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Abstract
Mangroves are ecologically and economically important forested wetlands with the highest carbon
(C) density of all terrestrial ecosystems. Because of their exceptionally large C stocks and importance
as a coastal buffer, their protection and restoration has been proposed as an effective mitigation
strategy for climate change. The inclusion of mangroves in mitigation strategies requires the
quantification of C stocks (both above and belowground) and changes to accurately calculate
emissions and sequestration. A growing number of countries are becoming interested in using
mitigation initiatives, such as REDD+ (reducing emissions from deforestation and forest
degradation), in these unique coastal forests. However, it is not yet clear how methods to measure C
traditionally used for other ecosystems can be modified to estimate biomass in mangroves with the
precision and accuracy needed for these initiatives. Airborne Lidar (ALS) data has often been
proposed as the most accurate way for larger scale assessments but the application of ALS for coastal
wetlands is scarce, primarily due to a lack of contemporaneous ALS and field measurements. Here, we
evaluated the variability in field and Lidar-based estimates of aboveground biomass (AGB) through
the combination of different local and regional allometric models and standardized height metrics
that are comparable across spatial resolutions and sensor types, the end result being a simplified
approach for accurately estimating mangrove AGB at large scales and determining the uncertainty by
combining multiple allometric models. We then quantified wall-to-wall AGB stocks of a tall
mangrove forest in the Zambezi Delta, Mozambique. Our results indicate that the Lidar H100 height
metric correlates well with AGB estimates, with R2 between 0.80 and 0.88 and RMSE of 33% or less.
When comparing Lidar H100 AGB derived from three allometric models, mean AGB values range
from 192 Mg ha−1 up to 252 Mg ha−1. We suggest the best model to predict AGB was based on the
East Africa specific allometry and a power-based regression that used Lidar H100 as the height input
with an R2 of 0.85 and an RMSE of 122 Mg ha−1 or 33%. The total AGB of the Lidar inventoried
mangrove area (6654 ha) was 1 350 902 Mg with a mean AGB of 203 Mg ha−1 ±166 Mg ha−1. Because
the allometry suggested here was developed using standardized height metrics, it is recommended
that the models can generate AGB estimates using other remote sensing instruments that are more
readily accessible over other mangrove ecosystems on a large scale, and as part of future carbon
monitoring efforts in mangroves.
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1. Introduction

Estimating and monitoring forest carbon (C) stocks
has become increasingly important because of its rel-
evance to climate change adaptation and mitigation
programs, as well as the importance of forest C stocks
in the global C cycle and global environmental change
studies. In thecaseofmangrove forests, there is still con-
siderable uncertainty in the estimates of the C balance
in its ecosystem, although recent studies have shown
their potential for high C storage (Bouillon et al 2008,
Donato et al 2011, Mcleod et al 2011, Murdiyarso
et al 2015). Mangrove forests cover approximately
138 000 km2 of subtropical and tropical coastlines
equivalent to 0.5% of global coastal areas or 0.7%
of tropical forest area (Giri et al 2011, Alongi 2014).
They provide a variety of ecosystem services such as
harboring biodiversity, storm protection, sequestering
nutrients, sediments and C, shoreline stabilization and
linking terrestrial and aquatic environments. Of all the
ecosystem services, C sequestration has become one of
the most recognized (Donato et al 2011, Mcleod et al
2011, Siikamäki et al 2012). In addition, mangrove-
lined estuaries and coastal ecosystems are significant
to global biogeochemical processes and they regulate
the structure, productivity and function of adjacent
coastal ecosystems disproportionately relative to their
limited land cover (Bouillon et al 2008, Kristensen
et al 2008, Alongi 2014). Mangroves are also able to
sequester C at a rate two to four times greater than
mature tropical forests and can store three to five
times more C per equivalent area than upland trop-
ical forests (Donato et al 2011, Alongi 2014). This
has led to mangrove C stocks being highly valued
(Jerath et al 2016).

Despite their ecological importance, it is esti-
mated that since the 1950s between 35% and 60%
of global mangrove cover has been lost, primarily in
South East Asia (Polidoro et al 2010, Van Lavieren
et al 2012). Consequently, protecting forests from
degradation and deforestation has been proposed in
order to help mitigate C emissions through contin-
ued high C sequestration of mangroves and avoided
emissions from soil decomposition and aboveground
stock loss through initiatives such as REDD+ (reducing
emissions from deforestation and forest degradation)
(Chmura et al 2003, Duarte et al 2005, Bouillon et al
2008). One of the main challenges for implementing
REDD+ is the accurate quantification of C emis-
sions from deforestation and forest degradation, which
requires accurate estimates of deforestation rates and
biomass (Gibbs et al 2007). Generally speaking, most
mangrove C is stored in the soil and in sizable below-
ground pools of dead roots (Alongi et al 2004, Donato
et al 2011), but because soil C pools can be rela-
tively stable in riverine and deltaic mangrove forests
(Stringer et al 2015, Stringer et al 2014, Adame and
Fry 2016), the focus on estimating mangrove forest C
stocks and changes has been on monitoring changes

in land cover and aboveground biomass (Shapiro et al
2015).

There has been interest in estimating forest com-
position and structure using remote sensing data,
particularly in remote or hard to access forest areas
like mangroves (Fatoyinbo and Simard 2013, Lago-
masino et al 2016). Forest canopy height is the one
structural attribute that can be accurately estimated
with active sensors and which is highly correlated with
biomass in forests (Duncanson et al2010,Lu et al2016).
Aboveground biomass (AGB) in turn, can be directly
converted to C stocks (IPCC 2006). Forest structure
measurements, such as metrics of forest height, gener-
ated from airborne laser/Lidar (ALS) have been used
successfully to estimate AGB and C content in numer-
ous forest types (Zhao et al 2012, Schlesinger and
Bernhardt 2013, Zolkos et al 2013, Duncanson et al
2015, Taylor et al 2015), but applications of Lidar data
in mangrove forests are scarce (Simard et al 2006, Feli-
ciano et al 2014). Many of the abovementioned studies
use different definitions of canopy height, such as mean
height of all trees, basal-area weighted height, or height
of the tallest tree within a certain area. This can lead
to variations in the methods to estimate AGB and
sometimes differing results from the same datasets.

In mangrove forests in particular, AGB estimation
from ALS or other canopy height datasets has taken
the form of regressions relating plot-level field mea-
surements of AGB with field, airborne or spaceborne
measurements of canopy height. The most commonly
used linear regression model relating canopy height
and mangrove AGB was developed by Saenger and
Snedaker (1993) based on a review of 43 published
papers and reports on field measurements. This model
was applied to continental scale estimates of man-
grove canopy height generated from the Shuttle Radar
Topography Mission (SRTM), a spaceborne InSAR
(Interferometric Synthetic Aperture Radar) dataset,
combined with spaceborne Lidar from the GLAS
(Global Laser Altimetry System) instrument in Fatoy-
inbo and Simard (2013). Similar, more site specific
models have been used to estimate AGB from SRTM
in the Florida Everglades (Simard et al 2006, Feliciano
et al2017),Colombia (Simard et al2008),Mozambique
(Fatoyinbo et al 2008), West Africa (Tang et al 2016)
and Indonesia (Aslan et al 2016). AGB estimates may
vary greatly dependingon the selectionof the allometric
models, as the estimates are dependent on (a) the avail-
ability of a specific model for the species and region
of interest, (b) whether the allometry was intended
as a global, national or regional model, (c) which
field-based parameters (e.g. diameter at breast height
(DBH), height, wood density) are used as allometric
inputs, and (d) the range of input values, such as DBH
and height, used to generate the allometries (Chave
et al 2014). As an example, Zhao et al (2012) found
that Lidar-based allometric models using reference
AGBs calculated from regional allometric models per-
formed much better than those using reference AGBs

2



Environ. Res. Lett. 13 (2018) 025012

36°E

19°S

36°E

40

400

Kilometers

Kilometers

19°S

N
N

Figure 1. Study area along Zambezi Delta showing plot locations and ALS survey outline. Dark grey areas represent mangrove cover
mapped by Shapiro et al (2015).

calculated from national models. This was in part due
to the inclusion of height as input into the regional
or site-specific models, in addition to DBH. In man-
grove forests, site-specific allometric models are rare,
and generalized models are most commonly used. The
most used allometry for non-neotropical mangroves
was developed by Komiyama et al (2005) and uses
DBH and wood density as input. The general trop-
ical equations developed by Chave et al (2004) and
Chave et al (2014) based on canopy height in addi-
tion to DBH and wood density as input can also be
applied to mangroves. Additionally, regional equations
have been developed for the Everglades in Florida
(Smith and Whelan 2006, Feliciano et al 2014), Gazi
Bay in Kenya (Kairo et al 2009), Tanzania (Njana et al
2015), SofalaBay,Mozambique(Sitoeet al2014),Brazil
(Olagoke et al 2016) among others.

The aim of this study was develop a biomass esti-
mation model for mangroves using a combination of
ALS and field data. ALS data has not been widely
used in mangrove forests, and their unique structure
of aboveground root systems, and regular inundation
might result in errors in the height retrievals. Further-
more, REDD+ will be implemented by countries with
extensive mangroves throughout the tropics, yet it is
not yet clear whether ALS-based methods to measure
AGB stocks and changes in other ecosystems can be
applied to mangrove systems. Here we present an AGB
estimation approach using high point cloud density
ALS data calibrated and validated using field mea-
surements of canopy height and AGB in the Zambezi
DeltaRegion inMozambique, aREDD+pilot study site
(Shapiro et al 2015, Trettin et al 2015). We evaluated
the (1) accuracy of using H100, or the height of the 100
tallest trees within a hectare, to estimate AGB and (2)

the effect of using three different allometric models on
AGB values and uncertainties.

2. Materials and methods

2.1. Study area
Africa is home to one fifth of the world’s mangrove
forests (Giri et al 2011) and there has been a loss of
African mangrove forests due to small scale and com-
mercial harvesting, oil exploitation and climate change
(Corcoran et al 2007). Within Africa, Mozambique is
ranked second in mangrove area (3054 km2) (Fatoy-
inbo and Simard 2013). Mangroves occur along the
entire lengthof the2770 kmMozambicancoastline, but
the largest areas are found in the northern and central
regions (Benkenstein and Chevallier 2013). Our study
area encompasses the mangroves forests of the Zam-
bezi Delta region (figure 1), which extends for 180 km
along the coast and approximately 50 km inland, mak-
ing it the second-largest continuous mangrove habitat
in Africa (Barbosa et al 2001).

The Zambezi Delta’s vegetation is a mix of wood-
lands, savanna, grasslands, coastal dunes, marshes,
freshwater wetlands and mangroves, which are esti-
mated to cover an area of ∼37 000 ha within the Delta
(Shapiro et al 2015). There are eight mangrove species
present here: Avicennia marina, Bruguiera gymnor-
rhiza, Ceriops tagal, Heriteria littoralis, Lumnitzera
racemosa, Rhizophora mucronata, Sonneratia alba and
Xylocarpus granatum. They are distributed inheteroge-
nous mixtures with no obvious zonation, and stocking
densities averaging 2036 trees per hectare (Trettin et al
2015). Since the construction of the Kariba and Cahora
Bassa dams in 1959 and 1974, freshwater and sediment
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Figure 2. (a) Zambezi Delta Lidar H100 mangrove canopy height map with zoomed areas showing various mangrove statures (b), (c)
and (d).

discharge to the delta have reduced; these hydrological
changes were predicted to result in coastal erosion and
loss of coastal ecosystem extent (Beilfuss et al 2001).
However, a recent Landsat-based study of mangrove
change detected an increase in total mangrove extent
of over 3000 ha from 1994 to 2013, due to low defor-
estation rates and expansion into new areas (Shapiro
et al 2015). The new areas that have been colonized
include new seaward land formed through sediment
trapped by mangroves and upland areas colonized by
mangroves, possibly as a result of both sea level rise and
decreased freshwater discharge (Shapiro et al 2015).
The Zambezi River Delta’s mangroves not only play
a key role in sustaining the livelihoods of the nearly
200 000 people living in the region, but they are also
particularly important to Mozambique’s economy as
they support the shrimp fisheries of the Sofala Bank,
a key export sector valued at US$114 M, equivalent to
14% of total exports in 2002 (WWF 2011).

2.2. Field measurements of forest C stocks
C stocks of mangroves within the Zambezi Delta
were inventoried using a stratified random sampling
design that took into account forest canopy height class
determined from the Mozambique mangrove canopy
height product derived from SRTM and GLAS data
(Fatoyinbo et al 2008). This height-based stratifica-
tion method ensured that forest inventory would be
distributed across all representative canopy height and
biomass strata (Trettin et al 2015). In total, the forest
was separated into five height classes, and five sub-plots
(0.0154 ha) were used as the basis for measurements
and sampling within each 0.52 ha plot to characterize
above and belowground biomass C pools. Within each
sub-plot tree DBH and height were measured using a

nested sampling approach, with trees> 5 cm measured
on the entire sub-plot and trees < 5 cm were measured
on a 2 m radius area. DBH was measured with a diame-
ter tape, and tree height was measured and rounded to
the nearest 0.5 m with a Haglof Vertex III hypsometer.
Details regarding the mangrove field inventory can be
found in Stringer et al (2015) and Trettin et al (2015).

2.3. Lidar data collection and processing
To compare and analyze field-based canopy height and
AGB measurements in the Zambezi Delta, commercial
ALS data were acquired on May 5–6, 2014 with a point
density of 10 points per m2 (Fatoyinbo et al 2017).
The airborne survey comprised an area of 115 km2

in the Zambezi Delta region (figure 1). The last ALS
return data were used to generate a 1 m× 1 m reso-
lution digital terrain model. A digital surface model
(DSM) and a canopy height model (CHM) were also
generatedusing thepoint cloud data.Mangrove canopy
heights were calculated relative to the Earth Gravita-
tional Model 2008 (EGM2008) geoid. The mangrove
DSM and CHM were georeferenced into a WGS84
datum and UTM Zone 36 South projection. Man-
grove forest extent was extracted in the Lidar data
using the most recent published Landsat-based map
(Shapiro et al 2015).

Of the 52 plots sampled in the Zambezi Delta, 24
fell within the ALS survey (figure 1). To compare and
analyze the ALS-derived canopy height model versus
other height metrics and tree-level AGB estimates, we
processed and converted ALS height estimates to Lidar
H100 (figure 2), equivalent to the height of the 100
tallest trees in a given hectare, based on the assump-
tion that the tallest trees contribute the most to AGB
estimates (Aulinger et al 2005, Hajnsek et al 2009).
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Figure 3. Comparison of Field H100 and Lidar H100 heights.
R2 values for the plots are 0.93, RMSE (m) for Lidar H100 vs
Field H100 is 1.73 m.

In order to acquire the H100 value from the ALS data,
a moving window of 10 m2 was used to extract the
highest first return value for the tallest tree in this win-
dow resulting in one maximum tree value per moving
10 m2 window, equivalent to 100 trees per hectare. This
is a similar method to what has been used in compa-
rable forest stand structure studies to compare canopy
height estimation of optical and radar remote sens-
ing datasets (Aulinger et al 2005, Lee and Fatoyinbo
2015, Lagomasino et al 2016). The main motivation
for using the H100 metric was for ease of comparison
with other, high and medium resolution spaceborne
canopy height datasets, such as those derived from
stereo photogrammetry, polarimetric InSAR or other
digital canopy height models representing the height
top of the canopy, as has been shown by Lagomasino
et al (2016). This would allow us to expand the
model relating H100 to AGB from being site- and
ALS-specific, to a larger scale.

2.4. Field height metrics and Lidar-based canopy
height analyses
We compared Field H100 height with the Lidar H100
height metric to evaluate the accuracy of the Lidar
relative height estimates (figure 3). Field H100, was cal-
culated from the field data using the average of the two
tallest trees for each sub-plot of 7 m radius/0.0153 ha
area:

Field H100 = 0.0153ha 100 trees
1ha

= H1.53 trees
(1)

where Field H100 is in m and H1.53 trees (the mean
height of 1.53 trees) is inm. For simplification the mean
height of 2 trees per sub-plot was used.

The comparison between Lidar H100 and Field
H100 yielded an R2 of 0.93 and RMSE of 1.7 m, con-
firming that the Lidar data was able to well characterize
Field H100 in mangroves (figure 3).

2.5. Total plot-level aboveground biomass estimates
We estimated AGB using the generalized Komiyama
et al (2005) mangrove allometry, the pantropical
(Chave et al 2005) allometry, and the Tanzania
mangrove allometry (Njana et al 2015), as there is
no site-specific published allometry for the Zambezi
region. The Njana et al (2015) allometric model was
selected as it was developed for the same geographical
region (East Africa) and species as are present in the
Zambezi. The Komiyama and Chave allometries were
selected because they are global models that are pri-
marily driven by species-specific wood density in the
case of Komiyama and species-specific wood density
and height in the case of Chave. Also, while a recent
study by Sitoe et al (2014) did develop allometries
for Sofala province in Mozambique, this model has
been shown to result in extremely low per ha values,
most likely due to an error in the equation (Trettin
et al 2015). We therefore did not include the use of
the Sofala allometry in our study. Komiyama’s gen-
eralized mangrove AGB equation was derived using
DBH and wood density as parameters and is given by
equation (2):

AGB𝐾 = 0.251 𝜌 𝐷2.46 (2)

where AGB𝐾 is above-ground biomass in kg per tree,
𝜌 is wood density in g cm−3 and D is DBH in cm.
This model has a standard AGB error of 8.5% and was
created from mangrove stands with a maximum DBH
of 49 cm (Komiyama et al 2005).

The generalized pantropical Chave et al (2005)
equation for moist mangrove forests is given by equa-
tion (3):

AGB𝐶 = 0.0509 𝜌𝐷2𝐻 (3)

where AGB is above-ground biomass in kg per tree,
𝜌 is wood density in g cm−3, D is DBH in cm and H
is height in m. Chave et al (2005) incorporates tree
height information, which reduces the standard error.
This model has a standard AGB error of 12.5% and
was generated for mangrove stands with a maximum
DBH of 42 cm. Anadditional AGB allometric equation,
which incorporates height, DBH and wood density is
given by Njana et al (2015) equation (4):

AGB𝑁 = 0.353 𝜌1.13 𝐷2.08 𝐻0.29 (4)

where AGB is above-ground biomass in kg per tree,
𝜌 is wood density in g cm−3, D is DBH in cm and H
is height in m. This model was developed for quan-
tification of tree above and belowground biomass for
Avicennia marina, Sonneratia alba and Rhizophora
mucronata, which are the dominant mangrove species
inEastAfrica.The standard error for this model was less
than 10%, and was generated for trees with a maximum
DBH of 70.5 cm and maximum height of 32.2 m.

As both DBH and tree height data were available
in this study, we were able to generate compara-
tive estimates of AGB using all three models. The
values for wood density that we used were found
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on the world agroforestry wood density database
(www.worldagroforestry.org/sea/Products/AFDbases/
WD/Index.htm). The range of wood density values
covers published values found around the globe.
Because none of the wood densities reported are
specific to Mozambique, we used the mid-values of
wood density shown in table 1. While this is another
source of uncertainty in the biomass estimate, it is the
same 𝜌 value that was used by the field-based studies in
the Zambezi by Stringer et al (2015) and in Tanzania by
Njana et al (2015), thereby allowing intercomparison
of our results with previous studies. Furthermore,
it somewhat constrains the bias of the allometric
model, meaning that we neither systematically over or
underestimate the AGB.

We calculated total AGB for the 24 plots located
inside the ALS transect and for the plots located out-
side the ALS transect using the allometric equations
referenced above (equation (2) = AGB𝐾 , equation
(3) = AGB𝐶 and equation (4) = AGB𝑁 ), table
S1 available at stacks.iop.org/ERL/13/025012/mmedia.
Statistical Ordinary Least Squares regressions were
then generated between height metrics and total AGB
estimates derived from the three existing allometric
models for each plot. All analyses were carried out
using MATLAB software and consisted of fitting linear
and power regression models to Lidar H100 height
metrics with AGB values calculated from the three
AGB allometric models (figure 4). In order to vali-
date the regression results, half of the plots were used
for the regression analysis and half for the valida-
tion analysis. For the Lidar H100-based regressions,
12 plots were used for validation and 12 plots for
the regression analysis (figure S1). Using the result-
ing regression models, we selected the best model to
generate the AGB estimates for the Zambezi Delta,
taking into account the R2, root mean square error
(RMSE) and how well the range in input data used
to generate the allometric models overlapped with the
actual field measured values in the Zambezi. To pro-
duce the AGB maps we applied a 25 m smoothing filter,
equivalent to the size of the sub-plots. This methodol-
ogy allowed us to resample the data without losing
resolution.

3. Results

3.1. Field estimates of above ground biomass
Plot level AGB estimates varied depending on which
allometric model was used (table S1), with mean plot
AGB of 294.4 Mg ha−1 for AGB𝐾 versus mean plot
AGB of 231.2 Mg ha−1 for AGB𝐶 and mean plot level
AGB of 271.5 Mg ha−1 AGB𝑁 (table 2). The maximum
plot level AGB ranged from 668.18 Mg ha−1 (AGB𝐾),
to 601.11 Mg ha−1 (AGB𝑁 ). The spread in AGB esti-
mates generally increased with height classes, as the
uncertainty introduced by the allometry increased with
taller stands (table 2).

Table 1. Wood density values for mangrove species found in the
Zambezi Delta. Source: World Agroforestry Center.

Mangrove species Wood density (kg m−3)

Low Mid High
Avicennia marina 0.79 0.81 0.85
Bruguiera gymnorrhiza 0.63 0.84 1.05
Ceriops tagal 0.87 0.97 1.09
Heriteria littoralis 0.83 0.98 1.23
Lumnitzera racemosa 0.75 0.88 0.97
Rhizophora mucronata 0.94 1.02 1.12
Sonneratia alba 0.62 0.78 1.00
Xylocarpus granatum 0.59 0.70 0.83

Table 2. Comparison of plot level field AGB (Mg ha−1) within the
Lidar imaged area (24 plots) generated using three allometric models.

AGBChave AGBKomiyama AGBNjana

Mean AGB 231.2 294.4 271.5
Standard Deviation 158.7 165.9 148.8
Min plot level AGB 17.3 29.6 31.7
Max plot level AGB 644.9 668.2 601.1
Height Class
Mean (Std. Dev.)
7−9.9 m 47.9 (27.4) 85.7 (47.3) 85 (46.2)
10−12.9 m 136.5 (89.7) 208.1 (119.5) 190.5 (110.3)
13−17.9 m 244 (63.6) 329.2 (95) 305.4 (88.3)
18−29 m 439.4 (150) 472.2 (143.3) 429.2 (119.8)

3.2. Lidar estimates of aboveground biomass
Using linear and power-law models of AGB and Lidar
H100, we found that Lidar H100 alone could explain
up to 80%−88% of the variation in plot-level AGB
values (table 3, figure 4). A summary of the ALS-based
AGB predictive models and their respective coefficients
of determination can be found in table 3. In general,
the Lidar-based regression models performed equally
or better in estimating AGB than the field height mea-
surements in terms of R2. Although all linear models
have lower errors than the power models, they could
not be used in stands shorter than 7 m as the lin-
ear models intersect the x-axis (figure 4), resulting
in negative AGB estimates. While the power regres-
sions had higher errors, they also have higher R2 and
can be applied across the entire range of height values.
Because there was no significant difference in R2 and
RMSE between the Lidar H100-AGB power models
(figure S1), we selected the Njana Power AGB predic-
tion model as it is the only allometric model generated
forEastAfricanmangroves, it takes into accountheight,
and has the highest range in input DBHs and heights.
Based on this, the total AGB of the Zambezi Delta is
1 350 902 Mg with a mean AGB 192 Mg ha−1. Total site
level AGB stocks within the Lidar-surveyed area ranged
from 1 274 245 Mg using the Chave power regression
up to 1 583 927 Mg using the Komiyama linear regres-
sion, with mean AGB values ranging from 192 Mg ha−1

up to 252 Mg ha−1 (table 4 Fatoyinbo et al (2017)).
The largest proportion of AGB was stored in height
class 5 (18 m–28.9 m) and height class 6 (29 m to 35 m)
(table 5). AGB density was not significantly different
in height classes 2, 3 and 4. Using the selected Lidar
H100-based allometry we then generated an AGB map
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Figure 4. Power- and linear-based Lidar H100 height vs AGB regressions are shown in panels (A)−(F). The first column (A), (B) and
(C) shows power-based Lidar H100 vs Chave, Komiyama and Njana based AGB estimates. The second column (D), (E) and (F) shows
linear-based Lidar H100 vs Chave, Komiyama and Njana based AGB estimates. The solid dots represent plot level AGB calibration
data while stars are the plot level AGB values used for validation.

Table 3. Regression models based on field AGB and Lidar H100 (LH100). (Models were based on 12 data points. 12 additional data points
were used for validation).

Equation R2 p-value RMSE (Mg ha−1) RMSE (%) Allometry

Linear
AGB = 32.27 ∗ (LH100)—312.84 0.85 0.000023 78 24 Chave
AGB = 31.45 ∗ (LH100)—254.81 0.82 0.000040 83 23 Komiyama
AGB = 28.02 ∗ (LH100)—217.2 0.80 0.000110 80 24 Njana
Power
AGB = 0.01 ∗ (LH100)3.46 0.88 0.000005 119 33 Chave
AGB = 0.07 ∗ (LH100)2.83 0.86 0.000012 135 33 Komiyama
AGB = 0.10 ∗ (LH100)2.7 0.85 0.000023 122 33 Njana
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Figure 5. Zambezi Delta mangrove AGB maps derived from Lidar H100 and the Njana power-based model. Total AGB stock for the
region shown was 1 350 902 Mg.

Table 4. Total AGB estimates based on Lidar H100 (LH100) from
the different allometries.

Allometric equation Total AGB (Mg) Mean AGB
in(Mg ha−1)

[Standard Deviation]

AGBC = 32.27 ∗ (LH100)
− 312.84

1 312 092 224 [133]

AGBK = 31.45 ∗ (LH100)
− 254.81

1 583 927 252 [138]

AGBN = 28.02 ∗ (LH100)
– 217.2

1 472 805 232 [125]

AGBC = 0.01 ∗ (LH100)3.46 1 274 245 192 [208]

AGBK = 0.07 ∗ (LH100)2.83 1 384 576 209 [179]

AGBN = 0.1 ∗ (LH100)2.7 1 350 902 203 [166]

for the 115 km2 area covered by the ALS data in the
Zambezi Delta (figure 5).

The Lidar H100-based mean AGB values per height
class (table 5) varied from those measured in the field
(table 2). In general, the mean AGB values estimated
from Lidar H100 data in the shorter height classes (up
to 13 m) were lower than those estimated from the field
plots while the Lidar H100-based mean AGB values of
the taller forests were higher. For example, mean AGB
using the Njana power model for trees between 7 m and
9.9 m was 34.6 Mg ha−1 while the plot-based estimate
for that height class was 85 Mg ha−1. The AGB values of
the taller classes on the other hand were much higher,
ranging up to 1000 Mg ha−1 for the forests between
29 m and 35 m in height. This difference in AGB values
can be attributed to several factors, the first being that
the height classes from the field in table 2 are based on
mean height whereas the height classes in table 5 rep-
resent the mean of only the tallest trees. For the lower
height classes, the modeled fit is always lower and the

field-based AGB has a much larger standard deviation
(∼46 Mg ha−1) because of the more variable range of
AGB values. Because the modeled fit is generally lower,
the average AGB from the model for the lowest class will
always be lower. The minimum field-based Njana value
is ∼31 Mg ha−1, very close to the average Lidar-based
Njana values. This suggests that the models do a good
job at representing the minimum values of the AGB,
but do not capture some of the heterogeneity within
the height class. Additionally, the lack of information
regarding very tall trees (29 m−35 m) in the field cali-
bration data will result in very high AGB values when
extrapolated using a power regression model. The air-
borne Lidar and AGB datasets are available from the
Oak Ridge.

4. Discussion

In this study we found that field and Lidar-derived
height of the top 100 trees within a hectare (H100) can
be used to estimate wall-to-wall AGB density ranges
in mangroves of the Zambezi Delta. The Lidar H100
canopy height model was also very highly correlated
to the corresponding field height measurements with a
correlation coefficient of 0.93. The main driver behind
the use of H100 from Lidar data in this study was to use
a metric that could be comparable to current space-
borne elevation datasets such as SRTM, TanDEM-X
(TDX) and very high resolution (VHR) stereo imagery,
which can only measure the maximum canopy height
or an equivalent thereof. These sensors, in combi-
nation with ALS, can enable the estimate of canopy
height measurements across large regions. The use of
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Table 5. Lidar H100 based mean AGB density values (Mg ha−1) by height range dependent on the allometric model. Standard deviation is
shown in parenthesis.

Height range (m) Chave linear Komiyama linear Njana linear Chave power Komiyama power Njana power

2−6.9 N/A N/A N/A 4.3 (2) 9.7 (4.4) 10.9 (4.8)
7−9.9 3.4 (1.6) 30.9 (15.7) 33.6 (16.8) 17.9 (5.6) 32.1 (8.2) 34.6 (8.4)
10−12.9 57.4 (26.7) 106.1 (25.9) 104.5 (23.1) 47.1 (11.6) 70.1 (14.3) 73.3 (14.2)
13−17.9 192.4 (45.8) 237.5 (44.6) 221.4 (39.8) 140.7 (42.4) 171.8 (42.8) 171.3 (40.8)
18−28.9 351.2 (79.8) 392.4 (77.7) 359.3 (69.3) 374.1 (184.2) 379.3 (146.3) 364.0 (132.8)
29−35 664.7 (31.5) 697.8 (30.6) 631.5 (27.3) 1342.6 (153.9) 1093.6 (101.8) 1002.3 (88.8)

multiple independent datasets (ALS, SRTM, TDX and
VHR) has been used to accurately generate canopy
height estimates (Lagomasino et al 2016) and in other
forest types such as temperate and woodland forests
(Næsset et al 2016, Qi and Dubayah 2016). Large-scale,
wall-to-wall estimates of forest structure are currently
not available from ALS alone due to the narrow swath
and high costs associated with airborne data acquisi-
tions; it is therefore important to use height metrics
that are consistent and enable the comparison of forest
canopy height metrics across and between sensors.

Our study shows that sensors and remote sensing
techniques that are able to well characterize H100 in
undisturbed mangrove systems such as the Zambezi
are well suited to estimate total AGB density and subse-
quently C stocks. Using our method, the final mapped
RMSE of the mapped AGB ranged between 23% and
33% which we suggest is within the required accuracy
needed to implement MRV (monitoring, reporting and
verification). Current MRV guidelines do not explicitly
state accuracy requirements for remotely sensed AGB
estimates, but AGB errors within 20 Mg ha−1 or 20%
of field estimates have been recommended by previous
studies for a global biomass map at 1 ha resolution
(Houghton et al 2009, Hall et al 2011). In a 2013
review by Zolkos et al (2013) the mean AGB errors
estimated by Lidar ranged up to 40% of the field mea-
sured biomass, with model error decreasing as plot size
increased. None of these studies were carried out in
mangrove systems, which are structurally very com-
plex systems, despite their perceived simple structure.
Indeed, their extensive aboveground root systems, high
stocking density and varying growth forms, such as
multiple-trunks, can lead to a great variability in plot-
scale height measurements and biomass densities per a
given height class, as exemplified by the large spread in
biomass values in the Zambezi Delta (figure 5).

Although ALS is able to estimate canopy height at
a cm accuracy level, there are still additional sources of
uncertainties in our estimates, as the Lidar H100 metric
does not capture structural and/or density variations.
For example, all AGB models had RMSEs between 23%
and 33% when compared to the validation dataset. The
range in Lidar derived AGBs was much larger than
in the field. This is due to the extrapolation of the
field-based biomass regression to taller trees than were
sampled in situ. Field sampled heights did not exceed
29 m, although the Lidar data showed that the maxi-
mum height in the surveyed area was 35 m. However,

due to the stratified field sample protocol based on
canopy height, the distribution of height classes and
AGB densities, however, shows that only a small per-
centage (between 3% and 8%) of the total area has AGB
densities over 700 Mg ha−1 (figure 5), and as such the
areas of high uncertainty are limited to a few, very small
areas.

Mangrove forests are often described as even-aged
forest patches that follow patterns of species compo-
sition and forest structural zonation (Watson 1928,
MacNae 1969). The height class distribution of Lidar
data shows that within the limited 115 km2 area sur-
veyed, canopy height varies, with a large range in
heights, more representative of uneven-aged forests.
The high structural variation found within the Lidar
dataalsocorrelateswellwith thefield-basedstandstruc-
ture analysis, which found that an abundance of small
trees was representative of strong recruitment in all
height classesand that theZambeziDeltamangrovesare
regularly regenerating (Trettin et al 2015). The factors
regulating the composition and structure of mangroves
are highly complex and depend on a range of envi-
ronmental factors such as salinity, nutrient availability,
soil type, and disturbance regime, among others (Elli-
son 2002). Variations in these factors result in diverse
patterns of forest structures, such as those found in
the Zambezi Delta. The maximum canopy height in
our area was 6 m taller than the SRTM-based estimate
of maximum canopy height that was generated previ-
ously for all of Mozambique (Fatoyinbo et al 2008).
The height class distribution also shows a much larger
proportion of tall trees (> 15 m) than previous maps
(Fatoyinbo and Simard 2013) have, primarily due to the
ALS survey design, which was developed to cover the
tallest area of the deltaic mangroves. The difference
in height ranges between the ALS map and previ-
ous, SRTM-based map (Fatoyinbo and Simard 2013)
can be attributed to resolution, differences in sensors
(C-band Interferometry versus ALS) and 14 years
between acquisitions.

The average AGB values calculated for the surveyed
area are relatively high mean AGB values for mangroves
in general, and for African mangrove forests in par-
ticular. Previous estimates of mean AGB found that
the range of biomasses across the African continent
(Fatoyinbo and Simard 2013) ranged from 76 Mg ha−1

to 178 Mg ha−1. The primary driver of the high AGB
densities found in this analysis is the presence of very
tall, dense stands in the most downstream island in
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the mouth of the Zambezi River Delta itself, where
tree heights averaged over 30 m and field measured
AGB densities were highest. River discharge has a
direct and indirect influence on mangrove biomass
allocation; riverine and deltaic mangroves are gener-
ally taller and have higher AGB values as a result of
high nutrient availability and reduced soil salinity lev-
els, which are strongly regulated by river discharge
(Castañeda-Moya et al 2013, Rovai et al 2015). This
results in taller trees, a larger extent of mangroves and
higher C stocking densities. The difference in grow-
ing conditions is also highlighted in the regression
model used to estimate AGB. Indeed, when compar-
ing the Zambezi values to similar studies from the
Americas, the slope of the model is much higher. In
Colombia and Florida for example, it was found that
AGB was approximately seven to ten times the value
of forest canopy height (Simard et al 2006). Simi-
larly, the global height-biomass regression by Saenger
and Snedaker (1993) also found that AGB was about
ten times the value of mean forest height. Here, AGB
was about 30 times the value of the canopy height,
showcasing the high stocking density in the Zambezi
Delta.

In this study, we found high AGB stocks regard-
less of the allometry used. Nevertheless, our results
do highlight the large range in values and uncertainty
that accompanies each estimation methodology. The
importance of characterizing and estimating AGB pre-
diction errors from allometric model to landscape-scale
has been highlighted in other tropical forest ecosys-
tems (Chen et al 2015) as well as temperate forests
(Zhao et al 2012). Here, we estimated AGB based on
three different tree-based allometric models and two
different regression-modeling approaches. Any of the
resulting six Lidar AGB estimates had RMSE estimates
of 30% or less, which would have been reasonable
estimates by themselves. By providing multiple esti-
mates, we are additionally able to provide a range and
uncertainty in AGB values. Finally, two out of the
three allometric models used in this study were not
site- or even mangrove-specific and used wood density
measurements from other continents. More accurate
estimates can be generated by developing site-specific
allometric models, or at the very least measuring site-
specific wood density before developing or applying
regional models relating remotely sensed metrics, such
as H100 to an AGB value.

The allometric models based on standardized
height metrics that were developed as part of this study
can now be used in large scale AGB estimates in man-
groves in similar geographic or geomorphic setting
usingother remotely senseddatasets that aremore read-
ily accessible than airborne Lidar. The Zambezi Delta
studied here represented an ideal case to investigate
methods in AGB modeling and trends in AGB distri-
bution in a remote and relatively untouched forested
wetland system where stocking densities and AGB val-
ues were high. However, given that a large proportion

of mangroves are heavily impacted by human activi-
ties, we do recommend that the effect of disturbance
and human activity on the relationships between stan-
dardized height and AGB be further investigated, so as
tonot bias larger scale estimatesofAGBand subsequent
C stocks in mangroves.

5. Conclusion

We used a combination of airborne Lidar, height-
stratified field measurements and multiple allometric
models to estimate the total AGB density of mangrove
forests in theZambeziDeltaRegion.Lidar-derivedmet-
rics of Lidar H100 canopy height coupled with in situ
height and six AGB regression models showed that
the mangrove forests in the Zambezi Deltaic system
grow taller and with higher AGB densities than is indi-
cated by previous studies. The Lidar H100 metric was
a good representation of field H100, even though it
only takes into account the tallest trees within a given
area. Lidar H100 was also a good predictor of AGB
density, able to estimate biomass stocks across the large
range in values in the Zambezi Region. This ALS-based
estimate of mangrove AGB showcased the possibil-
ity of generating aboveground ecosystem C stocks in
mangroves in support of monitoring, reporting and
verification (MRV), using simplified canopy height
metrics with higher accuracies than for other tropi-
cal forest ecosystems. Our study suggests that it is also
possible to expand aboveground C estimates to large-
scale measurements, by upscaling to similar height
metrics from current spaceborne sensors and digital
elevation modeling techniques, such as interferometric
synthetic aperture radar and stereo-photogrammetry.
This result now lays the foundation for the develop-
ment of continental-to-global scale mangrove biomass
and C stock estimates.

Acknowledgments

This work was supported by the NASA Carbon Mon-
itoring System (CMS) Grant #14 C MS14–28, the
USDA-Forest Service and the USAID Sustainable Wet-
lands Adaptation Mitigation Program (SWAMP). We
would also like to thank the anonymous review-
ers for providing comments and corrections to
the previous versions of this article. Data sup-
porting this paper are available from the ORNL
DAAC at http://doi.org/10.3334/ORNLDAAC/1521
and http://doi.org/10.3334/ORNLDAAC/1522.

ORCID iDs

Temilola Fatoyinbo https://orcid.org/0000-0002-
1130-6748
Emanuelle A Feliciano https://orcid.org/0000-0001-
5558-1103

10

http://doi.org/10.3334/ORNLDAAC/1521
http://doi.org/10.3334/ORNLDAAC/1522
https://orcid.org/0000-0002-1130-6748
https://orcid.org/0000-0002-1130-6748
https://orcid.org/0000-0002-1130-6748
https://orcid.org/0000-0001-5558-1103
https://orcid.org/0000-0001-5558-1103
https://orcid.org/0000-0001-5558-1103


Environ. Res. Lett. 13 (2018) 025012

References

Alongi D, Wattayakorn G, Boyle S, Tirendi F, Payn C and Dixon P
2004 Influence of roots and climate on mineral and trace
element storage and flux in tropical mangrove soils
Biogeochemistry 69 105–23

Adame M F and Fry B 2016 Source and stability of soil carbon in
mangrove and freshwater wetlands of the Mexican Pacific
coast Wetl. Ecol. Manage. 24 129–37

Alongi D M 2014 Carbon cycling and storage in mangrove forests
Annu. Rev. Mar. Sci. 6 195–219

Aslan A, Rahman A F, Warren M W and Robeson S M 2016
Mapping spatial distribution and biomass of coastal wetland
vegetation in Indonesian Papua by combining active and
passive remotely sensed data Remote Sens. Environ. 183 65–81

Asner G P and Mascaro J 2014 Mapping tropical forest carbon:
calibrating plot estimates to a simple LiDAR metric Remote
Sens. Environ. 140 614–24

Aulinger T, Mette T, Papathanassion K, Hajnsek I, Heurich M and
Krzystek P 2005 Validation of Heights from Interferometric
SAR and LIDAR over the Temperate Forest Site Nationalpark
Bayerischer Wald (ESA Special Publication) Proc. 2nd Int.
Workshop POLINSAR 2005 (Frascati, Italy, 17–21 January)
p 11

Barbosa F, Cuambe C and Bandeira S 2001 Status and distribution
of mangroves in Mozambique S. Afr. J. Bot. 67 393–8

Beilfuss R, Moore D, Bento C and Dutton P 2001 Patterns of
vegetation change in the Zambezi delta, Mozambique.
Program for the sustainable management of Cahora Bassa
Dam and the Lower Zambezi Valley

Benkenstein A and Chevallier R 2013 12 Africa’s mangrove
habitats. Economic Incentives for Marine and Coastal
Conservation: Prospects, Challenges and Policy Implications:
210
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