconstructed from the R SAE pack-
age code (Molina and Marhuenda, 2015). For details of REML
fitting to obtain EBLUP estimates, readers are directed to Rao and
Molina (2015); Datta and Lahiri (2000) provide additional details
of the MSE estimation.

Unit-level

When data are available at the unit-level (individual sample plots
in this study), unit-level SAE methods can be utilized.2 The nested
error unit-level model specifies the observed attribute Yon plot j
in area i as:

Yij = xT
ijβ + ui + eij (13)

where ui are area effects and are iid N
(
0, σ 2

u
)

and eij are individual
errors iid N

(
0, σ 2

e
)
.

The EBLUP for a particular small area i is expressed in equation
(14):

Ŷ
EBLUP

i = fiyis +
(

Xi − fixis

)T
β̂ + (

1 − fi
)

ûi (14)

where

fi = ni
/

Ni
(15)

where Ni is the total number of units for stand i. This was obtained
by dividing the area of the stand by the size of the sample unit
(plot size).

yis = n−1
i

∑
j∈si

Yij (16)

where j ∈ si indicates units j contained in stand i.

xis = n−1
i

∑
j∈si

xij (17)

ûi = γ̂i

(
yis − xT

isβ̂
)

(18)

γ̂i = σ̂ 2
u

/(
σ̂ 2

u + σ̂2
e

ni

)
(19)

and Xi are true population totals for the auxiliary data. The true
lidar height percentiles were obtained from grid-level point cloud
summaries.

Final unit-level EBLUP estimates and the associated MSE val-
ues were obtained with the ‘pbmseBHF’ function in the R SAE
package. This function uses a REML procedure for fitting and a
parametric bootstrap approach for estimating MSE values. The
default value of 200 bootstrap samples was utilized. The para-
metric bootstrap method was utilized to relax some of the restric-
tions encountered with analytical error estimation methods. For
details regarding EBLUP fitting using the REML method, readers
are directed to Rao and Molina (2015); González-Manteiga et al.
(2008) outline further details regarding the MSE estimation using
the bootstrap procedure.

Results
Stand-level summaries of trees per hectare, basal area per
hectare, total volume per hectare and dominant height are
presented in Figure 3. Density, basal area and volume are
partitioned into planted, natural and total (the sum of planted
and natural). Dominant height was not considered for natural

2 The proceeding descriptions of unit-level small area estimators incorporate a combina-
tion of notation used in Molina and Marhuenda (2015) and Rao and Molina (2015).
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Figure 3 Boxplots (Tukey, 1977) of stand variables for basal area per hectare (a), dominant height (b), live stems per hectare (c) and volume per
hectare (d). Note: Dominant height was not considered for natural trees.

trees; thus, dominant height is presented by stand thinning
status. A goal of this work was to cover the full range of
common entry points in loblolly pine plantation forest inventory.
The distributions of stand variables capture a wide range of
commonly encountered conditions from canopy closure to
final harvest. A common condition encountered was significant
natural Virginia pine regeneration which made up a large amount
of the natural component as seen in Figure 3. This is common
throughout areas on the periphery of the loblolly pine range
including the Piedmont of Virginia. A noted limitation in coverage
was the small number of stands that received first thinning in
the ‘typical’ window of 12–19 years common in managed pine
plantations (Figure 2).

All SAE methods evaluated assume a linear relationship
between the variable of interest and the auxiliary information.
The relationship between the auxiliary information (lidar-derived
80th percentile and thinning status) and total planted volume is
confirmed in Figure 4. The remaining lidar height metrics (90th,
95th and 99th percentiles) had very similar relationships; thus, the
figures are not presented.

For the following results and discussion, relative error ratios
(RER) were constructed for comparisons between the precision of
the model EBLUP and direct estimates. For SAE models, the RER
for small area i is

RERi (%) =
√

MSE (EBLUPi)

EBLUPi
∗ 100 (20)

and the RER for the direct estimate is

RERi (%) =
√

Ψ̂i

θ̂i
∗ 100 (21)

where θ̂i and Ψ̂i are as defined in equations (2) and (3), respec-
tively.

A RER is similar to a coefficient of variation in that it stan-
dardizes the variation of the estimate to the estimate itself. The
RERs were visually compared for each stand using 1–1 scatter-
plots. In the following figures, any point falling below the 1–
1 line indicated a smaller model RER for the estimate type on
the y-axis.

Area-level SAE
Area-level SAE models that utilized only a lidar height percentile
resulted in small gains in precision for some stands (Figure 5a)
The incorporation of both a lidar height percentile and thinning
status resulted in larger gains in precision (Figure 5b). Modeled
total volume estimates generally followed the 1–1 relationship
with the direct estimates for both model forms (Figure 5c,d).
Additional lidar height percentiles were evaluated (90th, 95th

and 99th) resulting in similar goodness of fit statistics (Table 3).
The Akaike information criterion (AIC) and Bayesian information
criterion (BIC), two forms of penalized likelihood criteria, were
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Figure 4 Linear relationship between auxiliary information (80th height percentile from lidar), with dependent variable of interest (total cubic volume
per hectare) by thinning status (light gray round points are unthinned and dark gray triangular points are thinned). Points are labeled with direct
estimate of surviving planted stem density in thousands of trees per hectare at the time of inventory. Linear fit by thinning status indicates the
importance of including thinning status as explanatory variable.

Table 3 Goodness of fit summaries for area-level models considered for
estimating total volume.

Model fit AIC BIC

TV_Planted ∼ P80 675.80 680.87
TV_Planted ∼ P90 675.91 680.97
TV_Planted ∼ P95 675.86 680.93
TV_Planted ∼ P99 675.46 680.53
TV_Planted ∼ P80 + thin_status 640.08 646.83
TV_Planted ∼ P90 + thin_status 640.91 647.66
TV_Planted ∼ P95 + thin_status 641.40 648.16
TV_Planted ∼ P99 + thin_status 642.44 649.20

calculated for model performance. Models that used the lidar
80th height percentile exhibited the lowest AIC and BIC values.
For consistency, models that use the 80th percentile were used
for all figures and further discussion.

Unit-level SAE
Unit-level SAE models were evaluated using lidar height per-
centiles alone and with thinning status included. The unit-level
approach resulted in large increases in precision for some of the
stands evaluated; however, a decrease in precision of estimates
was observed for some stands, especially those with low vari-
ability in the direct estimate (Figure 6a). The unit-level models
tended to produce estimates that were larger than the associ-
ated direct estimates (Figure 6c,d). In addition to the lidar 80th

height percentile, the 90th, 95th, and 99th percentiles were eval-
uated (Table 4). Models that used the lidar 80th height percentile
exhibited the lowest AIC and BIC values. For consistency, models

Table 4 Goodness of fit summaries for unit-level models considered for
estimating total volume.

Model fit AIC BIC

TV_Planted ∼ P80 4219.43 4233.67
TV_Planted ∼ P90 4237.72 4251.96
TV_Planted ∼ P95 4243.65 4257.90
TV_Planted ∼ P99 4254.06 4268.31
TV_Planted ∼ P80 + thin_status 4140.88 4158.68
TV_Planted ∼ P90 + thin_status 4164.39 4182.20
TV_Planted ∼ P95 + thin_status 4172.33 4190.14
TV_Planted ∼ P99 + thin_status 4186.52 4204.33

Values not calculated directly in the SAE R function. Values calculated
from the definitions of AIC and BIC and the log likelihood value calculated
with the SAE function.

that use the 80th percentile was used for all figures and further
discussion.

Comparison
Area- and unit-level models are visually compared in Figure 7.
A comparison was first made between the area- and unit-level
models that utilized only the same 80th percentile height as the
auxiliary information. As seen in Figure 7a, the unit-level model
can potentially result in larger gains in precision compared to the
area-level model, particularly at some higher levels of variation.
The inclusion of thinning status resulted in similar relationships
(Figure 7b). Despite these potential improvements, the mean
RERs were very similar or higher for all model forms evaluated
(Table 5). Area-level models more often and, on average, resulted
in larger decreases in uncertainty compared with the unit-level
models evaluated.
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Figure 5 Area-level SAE results. Model with lidar 80th height percentile as only auxiliary information relative error comparison (a) model with lidar
80th height percentile and thinning status as auxiliary information relative error comparison (b). Estimate comparison for model with lidar 80th height
percentile as only auxiliary information (c) and estimate comparison for model with lidar 80th height percentile and thinning status as auxiliary
information (d). Smoothing lines are for visual interpretation only and are not representative of the SAE model fit. Error bars represent one standard
error in the x direction and the root mean squared error in the y direction.

Discussion
The results of this research have confirmed the potential for
reducing volume estimate uncertainty using SAE techniques.
Both area and unit-level approaches reduced the relative error of
the estimate for small areas (stands) compared to less precise
direct estimates. Much like Goerndt et al. (2011), Magnussen
et al. (2017) and Mauro et al. (2017), lidar was shown to be an
effective source of auxiliary information that could be leveraged
for use in SAE models. An interesting aspect in this work is
that despite the lidar data having been acquired 4–5 years
prior to collection of field inventory data, the linear relationship
between total planted volume and the auxiliary data was still
strong. This follows with McRoberts et al. (2018) in which lidar
was found to remain useful in model-assisted estimation many
years after collection. If more recent lidar collections were
available, additional gains in precision could possibly be achieved,
assuming a stronger linear relationship would be found with
close temporal matching of lidar and field data collection. In
cases with significant disturbances such as windthrow or stress-
induced mortality, the relationship between the auxiliary data
and the stand conditions may be less useful. In these situations,
a separate inventory or lidar collection may be necessary.

Due to their ability to use finer-scale data, unit-level SAE mod-
els can offer greater gains in precision compared with area-level

models (Molina and Marhuenda, 2015); however, they require
precise co-registration of ground sample plots and the associated
lidar. High accuracy GPS units are not always readily available,
limiting the potential for unit-level estimation in some situa-
tions. Variable radius plots pose additional challenges to unit-
level methods due to the sample unit’s lack of a defined spa-
tial area. Further, some auxiliary information cannot always be
summarized at the unit-level. Thinning status is often a stand-
level attribute and cannot easily be incorporated into the unit-
level framework unless recorded at the plot level as it was in
this study. Further, in some cases, thinning status may not be
obvious at each plot location. Despite these limitations, the unit-
level models did provide improvements in precision in this work
when compared with area-level analysis for some stands, espe-
cially those that exhibited large direct estimate variances. The
incorporation of both lidar height percentiles and thinning status
did offer improvements in precision to both the area- and unit-
level analysis. Unit-level model estimates, on average, generally
had higher variance than direct or area-based estimates and
produced estimates that exceeded both the direct and area-
level estimates. While unit-level models are unbiased, the EBLUP
estimator requires the true population values for the covariates
to be known. In this analysis, there were discrepancies between
the stand estimates derived from the area-level gridded lidar
metrics and the averages from the unit-level cloud metrics. The
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Figure 6 Unit-level SAE results. Model with lidar 80th height percentile as only auxiliary information relative error (RE) comparison (a) best performing
model with lidar 80th height percentile and thinning status as auxiliary information RE comparison (b). Estimate comparison for model with lidar
80th height percentile as only auxiliary information (c) and estimate comparison for best performing model with lidar 80th height percentile and
thinning status as auxiliary information (d). Smoothing lines are for visual interpretation only and are not representative of the SAE model fit. Error
bars represent one standard error in the x direction and the root mean squared error in the y direction.

Table 5 Comparison of error ratio means of SAE vs direct estimates of area- and unit-level models.

Model fit Area-level error ratio Unit-level error ratio Ratio of stands where area-level ratio ≤ unit-level ratio

TV_Planted ∼ P80 0.95 1.09 24/40
TV_Planted ∼ P90 0.95 1.14 24/40
TV_Planted ∼ P95 0.95 1.16 24/40
TV_Planted ∼ P99 0.95 1.18 26/40
TV_Planted ∼ P80 + thin_status 0.89 0.97 21/40
TV_Planted ∼ P90 + thin_status 0.89 1.01 25/40
TV_Planted ∼ P95 + thin_status 0.89 1.04 25/40
TV_Planted ∼ P99 + thin_status 0.89 1.07 26/40

unit-level 80th percentile height estimates were, on average,
∼0.5 m lower than the gridded area-level heights. This is likely
due to a combination of spatial smoothing and edge effects from
overlapping neighboring tree crowns, which were not completely
accounted for by filtering gridded area-level outliers. Due to the
possible lack of a sufficient number of plots capturing edge
conditions, the average unit-level lidar heights tended to be lower
than the corresponding area-level height estimate. Additionally,
differences may have arisen due to the two methods used to
summarize the lidar point clouds. Finally, despite using a GPS

capable of submetre accuracy, location error likely resulted in
auxiliary information being summarized for locations different
than the areas measured. Future investigations should focus on
refining methods to remediate this disparity.

An important assumption when applying SAE techniques is a
linear relationship between the auxiliary data and the variable
of interest (Rao and Molina, 2015). For this work, we chose to
consider a limited set of auxiliary variables that have a theoretical
basis for their relationships with our variable of interest total
volume. The 80th, 90th, 95th and 99th height percentiles are
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Figure 7 Comparison of area- and unit-level SAE models. Relative error (RE) comparison between area- and unit-level models using the lidar 80th

percentile height as the only auxiliary variable (a), RE comparison between area- and unit-level models where the area-level model includes both the
lidar 80th percentile height and thinning status as auxiliary information and the unit-level only includes the 80th percentile height as the auxiliary
variable (b), estimate comparison between area- and unit-level models using the lidar 80th percentile height as the only auxiliary variable (c), and
estimate comparison between area- and unit-level models where the models include both the lidar 80th percentile height and thinning status as
auxiliary information (d). Smoothing lines are for visual interpretation only and are not a representative of the SAE model fit. Error bars represent
model RMSE in the x and y directions.

of the most interest due to the linear relationship with height
and total volume at similar basal areas (Burkhart et al. 2019)
and in closed canopy stands (Yanli et al., 2019). While height
growth has been found to be significantly affected by density in
some studies, within the ranges of densities commonly planted
(741–2223 trees per hectare (tph)) differences in height due to
density have been found to be either non-significant (Zhao et al.,
2011) or of relatively minor differences (e.g. Sharma et al., 2002;
Antón-Fernández et al., 2011). Despite the relationship between
height and total volume, density is important to consider. The
inclusion of thinning status as auxiliary information, in effect,
helped ‘adjust’ the volume estimate rather than using lidar-
derived height metrics alone. As evident in Figure 4, much of
the additional unexplained variation in the linear relationship
between the auxiliary data and total planted volume is due to
the lidar and thinning status not fully taking stand density into
account. In most cases, unthinned planted volume that was
underestimated by the linear relationship had higher estimated
planted stem density than those overestimated by the linear
relationship. The unit-level model including the lidar 80th per-
centile and thinning status explained similar amounts of variation
in planted volume (0.64) compared to the area-level approach

(0.67). While lidar metrics have been used to successfully predict
stem density, the relationships are generally not as strong as
other stand characteristics (Næsset and Bjerknes, 2001; Næsset,
2002; Noordermeer et al., 2019). For this reason, we chose to not
include lidar estimates of stand density in this work.

While estimates were generally similar, the unit-level esti-
mates were consistently higher in most cases compared with the
area-level estimates without thinning status included (Figure 7c)
and when thinning status is incorporated (Figure 7d).

SAE was shown to reliably improve estimate precision in this
study; however, these models have limitations. The SAE meth-
ods evaluated are not applicable when a direct estimate is not
available (Goerndt et al., 2011). In these cases, a model-based,
synthetic estimate would be required. Further, it is assumed that
sample variances (Ψ̂i) are known without error. While this is often
an improbable assumption, it is required for area-level models
(Magnussen et al., 2017). Modified variants of the Fay-Herriot,
area-level model have been proposed (Wang and Fuller, 2003)
which take the uncertainty of the sample variance into account
and have been successfully implemented in forest inventory
applications (Magnussen et al., 2017). These were not evalu-
ated in this study; however, future investigations should consider
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their use in plantation forest inventory. Additionally, lidar adds
minimal precision when the direct estimates are reliable. The
resources spent collecting, processing and incorporating the data
may prove unneeded if high-quality ground samples are avail-
able. Unit-level models are generally more restrictive and not
applicable in cases where fine-scale, sample unit data are not
available (Magnussen et al., 2017).

Conclusions
This work has successfully demonstrated the potential for
incorporating SAE techniques into operational forest inventory
in loblolly pine plantations. Using both lidar and thinning status,
the uncertainty of total planted volume estimates was reduced
in many cases. To specifically answer our research questions
outlined: (1) area-level SAE methods improved the precision
compared with direct estimates for all lidar height percentiles
evaluated, (2) unit-level SAE methods improved the precision
of some estimates for all lidar height percentiles evaluated,
particularly when the direct estimates exhibited high variability,
(3) unit-level models demonstrated increased precision in some
cases compared with area-level methods; however, the average
error ratios were lower for area-level methods and (4) the
incorporation of additional auxiliary information, in this case
thinning status, improved estimation precision in both model
formulations. The results of this study should be of interest
to forest inventory managers who regularly conduct forest
inventory in southern pine plantations. With the increased
importance of enhancing and monitoring the productivity of
loblolly pine for both commercial and ecological interests
such as carbon sequestration (Zhao et al., 2016), accurate
and precise estimates of stand volume are essential. Using
the methods outlined in this study, the precision of inventory
estimates can be improved leading to more confidence when
making management and planning decisions. The area-level
SAE methods evaluated are broadly applicable to many cases
in which linearly related covariates are available. Other sources
of auxiliary data such as photogrammetrically derived point
clouds and optical satellite platforms may prove useful with
these techniques. Additional reductions in uncertainty can be
realized if ancillary information can be coupled with data from
fixed-area plots with highly accurate center locations under
the unit-level SAE framework; however, these methods did
not result in precision increases in all stands. Auxiliary data
are more limited for unit-level analysis due to the scaling and
locational issues.
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