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A B S T R A C T

Intercropping switchgrass (Panicum virgatum) with pine can increase bioenergy feedstock production without
land opportunity costs but can potentially alter water budgets. Measuring evapotranspiration (ET) and its
parameters (stomatal conductance (gs), leaf area index (LAI), canopy temperature (Tc), and soil moisture (SM))
across cropping systems is costly and time-consuming. However, interpretation of remotely-sensed data can
facilitate the effective assessment of relative ET demands among competing forest landuses. This study develops
and tests geospatial models informed by a normalized difference vegetation index (NDVI), soil adjusted vege-
tation index (SAVI), vegetation vigor index (VVI), and other spectral information to estimate ET and its para-
meters, which are measured on experimental watersheds with young pines and natural understory (YP),
switchgrass only (SG), and young pine intercropped with switchgrass (IC). The treatment watersheds were re-
plicated on three sites located across the Southeastern U.S. in Carteret, NC; Calhoun, MS; and Greene, AL.
Despite the growth inconsistency for the SG only treatment, remote modeling estimation of ET parameters
yielded an acceptable R2 > 0.70, and the ET model yielded R2 of 0.50 and a standard error of prediction of 0.94.
However, ET and ET parameter model estimation for the IC performed somewhat less satisfactorily, with an R2 of
0.47, 0.59, 0.56, 0.81, and 0.57 for ET, LAI, gs, Tc, and SM, respectively, potentially due to inconsistencies in
Landsat image pixel size and landuse homogeneity. Moreover, ET parameter models for the YP site performed
rather poorly, with R2= 0.28, 0.63, and 0.76 for LAI, gs, and Tc, respectively. Additionally, image analysis
automation was created with Python scripting and geospatial models. The findings from this study suggest that
inclusion of more spatial variability, sound data mining, ultra-high resolution imagery and advanced image
processing approaches to account for potential modeling uncertainties can enhance the predictive capability of
models to remotely estimate environmental parameters including ET. Radial Basis Function Network (RBFN)
based models provided promising results for estimating ET and ET parameters using remotely-sensed digital
information when they are prepared with advanced data mining, but it is likely that laypersons may find these
models difficult to use. However, forest managers with access to neural network software can use our devised
RBFN training models for estimating those forest hydrologic parameters with better accuracy.

1. Introduction

The U.S. Department of Energy and the scientific community have a
goal of producing biofuel from energy crops such as switchgrass
(Panicum virgatum), a cheaper alternative to row crops or other agri-
cultural commodities like corn, sweet sorghum, sugarcane, sugar beet,
crop residues, and other woody biomass. Although crop residues and
other woody biomass are abundantly available and much cheaper to

procure than switchgrass, they have their own downsides. Crop re-
sidues, one source of soil organic carbon, are essential for soil fertility
enhancement and useful for soil erosion control, increased water in-
filtration, and evapotranspiration (ET) reduction, but need to be left in
the field and tilled to provide a positive effect on crop production (Lal,
2004; Jarecki and Lal, 2003). In their review of next-generation bio-
mass feedstock for biofuel production, Simmons et al. (2008) discussed
the constraints of biofuel production from woody biomass and other
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agricultural products. They suggested that the use of dedicated her-
baceous perennial crops such as switchgrass (Perrin et al., 2008; Parrish
and Fike, 2005), miscanthus (Sahoo et al., 2018), and sorghum
(Paterson et al., 2008) would be better alternatives. These herbaceous
species can be grown in various regions of the United States (U.S.)
(Fig. 1). Simmons et al. (2008) recommended switchgrass cultivation as
an understory in the row-crop pine forests that are abundant in the
Southeastern United States.

Pine plantations, which constitute the plurality of croplands in vast
areas across the Southeastern United States from Mississippi to North
Carolina, are managed to produce lumber, fiber for pulp, paper, card-
board, and bioenergy feedstocks. On a traditional pine plantation, the
space between rows has no economic value. Grasses that can serve as
bioenergy feedstocks, such as switchgrass, could be intercropped be-
tween rows in pine plantations and grown until the closing canopy of
the pines shades them out. However, such intercropping raises en-
vironmental and ecological questions regarding the water budgets of
forest plantations: Is the evapotranspiration (ET) of intercropped stands
additive such that total ET can be estimated based on pine and
switchgrass ET rates based on their relative coverage, or does inter-
cropping cause competition for water between the two crops such that
the total ET is less than the sum of ET expected from the individual
crops? These questions have implications for regional water budgets
under potential bioenergy development scenarios, and for decisions
about managing forestlands. This study is part of a larger study ex-
amining how the establishment of these cropping systems affects stream
flows, surface and soil water quality, and water budgets.

As discussed, the addition of switchgrass understories in forest

plantations like row pine would have ecological consequences, espe-
cially if the switchgrass competes for soil water with the main forest
crop. Using a soil-plant-atmosphere model parameterized with site-
specific data, Albaugh et al. (2014) found increased ET in the inter-
cropped sites when compared to the mature pine or switchgrass only
plots. However, the watershed-scale ET comparison data are lacking for
switchgrass intercropping versus natural understory intercropping in
pine forests. Therefore, it is essential to quantify the amount of soil
water used by switchgrass compared to row pine understories on a
watershed scale.

Plant and soil/understory litter evaporation and transpiration (or
evapotranspiration, ET) are major components of the hydrological
cycle. Jaramillo and Destouni (2015) studied 100 basins for ‘actual ET’
(AET)/P variation with respect to flow regulation and irrigation impact
and found a relatively large AET/P increase in water-limited basins,
including for a major portion of those basins in the United States.
Global land-cover changes impact the terrestrial water cycle. ET has a
direct impact on hydrology, crop growth, and biomass production.
Forest cover alteration, including intercropping to accommodate
switchgrass, may change the ET and water balance of these forest
ecosystems. Sterling et al. (2013), through their extensive study of 1500
estimates of annual evapotranspiration and corresponding global land-
cover change database, projected a 5 percent decrease of global scale
terrestrial evapotranspiration (TET) from the current anthropogenic
land-cover change, mostly deforestation, and an increase in TET with
forest cover intensification. An accurate estimation of ET and its spatial
and temporal distribution is of key importance for hydrological and
meteorological applications including regional-scale water balance

Fig. 1. Spatial locations suitable for growing perennial herbaceous species like switchgrass in United States (modified from Simmons et al., 2008).
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(Sun et al., 2011). The ET rate of any ecosystem depends upon soil
moisture and vegetation factors as well as climatic variables like air and
canopy temperature, radiation, vapor pressure, wind speed, and the
physical characteristics of the evaporating surface (Viessman and
Lewis, 2003). While plant evaporation occurs mostly from above-ca-
nopy interception as a function of canopy storage capacity and density
(Amatya et al., 1996), understory/litter transpiration occurs by uptake
and transport of water from the soil/aquifer system by plant roots,
branches, stems, and eventually diffusing from plant leaves into the
atmosphere (Senay et al., 2013).

ET estimation from the forest cover would provide insight to the soil
water use by different crops, but it is a very cumbersome in situ-based
approach. Rapid, accurate, and cost-effective estimation of ET and its
supporting parameters, such as stomatal conductance (gs), leaf area
index (LAI), canopy temperature (canopy albedo – Tc), soil moisture
(SM), and estimation of wind speed using remote-sensing technology
has become increasingly popular (Panda et al., 2016). LAI is defined as
the single-sided surface area of leaves per unit area of soil (m2 m−2)
and is a key parameter implicit in a variety of forest ecosystem pro-
cesses, including light and rain interception, transpiration, photo-
synthesis, and soil heterotrophic respiration (le Maire et al., 2006). LAI
is a seasonal parameter and is an indicator of crop growth, thus ET and
LAI correlate very well (Sun et al., 2011). LAI was also one of the hy-
drologic parameters recently discussed in parameterization guidelines
and considerations for hydrologic models by Malone et al. (2015).
Optical indirect methods (e.g., model LAI-2200 Plant Canopy Analyzer,
LI-COR, Lincoln, NE) or hemispherical photographs and semi-direct
methods using litter collection and allometric methods are used for
local estimation of LAI (Brauman et al., 2012; le Maire et al., 2006;
Malone et al., 2015; Panda et al., 2016), but these methods are time-
consuming, cumbersome, and costly. According to Hilker et al. (2013),
transpiration is directly linked to stomatal conductance (gs). Local
measurement of stomatal conductance is conducted by an indirect op-
tical measurement (Malone et al., 2015) or by a semi-direct method
using a vapor pressure deficit algorithm (Pearcy et al., 1989; Sampson
et al., 2011), but these methods are also costly and time-consuming.
Stomatal conductance of pine needles has been measured and used for
estimating and modeling transpiration of pine forests (Amatya et al.,
1996; Sack and Scoffoni, 2012). Hilker et al. (2013) suggested that
satellite retrievals of photosynthesis or gross primary production (GPP)
could be used to quantify transpiration rates through gs (Amatya and
Skaggs, 2001). Canopy conductance (gc) is generally approximated as a
product of gs and LAI (Amatya and Harrison, 2016; Amatya et al., 1996;
Brauman et al., 2012; Amatya and Skaggs, 2001; Jensen et al., 1990;
Nghi et al., 2008; Panda et al., 2014; Tian et al., 2012) although the
maximum stomatal conductance also may be estimated as a function of
measured ET, vapor pressure deficit, and other environmental variables
(Morris et al., 1998), as will be shown below. Canopy temperature can
serve as a surrogate for the amount of evaporation and transpiration
through the plant canopy and can be estimated with direct measure-
ment using thermometers (Bastiaanssen et al., 1998). Forest soil
moisture is generally estimated through instrumentation using a ten-
siometer and lysimeter (Olivera-Guerra et al., 2015; van der Ploeg and
de Rooij, 2014; Vasquez et al., 2015).

Routine in-situ measurement of plant hydrologic parameters is time-
consuming and expensive (Panda et al., 2014; Sampson et al., 2011).
Majasalmi et al. (2017) have a detailed review of the comparison of
optical and allometric field instrumentation for forest hydrologic
parameter estimation and are in favor of optical remote sensing ap-
proaches. Estimating forest ET using remote sensing data is not a new
concept. There are many successful examples of using remotely-sensed
images to model ET and water budgets for grasslands and crop lands
(Chen et al., 1997; Feddema and Eggbert, 2005; Johnson, 2016; Noori
and Panda, 2016; Panda et al., 2009; Rao et al., 2006; Schellberg et al.,
2008; Tian et al., 2013; Turner et al., 1999; Wang and Jia, 2013), but
such models have limitations for forests, especially for understory in-

between forest rows, as the satellites cannot “see” the ground or the
understory in closed canopy forests, and thus cannot sense either soil
moisture or the spectral characteristics of the understory (Panda et al.,
2002; Pisek et al., 2015, 2016; Yang et al., 2014a,b; 45–47).

Li and Lyons (2002) used 1.1 km resolution NOAA-14 AVHRR re-
mote sensing data to derive surface temperature, which was combined
with limited routine meteorological data like soil moisture to estimate
the ET rates in central Australia with limited success. Cristobal and
Poystos (2011) tested the reliability of remote sensing data of TERRA
and LANDSAT to estimate forest vegetation ET in the Vallcebre research
catchment in Spain from 2003 to 2005 using 27 AQUA-MODIS images,
11 Landsat-7, and 10 Landsat-5 images in comparison with stand
transpiration obtained from sap flow measurements. However, even the
best estimations of forest ET obtained from Landsat images had 30
percent uncertainty (Cristobal and Poystos, 2011). Panda et al. (2018)
used cloud-free Landsat images from 2006 to 2014 and an advanced
data mining approach to obtain principal component bands to correlate
with ET data. They obtained a strong correlation between the remote
digital information and the ET of pine forest with a model R2 of 0.58.
They (Panda et al., 2018) used Backpropagation Neural Network
(BPNN) and Radial Basis Function Network (RBFN) models and ob-
tained a testing/validation average absolute error of 0.18 and 0.15
Wm−2, and an average accuracy of 81 and 85 percent, respectively.

The thermal band of Landsat satellite imagery can be used to esti-
mate canopy temperature (Lee, 1994; Panda et al., 2016; Senay et al.,
2013). Satellite-imagery approaches are generally based on the prin-
ciples of the surface-energy balance, exploiting the remotely derived
land-surface temperature as a proxy indicator of surface-water status
(Cammalleri et al., 2013). A review article by Wang and Qu (2009)
explains how numerous studies have been conducted on the remote
estimation of soil volumetric water content by using satellite, aerial, or
simple digital photographic image analysis. Recent studies show that
remotely-sensed data, especially freely available 30-m spatial resolu-
tion, 16-day temporal resolution Landsat Thematic Mapper (TM)
images, can be used to efficiently estimate gs, canopy temperature, LAI,
and ET of forest vegetation (Carter, 1998; Curran, 1980; Hafeez et al.,
2002; Justice et al., 1998; le Maire et al., 2006; Moran et al., 1994;
North, 2002; Nouri et al., 2012; Olioso et al., 1999; Panda et al., 2016;
Provoost et al., 2005; Rouse et al.,1973 Senay et al., 2013).

According to Liou and Kar (2014) and Panda et al. (2016, 2018),
traditional approaches for ET estimation, such as weighing lysimeter,
surface energy balance (SEB), Energy Balance Bowen Ratio (EBBR),
eddy covariance techniques, pan-measurement, sap flow, scintill-
ometer, water balance, etc., are mainly complex models and can esti-
mate ET on local, field, and landscape scales only over a homogeneous
vegetation cover with high accuracy. However, such approaches cannot
be directly extended to estimate the ET rate of large areas of forest
cover that contains natural heterogeneity and involves complex hy-
drologic processes, due to costly and time-consuming instrumentation
processes (Idso et al., 1975; Panda et al., 2016; Zhang et al., 2016).
Remotely-sensed image data is being used for mapping regional- and
meso-scale patterns of ET and surface temperature, which is helpful in
establishing a direct link between surface radiances and energy balance
components (Caselles et al., 1992; Glenn et al., 2007; Idso et al., 1975;
Kustas and Norman, 1996; Li et al., 2009; Long and Singh, 2013; Moran
et al., 1989; Panda et al., 2016, 2018; Weigand and Bartholic, 1970;
Yang and Shang, 2013; Zhang et al., 2016). Information embedded in
satellite visible, near-infrared, middle infrared, and thermal infrared
bands can be used to retrieve the land surface temperature (LST), ve-
getation index, and atmospheric temperature, and in turn supports ET
estimation for large spatial extents and with higher temporal fre-
quencies (Liou and Kar, 2014; Panda et al., 2016, 2018; Zhang et al.,
2016).

These studies clearly show that the remote-sensing approach for
estimating forest ET and its contributing parameters has strong appeal
since it eliminates laborious, time-consuming, costly field methods,
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which also have limitations in covering large areas and land cover
heterogeneity (Majasalmi et al., 2017; Panda et al., 2016, 2018). The
use of freely available moderate spatial resolution (30-m) Landsat data
(Albaugh et al., 2014; Senay et al., 2013) and five other even lower
resolution global fractions of absorbed Photosynthetically Active Ra-
diation (fPAR, in the wavelength region of 400–700 nm) products like
MODIS, MISR, MERIS, SeaWiFS, GEOV1 (250m - ~1.1 km) has merit in
estimating forest hydrologic parameters (Majasalmi et al., 2015; Tao
et al., 2015; Verger et al., 2015; Yang et al., 2014a,b) covering large
spatial extents. However, one problem that has not yet been docu-
mented is that pine/switchgrass intercropping widths (~3m) cover
areas smaller than the pixel scale (30-m) of Landsat 7 and 8 images.

This study addresses the methodological question of whether re-
motely-sensed spectral bands can be useful for modeling evapo-
transpiration and its components for young loblolly pine with a re-
cruited understory, switchgrass, and its intercropping between young
pine beds and explain the amount of water use by landuse types: 1) pine
plantations intercropped with switchgrass and pine plantations inter-
cropped with understories. The goal of this study was to develop and
test object-oriented software to estimate the gs, Tc, SM, LAI, and ET
values of pine, switchgrass, and pine intercropped with switchgrass as
well as understory. The specific objectives of the study were to develop:

1. Multivariate regression models using remotely-sensed imagery
based digital information as predictor variable to estimate the gs, Tc,
SM, LAI, and ET, respectively, as outcome variables.

2. Artificial Neural Networks (ANN) models using remotely-sensed
imagery based digital information RBFN algorithms to predict
homogenous pine and switchgrass ET and the ET of pine inter-
cropped with switchgrass as well as understory, respectively.

3. Executable software using the multivariate regression analyses-
based algorithms, automated geospatial models, and Python scripts
for endusers to apply for their application and usage.

2. Materials and methods

2.1. Study sites description

The sites included in this research are environmentally diverse: i)
Carteret, NC (a topographically flat, well-managed coastal forest)
(Fig. 2a); ii) Calhoun, MS (an upland inland forest with micro-
topography (Fig. 2b); and iii) Greene, AL (a moderate to steep sloped
inland old forest ecosystem) (Fig. 2c). All three sites were established to
investigate the environmental sustainability of intercropping switch-
grass as a cellulosic biofuel between pine tree rows without using the
land for food inside a managed pine forest owned and managed by
Weyerhaeuser to produce timber, wood fiber, and biofuel feedstock
(Bennett et al., 2013; Muwamba et al., 2015). Each site has a minimum
of four watersheds with four distinct vegetation treatments, i) mature
row-crop pine only; ii) young pine and switchgrass intercropping (6m
spacing between pine beds with ~ 3m for switchgrass); iii) pine and
understory intercropping (6m spacing between pine beds with ~ 3m
for switchgrass); and iv) switchgrass only (Fig. 3). Each of the sites in
Greene County, AL and Calhoun County, MS has an additional reference
watershed with a mid-rotation pine forest not shown in Fig. 2.

The experimental watersheds, D0, D1, D2, and D3, in Carteret
County, NC (34°49′ N, 76°40’ W) are 26.0, 26.3, 25.9, and 27.1 ha,
respectively (Fig. 2). D0 is the watershed with young pine mixed with
understory, D1 is a watershed with pine intercropped with switchgrass,
D2 has mid-rotation thinned pine with a natural understory as a re-
ference, and the fourth watershed, D3, is switchgrass-only. The
northern, southern, and western sides of the study site are fully covered
by forest, and the east side is dominated by agricultural land. The
Carteret site topography is characterized by flat coastal plain at a 0.1
percent gradient and is at 3-m elevation above mean sea level
(McCarthy et al., 1991). Deloss fine sandy loam soil; a fine-loamy,

mixed, thermic Typic Umbraquult that has poor drainage with shallow
water tables and a pH range of 3.5–4.5 (acidic) represents the soil of the
Carteret study site (Amatya et al., 1998; Beltran et al., 2010). The long-
term mean annual precipitation and Penman-Monteith grass-reference
evapotranspiration at the study site are 1517mm and 1010mm, re-
spectively (Amatya and Skaggs, 2011).

In Greene County, Northwest Alabama, there are five watersheds
(Fig. 2c) labeled GR1 (GR stands for Greene County), GR2, GR3, and
GR4 with areas of 11.6, 26.7, 25.9, and 16.5, respectively, and a re-
ference site (GRREF) that measures 6.8 ha (Bennett et al., 2013). By
2014, 6-year-old matured pine stands with understories were estab-
lished in GR1. That same year, GR2 also had a 6-year-old young pine
stand with understory, and GR3 had 8-yr old pine and switchgrass in-
tercropping. Only switchgrass was grown in the GR4 watershed, and
GRREF, not used in the study, contained 20-yr old mid-rotation ma-
tured pine. The soils in the watersheds are a combination of Falaya fine
sandy loam, thermic Aeric Fluvaquent (somewhat poorly drained with a
water table within 20 inches; slopes from 0 to 2 percent), Magnolia fine
sandy loam, mesic Typic Pleudalf (well drained with slopes from 0 to 25
percent), and Shatuba fine sandy loam, thermic Typic Paleudult (well
drained with slopes from 1 to 12 percent) (Bennett et al., 2013). The
erosion risk on the watersheds varied from high on GR1 to low on GR3
and GR4. The slope of the site watersheds varies from 9.9 to 12.7
percent. The drainage at the outlets was measured using a flow meter
located within a flume structure designed using the WINFLUME design
program. The average PET of the watersheds varies from 1322 to
1471mm, while the PET of the GRREF reference watershed was
~1600mm (Bennett et al., 2013). Average annual precipitation of the
Greene County site was 1361mm.

In Calhoun County, MS, there are also five watersheds (Fig. 2b),
labeled BF1 (BF stands for Befontaine), BF2, BF3, BF4, and BFREF (not
shown in the figure and not used in the study) with areas of 14.1, 12.8,
10.9, 15.2, and 12.6 ha, respectively. By 2014, BF1 was a 7-yr old
young pine stand with natural understory, BF2 was a pine stand thinned
in 2007 with switchgrass intercropping, BF4 was a 8-yr old pine also
intercropped with switchgrass, and BF3 was switchgrass only. BF5 was
a mid-rotation pine stand planted in 1995. The soils at the site are a
combination of Cuthbert fine sandy loam, thermic Typic Hapludult
(well drained with a water table at or below 2m; slopes 8 to 25 per-
cent), Dulac silt loam, thermic Oxyaquic Fragiudalf (well drained with a
water table at or below 2m; slopes 0 to 12 percent), Ruston fine sandy
loam, thermic Typic Paleudults (well drained with a water table at or
below 2m: slopes 0 to 8 percent), Providence silt loam, thermic Oxy-
aquic Fragiudalf (moderately well drained with a water table around
0.5 m; slopes 0 to 15 percent), Waverly silt loam, thermic Fluvaquentic
(poorly drained with a water table from the surface to 0.4m; slopes 0 to
2 percent), and Gullied Land. Half of the soils are classified as severely
eroded. Drainage at the outlets was measured using a flow meter lo-
cated within a flume structure designed using the WINFLUME design
program. The site has an annual average temperature, precipitation,
and potential evapotranspiration of 16.5 °C, 1405mm, and 1350mm,
respectively.

2.2. Instrumentation and field data collection

2.2.1. Field ET calculation procedure
At all of the study sites, weather data were collected every 15min

by weather stations fitted with HOBO U30 Cellular Data Logger (Onset,
Cape Cod, MA, USA), which were located in the proximity of the
switchgrass only watersheds. The weather data collected for analyses in
this study included precipitation (mm), atmospheric pressure (kPa),
solar radiation (W.m−2), wind speed (m.s−1), gust speed (m.s−1), wind
direction, temperature (°C), and relative humidity (%). Each watershed
was equipped with Decagon soil moisture probes (Model: 5TM) con-
nected to a Campbell Scientific data logger (Model: CR200) at four
depths (15 cm, 30 cm, 60 cm, and 80 cm) on the beds in tree rows and in
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between beds on furrows at two specific spatial locations (Fig. 4) for
real-time monitoring of soil moisture. Daily weather data with field
measured vegetation parameters on LAI and maximum stomatal con-
ductance (gs) were used to compute the PET with the Penman-Monteith
(P-M) method. However, P-M PET for a standard grass reference was
used for switchgrass, as there was only a limited data on its con-
ductance. Actual ET (AET) on each treatment watershed was estimated
following the method developed by Fisher et al. (2005) as shown in
Equation (1).

AET= f * PET (1)

Where f is a soil moisture factor and PET is daily P-M based potential
evapotranspiration. The factor f, limited by soil moisture in the root
zone, was calculated as SM/SM100, where SM=daily average soil
moisture measured at each treatment watershed, and SM100= soil
moisture content at 100 cm pressure head or 10 kPa, which was esti-
mated based on soil water characteristic data. Soil moisture char-
acteristics were derived at the North Carolina State University Soil and

Water Laboratory using undisturbed field soil core samples taken at
each of the treatment watersheds during the study period. This com-
ponent of AET, limited by energy component (PET), was assumed to
represent only soil evaporation and vegetation transpiration.
Evaporation from canopy interception was estimated separately for the
mature pine stand and was assumed negligible for other treatment
watersheds.

The detailed field hydro-meteorological measurements and data
analysis procedures for the study site in North Carolina have been re-
cently reported by Ssegane et al. (2017) and by Bennett et al. (2013) for
the Alabama site. The Mississippi site has a similar measurement pro-
tocol as that of the AL site.

2.2.2. Field ET parameters data collection methods
Field data (LAI, gs, Tc, and SM) were collected from 2012 to 2014,

which coincided with the satellite and aerial image acquisition periods.
A LiCOR-2000 instrument was used in the field for in situ LAI mea-
surement of individual forest species such as pine (young and matured),

Fig. 2. Location of the study sites in the Southeastern U.S. (Satellite image of the Southeastern U.S.) and each individual watershed (a) Carteret County, NC; (b)
Calhoun County, MS; and (c) Greene County, AL with their specific vegetation types.
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switchgrass, and understories. A LiCOR-1600 porometer field instru-
ment was used to collect gs values for each species of vegetation. A
Decagon portable volumetric water content measuring instrument was
used to collect spatial soil moisture data in each watershed to supple-
ment the soil moisture data recorded at specific locations in the wa-
tersheds as described above (Fig. 4). The air temperature measured at
the site weather station was assumed as a proxy for the Tc data, as the
sensor height mostly coincided with the height of young pine, switch-
grass, and understories. The above field-measured data and estimated
daily AET as described earlier were used as output parameters for va-
lidation of the remote sensing digital information-based ET and ET
parameter estimation model development.

2.3. Image acquisition and processing

2.3.1. Image selection
Digital information from free remotely-sensed images like the

Landsat 7 ETM+ and Landsat 8 (30m) along with acquired SPOT (10m)
multispectral (MSS) and ultra-high resolution 4-band orthoimagery
(0.15m) images were used in the study to extract spectral band in-
formation as input model parameters to estimate the ET and ET para-
meters for the four types of vegetation. Landsat images were chosen as
the source of spectral bands for analysis as they are free, easily down-
loadable, and can be easily processed due to the fact that the geometric
and radiometric correction (https://earthexplorer.usgs.gov/) has al-
ready been completed. The Landsat images have a moderate spatial
resolution of 30m, and they cover the homogenous pine and switch-
grass vegetation spatial area uniformly. Landsat imageries have a
temporal resolution of 16 days. As both Landsat 7 ETM+ and Landsat 8
images were acquired in the same year (part of 2013 and 2014) the
temporal resolution period was reduced to eight days. Thus, the ET

variation in the vegetation could be determined approximately twice
monthly and in some cases four times a month, capturing seasonal
variation. Landsat images have complete required spectral resolution
for ET estimation – have individual bands suitable to estimate the eco-
hydrologic parameters related to ET and ET parameters (Fig. 5).
Landsat images also have simple radiometric resolution, i.e., 8-bit for
Landsat 7 ETM+ and 16-bit for Landsat 8, which both require extra
processing to make the imagery data compatible for model develop-
ment.

Along with the freely available cloud-free Landsat images, SPOT
images were acquired (Table 1) through Astrium Services (Richmond,
VA, USA) to analyze the intercropped vegetation (young pine + un-
derstory and young pine + switchgrass). SPOT imageries were acquired
at a cheaper cost when compared to other similar or slightly better,
higher spatial resolution imageries. Another advantage of using the
SPOT imagery was the availability of spectral bands (Fig. 5) that are
suitable to estimate the eco-hydrologic parameters related to ET and ET
parameters under study. The biggest advantage of using the Astrium
Services images is that they radiometrically corrected the SPOT images
before providing them to their users. Processed (enhancing spatial re-
solution to explain a 6m spaced intercropping of pine and switchgrass/
understory rows) SPOT imageries were suitable for intercropped
switchgrass eco-hydrologic parameter estimation through model de-
velopment. Ultra-high (0.15m) resolution orthoimages were collected
for all three sites (Table 1) through Quantum Geospatial Inc. (Atlanta,
Norcross, USA) to correlate with the localized ET and ET parameter
(LAI and gs) data that were collected on a transect-basis coinciding with
the date of image acquisition.

2.3.2. Image processing
2.3.2.1. Geometric and radiometric correction. Geometric correction of

Fig. 3. Treatment vegetation examples for each of the three research sites.
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the SPOT images was completed using the Georeferencing tools
available with ArcGIS 10.5 software (Redlands, CA, USA). Ground
control points (GCP - road cross-sections, river bends, and some
monument locations) were obtained from the referenced NAIP
imageries of the study area to help in the geometric correction.
However, geometrical correction of the orthoimages was completed
using the GCPs set up in the field before the image acquisition. Colored
plates with known reflectance values were placed in the field as ground
control points with known coordinates. Colored plates image
reflectance values were correlated with the actual values to develop
an algorithm, which in turn was applied to the orthoimages through
Raster Calculator for radiometric correction. We followed the
procedure developed by Panda (2002) and Panda et al. (2010). It is
to be noted that Landsat imageries were geometrically and
radiometrically corrected before being disseminated to the public,
and the SPOT images were acquired with completed radiometric
correction.

2.3.2.2. Image fusion approach for spatial resolution set-up. SPOT MSS
images have a 10m resolution while SPOT Panchromatic images have
5m resolution. ‘Pansharpening (ERDAS Imagine) with a Modified
Intensity, Hue, Saturation Resolution merge’ algorithm and ‘Resample
(ArcGIS 10.5)’ tools were used to have 5m resolution SPOT MSS
available to us for our study. The SPOT MSS (5m) matched well to
the 6-m spacing between the pine trees in the intercropped site.

Orthoimageries used in the study to increase the acquired data
numbers (acquisition was completed during the time different from
Landsat and SPOT) were of 15 cm resolution. For ET and ET Parameter
estimation modeling, they were resampled/pansharpened to 5m
resolution. Resampled SPOT and orthoimageries digital data were
used for pine + switchgrass and pine + understory intercropped
model development. This image fusion technique helped in enhancing
data numbers for effective model and subsequent algorithm
development in studied landuses' ET and ET parameter estimation
using remotely-sensed data.

2.3.2.3. Scanlines correction, image masking, image index development,
and digital ASCII value extraction automation. Scanlines exists with Raw
Landsat 7 ETM + images. Therefore, a Python script (Appendix A) was
written to remove them. Scanlines are NoData values inside images.
The Python script took a 15 × 15 neighborhood of pixels (specified)
using the Focal Statistics tool of ArcGIS and calculated the mean value
of these 225 pixels and added/inserted them in place of the NoData
values of the image. The script also did the batch processing for all
Landsat 7 ETM + image scanline corrections. All processed images
(Landsat 7 ETM+ and 8, SPOT, and orthoimagery) were clipped to
individual watersheds as the initial models were developed with the
entire spatial extent for each of the watershed's prescribed vegetation
covers (Fig. 2).

Individual bands were separated from the composite image (for

Fig. 4. Location map and experimental layout design of four treatment watersheds at Carteret, NC site – an example.
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SPOT and orthoimagery; Landsat bands were individually stacked when
downloaded from the Earth Explorer (https://earthexplorer.usgs.gov/)
site using the ArcCatalog band separation tool. Vegetation indices were
developed using Equation (2) for the normalized difference vegetation
index (NDVI), Equation (3) for the soil adjusted vegetation index
(SAVI), and Equation (4) for the vegetation vigor index (VVI):

NDVI= (ρir - ρr) / (ρir - ρr) (2)

= ⎡
⎣⎢

−
+ +

⎤
⎦⎥

× +SAVI
ρ ρ

ρ ρ L
L(1 )ir r

ir r (3)

VVI= (ρir - ρg) /(ρir + ρg) (4)

Where, ρr, ρg and ρir are spectral reflectance from the red-, green- and
NIR-band images as shown in Fig. 4, respectively, and the L is a con-
stant that represents the vegetation density. Huete (1988) defined the
optimal adjustment factor of L= 0.25 for higher vegetation density in
the field, L= 0.5 for intermediate vegetation density, and L=1 for low
vegetation density. Automated geospatial models were developed in the

Fig. 5. Image (used in this study) spectral band-based environmental (ET and ET parameters related) application descriptions (Updated from source https://landsat.
usgs.gov/what-are-best-spectral-bands-use-my-study).

Table 1
Additional information regarding the images used in this study.

Image Type Acquisition Dates Resolution (m)

Carteret, NC Calhoun, MS Greene, AL

SPOT MSS Jun 27, 2013 May 21, 2013 May 21, 2013 10m but pan-
sharpened to
5m

May 08, 2013 Oct 24, 2013 Oct 24, 2013
Oct 27, 2013 Jun 15, 2014 Aug 22, 2014
Oct 10, 2014 Sep 23, 2014 Oct 19, 2014

CIR (4 Band) Jun 15, 2013
(NAIP)

Sep 14, 2013 Oct 10, 2013 0.15m

Sep 12, 2013 Jun 13, 2014
(NAIP)

Jun 14, 2014
(NAIP)

Jun 14, 2014 Jun 19, 2014 Jun 18, 2014
Aug 27, 2014 Aug 28, 2014 Aug 15, 2014

Landsat 7 All cloud free dates (Only field data collection
dates were used in the study. This is also
applicable to SPOT and CIR images)

30m
Landsat 8
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ArcGIS ModelBuilder platform to automate the spectral vegetation
image development. It is to be noted that image rasters in ArcGIS
software are considered as Integer data type rasters and therefore, in-
dices development (using Equations (2)–(4)) using direct raster bands
would not yield correct index images (with decimal data type pixel
ASCIIs). Therefore, during the model building in ArcGIS ModelBuilder,
each of the image raster bands were converted to Float data type ras-
ters, and the Float data type rasters were used in the Raster Calculator
tool to generate the index rasters. All of the input band and index
images were extracted to the watershed sizes using scripts written in
Python, and the script helped in batch processing too. A Python script
was written to automate and batch-process the processed images to
obtain watershed average digital ASCII values through zonal statistics
and use them as input parameters in the model development for esti-
mated ET and ET parameters. Some data gaps were there due to pos-
sible field instrument malfunction during data collection, weather
anomalies, and other human error in field measurements, a detailed
data mining approach was followed (as shown in below subsection) to
prepare appropriate data for the modeling development with statistical
and ANN approaches (Panda et al., 2018).

2.4. Data mining approaches for model data preparation

Preprocessing of input data was completed with the following
methods. Generally, missing values in a dataset are filled in through the
use of the “attribute mean” of the dataset (Han and Kamber, 2001),
most probable value (Han and Kamber, 2001), or a global constant
(Han and Kamber, 2001). Though, for a few, the mean of the group was
used to fill the missing numbers for our datasets. Few outliers in our
datasets were observed with initial visual interpretation. However, they
were ascertained by a separability function -a higher separability value
suggested a great degree of distinctness in groups. The separability
equation used was represented as follows:

=
−

+
V

μ μ

δ δ
i j

i j (5)

where, μi is the mean of the group i, μj is the mean of the group j, δi is
the standard deviation of the data in group i, and δj is the standard
deviation of the data in group j. Group i was the digital values obtained
through image fusion and other analyses approaches described earlier,
and group j included the corresponding ET and other ET parameter
values. The authors did not envision any data volatility due to drastic
weather changes during the three-year study because data was collected
in favorable weather conditions. Testing for data integration was es-
sential for our datasets as the imagery data were collected from four
different sources (Landsat 7 ETM +, Landsat 8, SPOT, and aerial along
with ET and ET parameters data with instrumentation). Thus, proper
integration of these various datasets was needed in order for the data to
work as a single entity, which assisted in bringing the digital data into a
similar range as the Landsat 7 DN (reflectance percentage) values of
0–255 (8-bit data) and the Landsat 8 digital values of 0–65535 (16-bit
data) (Panda et al., 2018). Thus, the correlation between attributes A
(image data) and B (ET and ET parameters data) was obtained by the
following formulae:

=
∑ − −

−
r

A A B B
n σ σ

( )( )
( 1)A B

A B
,

(6)

where, n is the number of data points, A and B are means of two dif-
ferent attribute values, and σA and σB are standard deviations of the
respective attribute values. When the value of rA,B was greater than 0
and A and B were positively correlated, the formula resulted in a high
value, and thus implied redundancy in the attributes. We also com-
pleted data transformation for our study due to data volatility as de-
scribed above. Therefore, to enable the dataset to be ANN model
friendly, data normalization was completed with our dataset to bring
the image digital values and ET and ET parameter values into similar

Fig. 6. Cartographic model explaining the systematic procedure of developing software to estimate ET, LAI, gs, Tc, and SM using optical image digital number (DN)
values.

S.S. Panda, et al. Environmental Modelling and Software 121 (2019) 104487

9



ranges. In the neural networks literatures, data normalizing also often
refers to rescaling the vector by the minimum and the range to make all
elements lie between 0 and 1. Panda et al. (2018) explained in their
study that data normalization is generally completed by subtracting a
measure of location and dividing by a measure of scale; e.g., if the
vector contains random values with a Gaussian distribution, subtract
the mean and divide by the standard deviation to obtain a “standard
normal” variable with a mean of 0 and a standard deviation of 1
(Equation (3)).

=
−

X
X μ

δ
,N

i
(7)

where, N is the number of training cases; Xi is the value of the raw input
variable, X, for the ith training case; XN is the normalized value of X; μ is
the mean of data points; and δ is the standard deviation of data points.
After data outliers were determined and data volatility reduction with
normalization was conducted, new datasets were created for both sta-
tistical and neural network model development. The entire work pro-
cess is shown as a cartographic model in Fig. 6.

2.4.1. ET and ET parameter estimation model development
2.4.1.1. Statistical modeling approach. The ASCII format of data from
developed NDVI, SAVI, and VVI were used as input parameters for the
LAI (output) multivariate model development. The gs linear regression
model was developed using the Band 4 (SPOT), Band 5 (Landsat 7 ETM
+), and Band 6 (Landsat 8) digital image information. Band 6 (Landsat
7 ETM+) and Band 10 (Landsat 8) digital image information were used
for the canopy temperature estimation model development. Band 7
(Landsat 7 ETM+) and Band 7 (Landsat 8) were used for the
development of SM remote estimation model. Table 2 shows the
detailed, image-based parameters combination (as input parameters)
for the ET and ET parameter estimation multivariate model
development. Initial ET estimation modeling was carried out using all
of the digital image information discussed above.

Simple regression analyses were conducted for the models using a
single image factor ASCII value. The analyses were completed using the
MS-Excel Statistical Tool Pack. The best-fit trend line curves were de-
veloped along with the provision for the correlation algorithm (equa-
tion) and the coefficient of determination (R2) value for the best-fit
models. As described in Table 2, initially all image-based parameters
were used as input parameters for ET estimation model development for
each watershed (different vegetation covers). Backward step-wise re-
gression was used to obtain the best model input combination for each
of the different watershed vegetation covers, as there were a small
number of variables to work with. Multicollinearity tests of the input
parameters were completed separately for ET estimation model devel-
opment. The analysis explained that red and NIR (near infrared) bands
are very similar and VVI is similar to NDVI, which was supported by
step-wise regression modeling. It should be noted that all of the digital
image information and ET and ET parameter multivariate models were
developed in the MS-Excel Statistical Tool Pack's multivariate regres-
sion analysis tool using the appropriate parameters established through
the multicollinearity analysis and step-wise regression. For the LAI es-
timation models, all three vegetation indices were used as input

parameters to develop multiple regression models. The p-value statis-
tics were used to test the null hypothesis that the coefficient is equal to
zero (no effect). With low p-value (< 0.05), it was understood that a
predictor was meaningful to our models because changes in the pre-
dictor's value are related to changes in the response variable. The model
regression coefficients represent the mean change in the response
variable for one unit of change in the predictor variable while holding
other predictors as constant, which is important in the analyses, as it
isolates the role of one variable from all of the others. Using regression
coefficients, we were able to develop the ET parameters and ET pre-
diction algorithms that were useful in software development to predict
ET parameters and ET with appropriate remotely-sensed digital in-
formation.

When feasible (when more data points were available), the models
that were developed with the 2012 and 2014 data were validated with
the data from 2013. In some cases, the model validations were com-
pleted with an extra mix of data from other years, as enough data was
not available from 2013. Average Absolute Prediction Accuracy (AAPA)
was computed for the validation models using Equation (5).

∑= ⎛

⎝
⎜ − ⎞

⎠
⎟n

Abs ActualAAPA (%) 1 ( (Actual Predicted))/ ⁎100
n

1 (8)

where, n= number of observations.

2.5. Artificial neural network modeling approach

Artificial neural network (ANN) modeling techniques were adapted
to enhance the remote estimation of ET in pine, switchgrass, pine-
switchgrass intercropping, and pine-understory intercropping vegeta-
tion, as statistical models for such ET estimation proved to be inferior.
The RBFN modeling approach was used to develop such models.

A typical RBFN consists of three different layers with successive
layers fully connected by feed-forward arcs, as shown in the RBFN
model architecture pertaining to our research and in Fig. 7. There is no
provision of weight between the input layer and the hidden layer
(prototype) while a nonlinear transfer function (i.e., radial basis func-
tion) is used at the hidden layer (Fig. 7). This study presents two input
parameters (Landsat PC1 and 2 band digital information) in the input
layer, as opposed to the RBFN model, which includes just one hidden
layer. Generally, in the RBFN model, the output layer is linear (Haykin,
1999) but in this study, the RBFN model was nonlinear due to the ap-
plication of the Gaussian transfer function in the network.

A step-by-step model optimization procedure was developed for this
study, following the procedural flow chart shown in Panda et al.
(2010), to obtain the best correlation between input and output para-
meters in RBFN. The learning rate, momentum term, and iteration rates
were changed alternately to optimize the RBFN models so that optimal
prediction accuracies were obtained. The datasets for individual
landuse based ET and ET parameters models were divided as a training
and testing dataset with a random 70–30 percent ratio, where feasible,
as in a few cases less than five data points available. First, the models
were optimally trained, then the testing data was used in both models
to validate the optimal training model's estimation efficacy as discussed

Table 2
Image spectral band and index combination of Landsat, SPOT, and orthoimagery to estimate ET and ET parameters.

Image band and index combination as model input parameters Model output parameters

Landsat 7 ETM+ Landsat 8 SPOT Orthoimagery

Band 8 (TIR) Band 10 (TIR-1) Canopy temperature
Band 5 (MIR-1) Band 6 (SWIR-1) Band 4 (MIR) Stomatal conductance
NDVI, SAVI, VVI NDVI, SAVI, VVI NDVI, SAVI, VVI NDVI, SAVI, VVI Leaf area Index
Band 7 (MIR–2) Band 7 (SWIR-2) Soil moisture
All of the above All of the above All of the above All of the above Evapotranspiration (ET)
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below, also known as the RBFN model evaluation process.
The RBFN model performances were evaluated based on root mean

square error (RMSE), prediction accuracy, and standard error of pre-
diction (SEP). Moreover, the correlation coefficient (r) between the
actual and predicted output along with the slope and intercept of the
linear regression model was used in model performance evaluations.
The equation for RMSE is:

= =
−

RMSE MSE SSE
n p (9)

where, n is the number of observations; p is the number of the para-
meter to be estimated; and SSE and MSE are sum of squared errors and
mean square error, respectively.

Average test prediction accuracy is calculated based on Equation
(10), where N is the total number of observations and OPA and OPP are
actual and predicted output, respectively.

∑= ⎛

⎝
⎜ −

− ⎞

⎠
⎟ ×

−

Average Test Accuracy
N

OP OP
OP

1 1 100
i

N
A p

A1 (10)

An executable file developed in the Biolab of North Dakota State
University, Fargo ND, using Visual C++ (Microsoft Corporation,
Bellevue, WA) was used to determine the predicted ET accuracy and the
subsequent actual and predicted correlation coefficient (r) between the
measured and predicted ET and, intercept (a), slope (β), and SEP from
the back-propagation neural network result. The predicted and actual
output regression analysis was completed using the following linear
equation:

Y = βX + a (11)

Where, X and Y are predicted and actual output, respectively; β is slope;
and a is the intercept. The SEP of the predictive model is calculated by
using the following equation by Kramer et al. (2001):

∑ − −
−

= Y X d
n

[( ) ]
1

i
n

i i m1
2

(12)

where, dm is the mean of the difference between actual and predicted
values Y and X (of ith individual), respectively; and n is the total
number of observations.

2.5.1. Software development
The relationship between input and output data, i.e., the statistical

multiple regression correlation algorithms, were used to develop ex-
ecutable files (software) in the object-oriented programming language
Visual Basics Studios (Microsoft, Bellevue, WA). The executable files
were created as forms so that they can be used by laypersons to estimate
the pine, pine + switchgrass intercropped vegetation, switchgrass, and
pine + natural understory vegetation ET and ET parameters from

image digital information by entering the input values in to designated
text boxes and clicking on the CALCULATE button.

3. Results and discussion

3.1. Multicollinearity analysis on image bands for model development

When one predictor variable in a multiple regression model can be
linearly predicted from the others with a substantial degree of accuracy,
it creates a situation, where the coefficient estimates may change er-
ratically in response to small changes in the model or the data is the
multicollinearity phenomenon (Pottel, 2003). Pottel (94), in his study
on ‘Problems of using Microsoft Excel for statistics,’ mentioned the
advantage of performing multicollinearity analysis before performing
multivariate regression. The LAI and ET estimation models used mul-
tiple digital image parameters as explanatory variables. Therefore, to
ascertain the efficiency of each parameter in model development,
multicollinearity analyses were completed in MS-Excel statistical Tool
Pack software. Results of a multicollinear analysis in Table 3 revealed
that SAVI and NDVI are essential pieces of information, although si-
milar, for the model building in this study and have 96 percent colli-
nearity. Therefore, we have alternately used the information SAVI and
NDVI in model development. VVI image information has some degree
of multicollinearity (coefficient of 0.42) with both NDVI and SAVI.
Multicollinearity analysis helped us determine the best bands to use in
multivariate model development for LAI and ET estimation model de-
velopment (Table 4).

3.2. Image information-based ET and ET parameter (LAI, gs, Tc, and SM)
models

3.2.1. Switchgrass only
For remote estimation of the switchgrass (only) ET parameters,

model development that uses Landsat, SPOT, and orthoimagery digital
information with an acceptable coefficient of determination (LAI:
R2= 0.77, n= 14; gs: R2= 0.70, n= 18; Tc: R2= 0.77, n= 34; and
SM: R2= 0.68, n= 12) were obtained. Average prediction accuracies
of 70.05, 94.88, 89.93, and 90.61 percent were obtained with the gs, Tc,
SM, and LAI models, respectively (Table 4). The model result is based
on the analyses of the validation dataset. The model data were ran-
domly separated as training data and testing data. Once the multi-
variate regression models were developed, the algorithm (using the
input parameter coefficient and intercept coefficient) for ET or ET
parameter estimation was developed and the same algorithm was used
to estimate the ET or ET parameter values. A correlation analysis was
created using the actual field data and the model-based predicted data
as the results of the validation model data. The low correlation among
the actual field data and the model-based predicted data could be at-
tributed to the inconsistent growth of switchgrass in the homogenous
research plots and in the research plots where it was grown as an in-
tercrop with young pine during the study period (2012–2014). The
multivariate ET estimation model provided R2=0.50, standard error of
prediction (SEP)= 0.94 (18 percent of the observed ET average), and
an average prediction accuracy of 82.09 percent with n=55 for the

Fig. 7. The RBFN model architectures developed for estimation of ET, LAI,
canopy temperature, stomatal conductance, and soil moisture for each landuse
type (pine, switchgrass, pine and switchgrass intermix, and pine and understory
intermix).

Table 3
Multicollinearity matrix obtained from the digital image parameters used in the
study (an example).

Bands B5 B6 B7 NDVI SAVI VVI

B5 1
B6 0.23 1
B7 0.29 −0.10 1
NDVI −0.04 0.05 −0.15 1
SAVI 0.04 0.05 −0.11 0.96 1
VVI 0.30 0.39 −0.34 0.42 0.42 1
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estimation of ET in switchgrass (only) plots. The relatively poor per-
formance could be attributed to the inconsistent spatial and temporal
growth of switchgrass in those plots.

3.2.2. Switchgrass intercropped with pine
Remotely-sensed image information (that uses Landsat, SPOT, and

orthoimagery digital information) for pine and switchgrass inter-
cropped pine forest ET parameter estimation models provided some-
what inferior model input-output correlation, i.e., coefficient of de-
termination (LAI: R2= 0.59, n= 24; gs: R2= 0.56, n= 22; Tc:
R2= 0.81, n=36; and SM: R2=0.10, n=4) values. Soil moisture
remote estimation could not draw any statistical conclusion due to very
small the sample size of only four. Average prediction accuracies of
54.55, 85.28, 70.64, and 88.07 percent were obtained with the gs, Tc,
and LAI models, respectively (Table 4). However, a multivariate re-
gression analysis to estimate the soil moisture amount in pine and
switchgrass intercropping plots was completed using Red, NIR, NDVI,
and SAVI digital information instead of the natural Band 7 (Landsat 7
ETM+) and Band 11 (Landsat 8), which yielded an significant im-
provement in SM estimation accuracy (with an increase of R2 from 0.10
to 0.57). The ET estimation model for switchgrass intercropping pro-
vided an R2 of 0.47, standard error of prediction (SEP)= 0.99 (19
percent of observed ET average) and an average prediction accuracy of
81.44 percent with n=20 when using Red, NIR, and NDVI image in-
formation as input parameters. The low correlation between the image
input information and the ET and ET parameter values (field-measured
data) is due to the introduction of Landsat image information to the
model along with SPOT and orthoimages. The pixel size (30m) of the
Landsat data and the field row spacing of the pine and switchgrass
intercropping (6m) did not match for intercropping. SPOT MSS images
pan-sharpened to 5m using the panchromatic image were useful to
clearly differentiate the switchgrass row vegetation from the pine ve-
getation along with the orthoimagery spatial resolution (15 cm).
Therefore, Landsat data should not be used in the model, although, it
would decrease the number of input image variables in the study.
However, we have included Landsat based image information in the
study, thus obtained reduced model correlation. Furthermore, it was
concluded that Landsat data should not be included in the switchgrass
ET or ET parameter estimation in an intercropping perspective, as the
spacing of 6m is much lower than the 30m spatial resolution of Landsat.

3.2.3. Pine and understory intercropping
Pine and understory (intercropped) ET parameter remote estimation

models (that use Landsat, SPOT, and orthoimagery digital information)
provided poor input-output correlation with coefficients of determina-
tion values of i) LAI: R2= 0.28, n= 27; ii) gs: R2= 0.63, n=26; and
iii) Tc: R2= 0.76, n=45. There was no soil moisture model developed
for pine and understory intercropping. The poor model correlation is
attributed to the same factors previously discussed regarding switch-
grass intercropped with pine. The ET estimation model developed for
the young pine with natural understory watersheds provided an R2 of
0.48 and an average prediction accuracy of 81.41 percent with n= 17
using Red, NIR, NDVI, and SAVI image information as input para-
meters. The multivariate model underpredicted in the majority of cases
and 17 data points. The low coefficient of determination obtained with
this model for estimating ET could be attributed to the heterogeneity of
understory forest shrub species present in all pine with understory in-
tercropping watersheds. Average prediction accuracy of ET parameters
exceeded 80 percent, except for the gs and SM (Table 4).

In this study, the authors did not develop any ET and ET parameter
estimation models for plots containing matured pine only. However, in
another companion study, the main authors of this study (15) have
developed remote sensing based ET and ET parameter estimation
models for plots containing matured pine only and have obtained sig-
nificant input-output correlations (gs: R2= 0.61, n=37; Tc: R2= 0.89,
n=55; SM: R2=0.33, n= 39; and ET: R2= 0.61, n=35). The

authors attributed this to the homogeneity of the vegetation cover and
the ability of the Landsat (30m) images to comprehend the vegetation
characteristics. However, in the intercropped sites, the ET parameter
estimation input-output correlations obtained were relatively satisfac-
tory, suggesting that remotely-sensed digital information seems like a
cost-effective and efficient way of estimating ET parameters for larger
spatial coverage quickly.

Through the ET and ET parameter models, the authors address the
methodological question of whether remotely-sensed spectral bands can
be useful for modeling evapotranspiration and its components for
young pine with a recruited understory, switchgrass, and its inter-
cropping between young pine beds. The authors have concluded that
for homogenous vegetation, except the SM parameters, all other ET
parameters discussed in this study and ET itself can be estimated with
algorithms developed using freely available medium-resolution Landsat
images. For intercropping vegetation, high-resolution images are re-
quired.

3.3. RBFN models

As discussed in the ‘Artificial Neural Network modeling approach’
section of the manuscript, proper ‘Training’ and ‘Testing/Validation’
datasets were created for the RBFN model development. The model
parameters were set to optimum levels following the neural network
optimization step-by-step approach. In most modeling cases, a learning
coefficient of 0.5, a momentum term of 0.9, and 50,000 epochs were
found to be optimum for the RBFN model architectures, along with the
learning rule of the Delta-Rule algorithm and transfer function of sig-
moid. With few model optimizations completed, the authors concluded
that a learning coefficient of 0.5, a momentum term of 0.9, and epochs
of 50,000, the learning rule of Delta-Rule algorithm, and a transfer
function of sigmoid are optimal for this study's RBFN model develop-
ment, and thus used them for all of the models. Table 4 details the RBFN
model architecture and its optimal functionality used while modeling,
along with model training and testing validation results for each
landuses ET and ET parameter prediction.

Table 4 contains the training and testing RMSE, data correlation
rate, actual versus desired classification rate value, model prediction
testing absolute error, average accuracy, and testing models’ actual
versus predicted correlation coefficient (r), and SEP values. It was ob-
served from the results, with RBFN modeling, pine and switchgrass only
ET, canopy temperature, LAI, and stomatal conductance could be esti-
mated/predicted well using the remotely-sensed image information,
obviously with proper data mining (Table 4). More than 80 percent
average testing model-based prediction accuracies were obtained in
those cases. However, the intermix landuses provided somewhat poorer
testing prediction accuracies, ranging from 60 to 80 percent. The soil
moisture prediction models, like the statistical models, did not provide
any remarkable results, attributed to the litter cover in the study area
and the difficulty of satellite/aerial platform-based sensor data collec-
tion through the dense canopy in pine and pine intermix landuse sites.
It was also concluded that more data inclusion in a few of the models
might enhance their ability to predict ET and its parameters. This
procedure was developed as an alternative to the less complex, simple,
and user-friendly automated geospatial model and statistical model
result supported executable file development approach to estimate ET
and its related parameters using remote sensing digital information, as
shown below. However, the ANN model is not simple for lay-users, but
forest managers with access to neural network software would likely be
able to apply them for ET and ET parameter estimation from described
landuses by using remotely-sensed data.

3.4. Software development

Table 5 represents the multivariate model algorithms obtained to
estimate ET and ET parameters for various vegetation (treatment)
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scenarios. The equations (algorithm) in Table 5 were used to develop
executable files (software) to estimate daily ET, LAI, gs, Tc, and SM
parameters using the proper digital information. The software will be
available for public use as required in the GitHub site (https://github.
com/drsudhanshupanda/Software).

3.5. Uncertainty and limitations

In this study, use of daily ET values for the watershed sites were
obtained using an approximate method that used PET, SM, and field
capacity as explained above, unlike other similar studies (15, 50) that
compared the remote imagery-based ET with more accurate, directly
measured ET by eddy covariance based methods. This may have in-
troduced some errors. Some other uncertainties might have arisen from
the measurement of field ET parameter data (LAI, and gs including their
estimates as watershed average from sample measurements), which was
acquired at approximately noon (Amatya et al., 2016), in an attempt to
coincide with the satellite or aerial image acquisition period. Some-
times there was a lag of as many as 2–3 days because of the field
weather conditions. Authors, in their laboratory, conducted radiometric
corrections for orthoimages, whereas NASA completed corrections for
the Landsat images in-house, and Astrium Services Inc., completed
corrections for the SPOT images with their own system. This may have
also introduced some errors. The vegetation growth in the watersheds,
especially the switchgrass growth, was uneven over the three years of
research (2012–2014). Switchgrass plots had sporadic coverage and
therefore the image pixels were essentially mixed pixels (mixels)
(switchgrass and bare soil). As described previously, Landsat images
(30m resolution) could not discern the vegetation in the intercropped
plots. Therefore, tools (statistical models, automated geospatial models,
and executable files) may not be able to predict the daily average ET
and ET parameters for various types of vegetation accurately. However,
we attempted to produce estimations for ET and ET parameter values
from remotely-sensed image based digital information by combining
different resolution images from three differing sites with topographic,
climate, and environmental conditions. It is likely that some errors were
introduced due to the use of specific-only bands in the analysis, as well
as our use of image processing software, and instrumentation in the
field.

4. Summary and conclusions

Intercropping switchgrass between tree-rows in young pine plan-
tations can increase bioenergy feedstock production without land op-
portunity costs. However, intercropping could have ecological con-
sequences, including altered water budgets due to the different ET rates

from different forest crops. Measurement of evapotranspiration (ET), a
significant component of any forest water budget, across cropping
systems is costly and time-consuming, so techniques for estimating ET
and its parameters from remotely-sensed spectral bands could facilitate
the assessment of relative ET demands among competing forest land
uses. Field and corresponding image data of various spatial and spectral
resolutions were used within three environmentally diverse sites over a
period of three years (2012–2014) to create robust multivariate models.
The models were trained with years 2012 and 2014, and validated
(tested) with year 2013 data wherever feasible (if enough data samples
were available). If enough data was not available, the validation or
testing data were picked randomly from the full dataset to ascertain the
model efficiencies (as shown in the results section). It was observed
from the study that canopy temperature of any vegetation could be
accurately estimated with the TIR bands of the images, which is con-
sistent with previous studies. Stomatal conductance and LAI values,
even for the complex intercropped sites, could be estimated with
moderate accuracy using appropriate digital information.
Evapotranspiration of switchgrass and its intercropping with pine could
be reasonably well estimated using Green, Red, and NIR band digital
information along with NDVI and SAVI data. The software developed
using the obtained algorithm would help lay-users to approximately
estimate these ecohydrologic parameters of pine, switchgrass, and in-
tercropping for appropriate management decisions in plantation forests
with ease. Our study findings suggest that when more spatial varia-
bility, sound data mining, ultra-high resolution imagery and advanced
image processing approaches are included to account for potential
modeling uncertainties, they will enhance these environmental para-
meters’ remote estimation accuracy. That said, future studies using
these remote sensing-based ET models should be further tested at
multiple sites for quantifying the water use from switchgrass and or
other similar cellulosic biofuels intercropped in pine forests separately
by each vegetation and/or in combination, as a part of the regional
water balance and resource assessment. RBFN based models provided
promising results for estimating ET and ET parameters using remotely-
sensed digital information prepared with data mining. But it is assessed
that lay-persons may find it difficult to use. However, forest managers
with access to neural network software can use our devised RBFN
training models for estimating those forest hydrologic parameters with
better accuracy.
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