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Abstract Water availability is becoming more uncertain as human populations grow, cities expand into
rural regions and the climate changes. In this study, we examine the functional relationship between water
use and the spatial patterns of developed land across the rapidly growing region of the southeastern United
States. We quantified the spatial pattern of developed land within census tract boundaries, including multi-
ple metrics of density and configuration. Through non-spatial and spatial regression approaches we exam-
ined relationships and spatial dependencies between the spatial pattern metrics, socio-economic and
environmental variables and two water use variables: a) domestic water use, and b) total development-
related water use (a combination of public supply, domestic self-supply and industrial self-supply). Metrics
describing the spatial patterns of development had the highest measure of relative importance (accounting
for 53% of model’s explanatory power), explaining significantly more variance in water use compared to
socio-economic or environmental variables commonly used to estimate water use. Integrating metrics char-
acterizing the spatial pattern of development into water use models is likely to increase their utility and
could facilitate water-efficient land use planning.

1. Introduction

Effective water planning and management depends on society’s capacity to understand how human sys-
tems make use of water across space and time. Scientists are increasingly recognizing the spatial configura-
tion and pattern of developed land use as one of the root causes driving spatial variation in water demand
(Chang et al., 2010; House-Peters & Chang, 2011; Shandas, 2010; Shandas & Parandvash, 2010). These find-
ings are leading water managers to place an increasing amount of attention on how land use planning
could help guide more water efficient development patterns (Gober et al., 2013). Water use modelers, how-
ever, have yet to develop a methodology for assessing how the spatial patterns of development influence
water use across large geographic regions. Previous research linking water use and land use patterns
has focused on relatively small geographic scales such municipalities, neighborhoods and individual cities
(Bouziotas et al., 2015; Gober et al., 2013; Shandas, 2010; Shandas & Parandvash, 2010), limiting the ability of
water use models to inform regional or landscape-level planning efforts. In this research, we address this
limitation by examining the functional relationship between water use and the spatial patterns of develop-
ment over a large geographical extent.

There is a long history of research studying the effects of the spatial patterns of development (also referred
to throughout the literature as urban form) on human and environmental well-being (Anderson et al., 1996;
Clifton et al., 2008; Gilbert & Dajani, 1974; Zhao et al., 2010). Broadly defined as the spatial configuration and
pattern of human activities at a specific point in time, the concepts of development pattern and urban form
have been used for empirical, theoretical and policy-related research (Anderson et al., 1996) across a diver-
sity of disciplines (e.g., landscape ecology, urban planning and geography; Clifton et al., 2008). Despite its
use in the broader literature, spatial patterns of development are rarely incorporated into water use models.
Water use modelers have measured the type and structure of land uses (e.g., single-family residential, apart-
ments or commercial; Stoker & Rothfeder, 2014) as well as physical features of the built environment (e.g.,
number of bedrooms and bathrooms, outdoor area, presence of a swimming pool, etc.; Shandas &
Parandvash, 2010) to characterize developed areas in relation to water use. Although these studies have
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been able to describe development-related water use, they have uti-
lized methodologies that require high-resolution (i.e., household- or
parcel-scale) or site-specific data. These data are often not available at
large spatial scales, precluding the use of these methods in analyses
covering larger geographic extents. In order to capture regional pat-
terns of development and their associated water demand, the water
use modeling community needs focused explorations into metrics
that characterize the spatial patterns of development across large
geographic extents. Understanding the sensitivity of development-
related water use to the spatial patterns of development is a key step
in bridging the gap between water use modeling and land use
planning.

In this research, we address the functional linkage between water use
and the spatial patterns of development, building upon previous
research that utilizes physical (e.g., development patterns), socio-
economic (e.g., population, education, income, etc.) and environmen-
tal factors (e.g., temperature, precipitation, etc.) to explain water use
while accounting for spatial heterogeneity in use patterns (Avni et al.,
2015; Blackhurst et al., 2010; Franczyk & Chang, 2009; Kontokosta &
Jain, 2015; Perrone et al., 2015). Our approach is grounded in the idea
that human systems and landscape-scale ecological processes are
fully coupled systems (Magliocca, 2008; Werner & McNamara, 2007).
Inherent within this idea is the assumption that humans make de
facto water decisions as they make land use decisions. Spatially het-
erogeneous land use decisions, along with exogenous drivers such as
climate, result in concomitantly heterogeneous variations in water
use. We propose and test a conceptual framework that integrates
information on the spatial patterns of development, socio-economic
factors and environmental factors as primary drivers affecting the spa-

tial variation of development-related water use (classified as public supply, domestic self-supply and indus-
trial self-supply) (Figure 1).

Through our conceptual framework we evaluate three research hypotheses:

1. Metrics characterizing the spatial patterns of development explain a significant portion of the variance in
development-related water use across a mixture of heterogeneous landscapes (significance p< 0 .1).
Because land change patterns may not always follow the same trend for residential, industrial and com-
mercial use (Fragkias & Geoghegan, 2010), we test our modeling framework with two water use variables:
a) domestic water use (DWU), and b) total development-related water use (TWU; a combination of public
supply, domestic self-supply and industrial self-supply).

2. Spatial patterns of development influence water use more than either socio-economic or environmental
drivers alone. To test this hypothesis, we construct and compare four model structures (referred to as the
Landscape Model, the Socio-economic Model, the Environmental Model and the Holistic Model).

3. Development-related water use may exhibit spatially non-stationary trends. In order to achieve a com-
prehensive understanding of the variation in water use and to inform how and where water conservation
strategies could be implemented, spatial effects need to be incorporated in water use modeling (Franc-
zyk & Chang, 2009; Guhathakurta & Gober, 2007; House-Peters et al., 2010; Wang & Dong, 2017). For
example, it is well understood that there is a positive association between air temperature and water use
(Balling & Gober, 2007). Consequently, many cities restrict or limit water use for certain activities on
excessively hot days. This water management strategy however, may not be optimal given that structural
neighborhood characteristics and vegetation make some areas more sensitive to temperature variations
(House-Peters & Chang, 2011). By exploring the spatial-nonstationarity of the drivers of water use, our
investigation lays the foundation for more targeted, spatially-explicit water management strategies.

To evaluate our hypotheses, we draw inference from two states in the southeastern U.S., North and South
Carolina. Both states are experiencing rapid urban growth and expansion with a highly diverse landscape.

Figure 1. Conceptual framework of development-related water use as a func-
tion of land use decisions, socio-economic factors and environmental condi-
tions. The framework depicts a fully coupled human-landscape system
considering interactions and feedbacks among determinants of development-
related water use (classified as public supply, domestic and industrial catego-
ries of use from both public supply deliveries and self-supplied withdrawals).
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In response to the growing recognition that research must ensure reproducibility and accessibility (Cice-
rone, 2015), we make use of nationally available data sets (i.e., U.S. Geological Survey (USGS) water use
records and Census data) as well as open source software (e.g., GRASS GIS, FRAGSTATS and R statistical soft-
ware) allowing for the replicability of the method.

2. Methods

2.1. Study System
The study system covers the rapidly growing region of North and South Carolina, located in the southeast-
ern U.S. The region is characterized by highly heterogeneous landscapes (Figure 2) and has experienced
rapid growth in recent decades. By 2016, the region was home to over 15 million people (U.S. Census
Bureau, 2016). The major cities within the region are Charlotte (as of 2017, with over 842,050 inhabitants),
Raleigh (458,880 inhabitants) and Greensboro (287,020 inhabitants) all located in North Carolina (U.S. Cen-
sus Bureau, 2016). Forest land represents the main land use (40%), followed by 18% pasture and cultivated
crops, 17% wetlands, 10% developed and residential areas, 7% shrubland, 6% grassland and barren areas
and 2% surface water (Homer et al., 2015). The region has experienced more than a 6% increase in devel-
oped land cover between 1992 and 2011. The largest proportion of land use change during this period has
been caused by deforestation, with 15% of the region’s forested land area lost. Excluding total water with-
drawals for thermoelectric use, development-related water uses represent the largest water footprint with
25% domestic, 18% public supply (discounting domestic self-supply and industrial-self supply) and 15%
industrial water use, according to the 2010 USGS water use records (Maupin et al., 2014). Furthermore, pro-
jections of population and economic development suggest that continued growth in the coming decades
will place significant pressure on freshwater resources (NOAA, 2013; Sun et al., 2008).

2.2. Scale of Analysis, Data, and Variables
2.2.1. Scale of Analysis
The spatial scale of analysis corresponds to the census tract unit. Census tracts represent a fine-grain scale
useful for policy makers and planners (Polebitski & Palmer, 2009). For every variable considered in the

Figure 2. Land cover for the study system as classified by the 2011 National Land Cover Dataset.
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modeling framework, we collected the corresponding data set at the census tract or either spatially aggre-
gated or disaggregated the data to fit this unit. Similarly, we conducted all additional data processing steps,
such as spatial pattern analysis (see section 2.3), at the scale of the census tract. From the original 3,298 cen-
sus tracts in North and South Carolina, we identified 40 ‘outliers’ (see section 2.2.2.1), resulting in a sample
of 3,258 tracts included in the analysis.
2.2.2. Water Use Records
The USGS National Water-Use Science Project compiles water use information from local, State and Federal
agencies on a five-year basis. This data is systematically collected and aggregated at the county, state and
national level. Estimates of water use are provided for several categories of use, including public supply,
domestic, irrigation, thermoelectric power, industrial, mining, livestock and aquaculture. We obtained esti-
mates of development-related water uses at the county level from the 2010 USGS data set (Maupin et al.,
2014). Values of water withdrawal by category of use are presented in millions of gallons per day. For the
purposes of this analysis, development-related water use refers to the use volume related to development
across the urban-rural gradient and can be categorized as public supply, domestic self-supply and industrial
self-supply. Excluded from this analysis are other water use categories such as irrigation for agriculture, ther-
moelectric, aquaculture, livestock and mining.
2.2.2.1. Spatial Disaggregation of Water Use Records
We conducted a spatial disaggregation technique in which county-level water use records were disaggre-
gated, by class of use, to the census tract unit based on a population-weighted procedure. Through raster
algebra, population records at county and census tract scales were used to disaggregate and redistribute
DWU and TWU from the coarser (i.e., county) to the finer (i.e., census tracts) scale. Similar underlying proce-
dures are available in the literature, where researchers assume water use to be geographically distributed
according to population (Hoekstra & Mekonnen, 2012; Moore et al., 2015). The primary advantage of this
technique is that it generates the pycnophylactic property (i.e., volume) which allows a more realistic repre-
sentation of the underlying water use data. No data are lost or produced during the process and all poten-
tial errors are restricted to deviations within each original spatial unit (i.e., county). We examined the
disaggregated records (i.e., at the census tract level) of development-related water uses for errors and out-
liers. This process involved removing un-populated census tracts and areas that presented zero water use
values from the analysis. A resulting sample of 3,258 census tracts with corresponding water use records
served as the dependent variable for analysis.
2.2.3. Socio-Economic and Environmental Variables
Based on a systematic review of methodological advances in the water demand literature (n 5 30) we
selected eight socio-economic and environmental variables that have been commonly used in previous
studies to estimate water use in developed areas. Housing density, education, median age, average house-
hold income and an industrial factor (measured as the percentage of individuals employed in water inten-
sive industrial sectors; Table 1) were obtained from the U.S. Census Bureau (2016) at the census tract unit.
Annual average temperature and precipitation records over the last 30 years were obtained from the
Parameter-elevation Regressions on Independent Slopes Model (PRISM) monthly climate data (PRISM Cli-
mate Group, 2004). In order to spatially match temperature and precipitation values from PRISM to the unit
of analysis (i.e., census tract), we spatially aggregated from 800 meter grid cells to census tract units. For the
last environmental variable, maximum Normalized Difference Vegetation Index (NDVI), we collected 2010
records from the USGS Advanced Very High Resolution Radiometer (AVHRR) data set (https://earthexplorer.
usgs.gov/). Similar to the other environmental variables, we spatially aggregated from 1,000 meter grid cells
to census tract units to obtain tract-level maximum NDVI records.

2.3. Spatial Pattern Analysis and Landscape Metrics
Across the landscape ecology and urban planning literatures, several metrics have been used to quantify
and characterize the spatial pattern of development (Herold et al., 2005; Irwin & Bockstael, 2007; McGarigal
et al., 2002; Seto & Fragkias, 2005). We used spatial pattern analysis techniques to quantify different land-
scape metrics and categorized the spatial patterns of development within the boundaries of each census
tract in the study system. We obtained 30 meter land cover data from the 2011 National Land Cover Dataset
(NLCD) (Homer et al., 2015) and reclassified the four developed classes (i.e., open space, low intensity,
medium intensity and high intensity developed) into one single ‘developed’ class. We included in our analy-
sis areas classified as ‘‘open space developed’’ because they constitute a mixture of impervious surface (less
than 20% cover) and vegetation in the form of lawn grasses, and consequently are areas driving demand
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for domestic outdoor water use. We carried out all measures of landscape metrics using the spatial pattern
analysis software FRAGSTATS (McGarigal et al., 2002), the most widely used software in research exploring
landscape-level ecological issues (Wang et al., 2014). Due to the novelty of this approach, we conducted an
exploratory analysis on multiple landscape metrics to identify the ones that best relate to the spatial varia-
tion in development-related water use across the heterogeneous mixture of development densities that
shape the study system. We computed twelve class-level pattern metrics and considered all metrics for a
single class ‘developed’, where the spatial arrangement of all developed land patches in a given census
tract was measured for each census tract. These pattern metrics included: the Number of Patches; the Patch
Density; the Largest Patch Index; the Edge Density; the Landscape Shape Index; the Fractal Dimension
Index; the Perimeter-Area Ratio; the Patch Cohesion Index; the Nearest-Neighbor Distance; the Shape Index;
the Aggregation Index; and the Clumpiness Index. We constructed a correlation matrix to explore the linear
relationship between each landscape metric in relation to one another, to other independent variables, to
population estimates and to DWU and TWU. We excluded correlated metrics (linear relationships> 0.5)
from the analysis to prevent multicollinearity and kept only metrics that explained a significant portion of
variance in the DWU and TWU models.

2.4. Water Use Modeling Framework
We examined landscape patterns, socio-economic and environmental determinants of water use by imple-
menting two modeling methods. The first technique, global regression or multiple linear regression, allows
for an examination of the significance and effect size of individual determinants that influence DWU and
TWU. This analytical approach makes use of all the observations at all locations to fit one single regression
model. Multiple linear regression has been widely implemented across the water demand literature (Arbues
et al., 2010; Shandas & Parandvash, 2010; Wentz & Gober, 2007). The second technique, Geographically
Weighted Regression (GWR), improves our understanding of micro or neighborhood effects by capturing
local spatial variation in DWU and TWU. GWR is similar to multiple regression but introduces complexity

Table 1
Summary and Descriptive Statistics of the Socio-Economic and Environmental Explanatory Variables and Water Use
Dependent Variables

Independent variable Description Min. Mean Max. Std. Dev.

Socio-Economic
House density Total number of houses per squared kilometer. 0.41 115.19 1155.00 140.47
Education Educational attainment, percentage of population 18

years and over with a Bachelor’s degree or higher.
1.97 29.46 56.83 9.84

Median Age Population’s median age. 16.50 38.26 67.70 6.96
Household Income Mean household income (thousands of dollars). 12.22 60.50 325.90 27.05
Industrial Percentage of civilian employed population 16 years

and over in natural resources, construction,
maintenance, production, transportation, material
moving, agriculture, forestry, fishing hunting and
mining occupations.

0.00 27.21 83.19 13.06

Environmental
Temperature Average annual temperature from 1980 to 2009 (8C). 9.76 15.91 19.29 1.47
Precipitation Average annual precipitation from 1980 to 2009

(mm).
930.49 1196.72 2013.92 103.46

Maximum NDVI Maximum level of photosynthetic activity in the
canopy during growing season.

0.00 170.30 245.78 14.59

Dependent variable
Water Use
Domestic Water

Use (DWU)
Total domestic water use from public supply

deliveries and self-supplied withdrawals in millions
of gallons a day.

0.01 0.34 1.90 0.16

Total Development-related
Water Use (TWU)

A combination of public supply, domestic self-supply
and industrial self-supply in millions of gallons a
day.

0.01 0.81 23.21 1.05

Note. Values are by census tract.
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into the model by integrating the geographic coordinate of each observation, allowing different relation-
ships to exist at different locations (Brunsdon et al., 1996). The process estimates a regression equation for
each location from a subset of nearby observations, allowing spatial dependencies to vary from neighbor-
hood to neighborhood. Coefficients and intercept estimates are subjected to weighted values of neighbor-
ing observations, commonly defined by a distance-decay kernel function. In other words, it is assumed that
points located further from a given location are more likely to present differing coefficients than points that
are located closer (Fotheringham & Brunsdon, 1998). We carried out all GWR analysis with the ‘‘spgwr’’ pack-
age for R statistical software (Bivand & Yu, 2017). Due to the varied density of census tract centroids (i.e.,
highly populated city centers present a clustered distribution of tracts while rural areas present a dispersed
distribution) we conducted an adaptive Gaussian kernel approach to properly sample nearby observations
and capture similar numbers of observations across the rural and urban contexts. In order to optimize the
neighborhood size we calibrated the bandwidth by minimizing a cross-validation score (Brunsdon et al.,
1996).

We constructed and compared four models with different structures (referred to as the Landscape Model,
the Socio-economic Model, the Environmental Model and the Holistic Model) to examine the independent
and collective utility of the different landscape pattern, socio-economic and environmental variables for
explaining variation in DWU and TWU. To develop the Landscape Model, we evaluated the ability of multi-
ple landscape metrics (the Number of Patches, the Patch Density, the Largest Patch Index, the Edge Density,
the Landscape Shape Index, the Fractal Dimension Index, the Perimeter-Area Ratio, the Patch Cohesion
Index, the Nearest-Neighbor Distance, the Shape Index, the Aggregation Index and the Clumpiness Index)
to explain a significant portion of the variance in DWU and TWU. In order to construct the Socio-economic
Model and Environmental Model) we incorporated variables that had been widely implemented across the
literature to estimate and project water demand for development-related water uses (House-Peters &
Chang, 2011). Finally, we constructed a Holistic Model by combining landscape pattern, socio-economic
and environmental variables to test the ability of this combined structure to improve model performance,
while still maintaining parsimony. To further investigate how the landscape metrics and the other indepen-
dent variables influence water use we conducted an assessment of relative importance based on the Linde-
man, Merenda and Gold method (LMG) (Gr€omping, 2007). This approach allows us to compare the
explanatory power of each independent variable in the global Holistic models.

We developed all the models in the same fashion, through an iterative process of adding and subtracting
variables to improve model performance (see section 2.5). No linear relationship between any pair of varia-
bles was greater than 0.5 and the variance inflation factor (VIF) was calculated for every model to check for
multicollinearity (Lin et al., 2011). We provide a summary and descriptive statistics for all the independent
variables incorporated into the models (Tables 1 and 2).

2.5. Assessing Model Performance and Spatial Heterogeneity
To investigate the importance of the spatial component and test for spatial non-stationarity we compared
the global regression model to the GWR model using the adjusted R-squared, quasi-global R-squared and
Akaike Information Criterion (AIC). A model with relatively large adjusted R-squared and small AIC values

Table 2
Summary and Descriptive Statistics on Landscape Metrics

Metric Description Value range Min. Mean Max. Std. Dev.

Shape
Index (SI)

Area-weighted Mean Shape Index. Normalized ratio
of patch perimeter to area in which the complexity
of patch shape is compared to a standard shape
(square) of the same size.

1� SI<No limit.
The index equals 1 for square
patches of any size and increases as
patches become more
geometrically complex.

1.00 7.23 27.92 4.08

Aggregation
Index (AI)

The ratio of the observed number of like adjacencies
to the maximum possible number of like
adjacencies given the proportion of the landscape
composed of each patch type.

0�AI� 100.
The index equals 0% when patches
are maximally disaggregated and
100% when patches are maximally
aggregated.

1.32 80.16 100.00 15.76

Note. Values are by census tract.
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indicates more predictive power and would be preferable. Additionally, both adjusted R-squared and AIC
allow comparison between models with different numbers of explanatory variables as they penalize for the
number of terms added to a model. We used the variation of coefficients generated by the GWR models to
explore spatial non-stationary relationships between variables (Brunsdon et al., 1998). As described by
Fotheringham et al. (2002) the range of local parameter estimates can be compared to the confidence inter-
val of global parameter estimates to examine the degree of spatial non-stationarity. Fotheringham et al.
(2002) suggest that spatial non-stationarity is present if the inter-quartile range of a GWR coefficient is
greater than two times the standard error of the global regression. Lastly, to further test for spatial non-
stationarity, we conducted a Monte Carlo significance test (Brunsdon et al., 1996). This technique tests the
null hypothesis that estimated coefficients do not vary from one location to another for any given indepen-
dent variable. In other words, if the GWR models were to be calibrated with observations of dependent and
independent variables randomly distributed across space, little to no difference in the pattern of estimated
coefficients would be detected. To conduct the Monte Carlo test we used the ‘GWmodel’ package for R sta-
tistical software (Gollini et al., 2015).

3. Results

3.1. Exploratory Analysis on Landscape Metrics
Through the correlation matrix we identified metrics with strong correlation to DWU and TWU and excluded
metrics that introduced collinearity issues. The Shape Index, a measure of patch geometric complexity and
the Aggregation Index, a measure of aggregation of developed patch mosaic (Table 2) exhibited the most sig-
nificant associations with variations in development-related water use (Tables 3 and 4). Overall, our inspection
of the spatial distribution of landscape metrics across the study system revealed that densely urbanized cen-
sus tracts present lower values of the Shape Index and high values of the Aggregation Index while in tracts
closer to rural areas (low developed density) the Shape Index values increase and the Aggregation index val-
ues decrease (Figure 3). Furthermore, the relationship between complexity and aggregation of the developed
patch mosaic is not linear, instead it described a graphical shape that assimilates a parabola where suburban
and rural census tracts present more varied combination of landscape metrics than densely urbanized census
tracts (Figure 4).

3.2. Global-to-Local Regression Models of Water Use
For the global regression model, the Holistic Model performed the best, explaining 22% of the DWU
(Table 3) and 19% of the TWU variation (Table 4). Of the reduced models, the Landscape Models explained
more variance in the water use data (10% of DWU and 7% of TWU) than the Socio-economic (6% of DWU
and 4% of TWU) and the Environmental Models (5% of DWU and 8% of TWU). The Shape Index showed the
highest relative importance in the global Holistic models, accounting for 53% of the global DWU model’s
explanatory power (Figure 5a) and 40% of TWU (Figure 5b). Temperature was the second strongest
predictor, with a relative importance of 20% in the DWU (Figure 5a) model and 42% in the TWU model
(Figure 5b). These are strong indications that incorporating information regarding the spatial pattern of
development into the modeling framework can improve development-related water use estimates at the
census tract level of analysis. The Aggregation Index only showed a relative importance of 3% in relation to
DWU, and did not significantly explain TWU variance in the Holistic global regression model.

Across all models, GWR outperformed global regression as indicated by lower AIC values and higher quasi-
global R-squared values (Tables 3 and 4). The GWR Holistic Model structure exhibited the best model perfor-
mance, explaining on average 44% of the variation in DWU and 45% in TWU. The important improvement
in model performance from global regressions to GWR models indicates spatial non-stationarity in statistical
relationships across the study region. Section 3.3 provides an in-depth analysis of spatial heterogeneity as
represented by the GWR models. The spatial distribution of local R-squared values for each census tract
ranged from 0.17 to 0.65 for DWU (Figure 6a) and from 0.14 to 0.60 for TWU (Figure 6b). Standard error val-
ues for census tracts ranged from 0.00 to 0.11 for DWU (Figure 6c) and from 0.00 to 0.47 for TWU (Figure
6d). Mainly based on the small standard errors, DWU was slightly better represented by the corresponding
Holistic GWR model than TWU. Overall, the Holistic GWR model explained variation in both DWU and TWU
well across a wide range of urban and rural landscapes, displaying similar patterns in local R-squared values
(Figure 6).
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Performance of the Holistic GWR model for DWU (local R-squared ranged from 0.17 to 0.65) and TWU (local
R-squared ranged from 0.19 to 0.60) varied across the urban corridor that extends along Interstate 85 from
Durham, NC, to Anderson, SC (Figure 6). Overall, both models performed well across rural and urban coastal
communities such as the Albemarle-Pamlico Peninsula, NC, and the city of Charleston, SC. We found that
the largest continuous area with relatively low model performance (R-squared� 0.20) was located in the
city and suburbs of Florence, SC. The majority of the other areas that show model underperformance corre-
spond to protected areas such as Great Smoky Mountains National Park, the Savannah River Site nuclear
complex and the Fort Bragg Military Reservation. Finally, small areas such as the Raleigh-Durham Interna-
tional Airport, NC, represent another example of locations that displayed low model performance.

3.3. Representing Spatial Heterogeneity
GWR coefficients varied considerably between census tracts for each model structure (Tables 3 and 4).
Inter-quartile ranges of coefficient values were greater than two times the standard error of the global
regression coefficient (Brunsdon et al., 1998; Fotheringham et al., 2002), indicating potential spatial non-
stationarity in every variable. The Monte Carlo significance test for spatial non-stationarity corroborated that
temperature, maximum NDVI and the Shape Index vary significantly over space for both DWU and TWU

Table 3
Parameters and Statistics for Domestic Water Use (DWU) Global Regression and Geographically Weighted Regression
Models

Global
regression

Geographically
weighted regression

Coef. S.E. Min. First Qu. Median Third Qu. Max.

Landscape Model Intercept*** 0.16 0.02 22.92 20.01 0.10 0.18 0.45
Shape Index*** 0.01 0.00 0.01 0.01 0.02 0.03 0.08
Aggregation Index*** 0.00 0.00 20.00 0.00 0.00 0.00 0.03
AIC 23237 24099
Adjusted R-squared 0.11
Quasi-global R-squared 0.34

Socio-economic Model Intercept*** 0.48 0.02 20.08 0.36 0.46 0.57 0.86
Education*** 0.00 0.00 20.00 0.00 0.00 0.00 0.01
Median Age*** 20.01 0.00 20.01 20.01 20.01 20.00 0.00
Household Income*** 0.00 0.00 20.00 0.00 0.00 0.00 0.00
House Density*** 20.02 0.00 20.05 20.02 20.02 20.01 0.03
AIC 23070 23772
Adjusted R-squared 0.06
Quasi-global R-squared 0.28

Environmental Model Intercept*** 20.21 0.06 238.13 21.43 20.41 0.48 18.77
Temperature*** 0.03 0.00 20.90 20.04 0.01 0.05 2.20
Precipitation 0.00 0.00 20.01 0.00 0.00 0.00 0.01
Maximum NDVI*** 0.00 0.00 20.00 0.00 0.00 0.00 0.01
AIC 23033 23622
Adjusted R-squared 0.05
Quasi-global R-squared 0.23

Holistic Model Intercept** 20.16 0.06 215.45 20.97 20.21 0.24 5.44
Median Age*** 20.01 0.00 20.01 20.01 20.01 20.00 0.00
Household Income*** 0.00 0.00 20.00 0.00 0.00 0.00 0.00
Temperature*** 0.03 0.00 20.33 20.01 0.02 0.05 0.92
Maximum NDVI*** 0.00 0.00 20.01 0.00 0.00 0.00 0.01
Shape Index*** 0.02 0.00 0.01 0.01 0.02 0.02 0.08
Aggregation Index** 0.00 0.00 20.00 0.00 0.00 0.00 0.03
AIC 23659 24494
Adjusted R-squared 0.22
Quasi-global R-squared 0.44

Note. *significance p< 0.1, **significance p< 0.01, ***significance p< 0.001, Coef. 5 coefficient, S.E. 5 standard error,
Min. 5 minimum, Qu. 5 quartile, Max. 5 maximum, AIC 5 Akaike Information Criterion. Coefficients are not
standardized.
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and Aggregation Index for DWU (Table 5). Spatial non-stationarity in median age, household income and
education did not exist for DWU nor TWU (Table 5).

Overall, increases in the geometric complexity of spatial patterns of development (measured by the Shape
Index) was associated with higher water use of DWU and TWU (Figures 7 and 8). In contrast, DWU regres-
sion coefficients of the Aggregation Index varied in magnitude and direction across space (Figure 7). For
DWU, the distribution of coefficients (Figure 9, y-axis) relative to development density (Figure 9, x-axis)
showed that the Aggregation Index coefficient values are large and positive in highly urbanized census
tracts but smaller and more variable in sign in rural census tracts.

4. Discussion

A lack of understanding about how the spatial pattern of development affects the variation in water use
can hinder the development of water efficient planning guidelines. Through a coupled human-landscape
systems lens we established the functional link between land use decisions, socio-economic factors and
environmental conditions (Figure 1). Our results indicate that incorporating spatial configuration into both
non-spatial and spatial modeling techniques better explains the sensitivity of water uses to development
patterns after accounting for frequently-used socio-economic and environmental variables. Measures of

Table 4
Parameters and Statistics for Total Development-Related Water Use (TWU) Global Regression and Geographically Weighted
Regression Models

Global
regression

Geographically
weighted regression

Coef. S.E. Min. First Qu. Median Third Qu. Max.

Landscape Model Intercept*** 12.93 0.08 2.21 12.25 12.68 13.10 15.21
Shape Index*** 0.05 0.00 20.03 0.04 0.06 0.08 0.29
Aggregation Index 0.00 0.00 20.02 20.00 0.00 0.01 0.11
AIC 6512 5358
Adjusted R-squared 0.07
Quasi-global R-squared 0.37

Socio-economic Model Intercept*** 13.73 0.09 12.54 13.37 13.73 14.20 15.60
Education*** 0.01 0.00 20.03 20.01 20.00 0.01 0.03
Median Age*** 20.01 0.00 20.05 20.02 20.01 20.01 0.03
Industrial 20.00 0.00 20.02 20.00 0.00 0.01 0.03
House density*** 20.07 0.01 20.26 20.10 20.07 20.03 0.06
AIC 6613 5457
Adjusted R-squared 0.05
Quasi-global R-squared 0.37

Environmental Model Intercept*** 10.26 0.25 293.25 3.35 7.79 12.86 99.27
Temperature*** 0.14 0.01 24.31 20.22 0.14 0.40 6.00
Precipitation 0.00 0.00 20.01 20.00 0.00 0.00 0.07
Maximum NDVI*** 0.01 0.00 20.02 0.00 0.01 0.02 0.05
AIC 6475 5485
Adjusted R-squared 0.09
Quasi-global R-squared 0.35

Holistic Model Intercept*** 10.66 0.21 228.07 6.87 9.85 13.69 61.06
Median Age*** 20.02 0.00 20.04 20.02 20.02 20.01 0.02
Education* 0.00 0.00 20.02 20.01 20.00 0.00 0.02
Temperature*** 0.14 0.01 22.54 20.09 0.13 0.34 2.52
Maximum NDVI*** 0.00 0.00 20.03 0.00 0.01 0.01 0.04
Shape Index*** 0.05 0.00 20.00 0.04 0.05 0.08 0.13
AIC 6099 5026
Adjusted R-squared 0.19
Quasi-global R-squared 0.45

Note. *significance p< 0.1, **significance p< 0.01, ***significance p< 0.001, Coef. 5 coefficient, S.E. 5 standard error,
Min. 5 minimum, Qu. 5 quartile, Max. 5 maximum, AIC 5 Akaike Information Criterion. Coefficients are not
standardized.
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development patterns have commonly relied on high resolution or parcel-level data sets limiting replicabil-
ity and scalability (e.g., Chang et al., 2010; Shandas & Parandvash, 2010; Stoker & Rothfeder, 2014). To over-
come these challenges, we proposed and tested a novel implementation of spatial pattern analysis to
quantitatively measure landscape metrics that allow characterizing the spatial pattern of development at a
large scale (Figure 4). Our approach made use of nationally available data sets and open source software to
ensure reproducibility, and our analysis was conducted at the census tract level to provide locally meaning-
ful results across the heterogeneous region of North and South Carolina.

4.1. Effects of the Spatial Pattern of Development on Water Use
The spatial pattern of development is a result of the socio-economic, environmental and political factors
that interact in a given location (Medda et al., 1998) and ultimately impact human behavior. In this analysis
we demonstrated that the different spatial patterns that shape the built environment of communities across
the study system have a strong effect on the way their inhabitants use water for domestic, industrial and
public supply needs. We concluded that out of twelve evaluated landscape metrics, the Shape Index (com-
plexity of the developed patch mosaic) and the Aggregation Index (dispersion of developed patch mosaic)
were the metrics that best explained variations in water use throughout the urban-rural gradient. In relation
to both DWU and TWU, we failed to reject our first research hypothesis, that the spatial patterns of develop-
ment explain a significant portion of the variance in development-related water use across a mixture of het-
erogeneous landscapes (Tables 3 and 4). These findings contribute to the growing body of knowledge
studying the effects of the spatial pattern of development on human and environmental well-being, such
as connections to open space availability, traffic flow, physical activity, thermal efficiency, greenhouse gas
emissions, ecosystem services, sustainability and water use (Alberti, 2005, 2007; Boarnet & Crane, 2001;
Frank et al., 2005; Shandas & Parandvash, 2010; Stone & Rodgers, 2001; Tratalos et al., 2007; Zhao et al.,
2010).

To date, water conservation guidelines directed to inform future development patterns have mainly
focused on the distribution and size of housing units and population density (Chang et al., 2010; Shandas &
Parandvash, 2010; Stoker & Rothfeder, 2014). For example, Shandas and Parandvash (2010) found that

Figure 3. Landscape metrics of sampled census tracts across the study region, located in the southeastern U.S. Randomly
sampled tracts described a spectrum of spatial patterns characterizing city centers ((a) Charlotte, NC), urban ((b) Myrtle
Beach, SC), suburban ((c) Hoffman, NC) and rural areas ((d) Wilkesboro, NC and (e) Pittsboro, NC). For visual purposes, we
overlaid the 2011 NLCD developed cover (bright yellow) on top of aerial imagery maps to highlight the measured patches
within each census tract.
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decreasing the area of single-family residential units by 100 m2 could
reduce water demand by 978,000 gallons a year for Portland, Oregon.
By introducing landscape metrics into a spatially-explicit water use
modeling framework we achieved a locally meaningful understanding
of the relationship between development patterns and water use at a
large scale. These outcomes are important to gain targeted insights
into how land use planning could help guide future growth towards
urban settlements that make more efficient use of freshwater resour-
ces. For example, land and water managers throughout the study sys-
tem can now situate future development projects along a ‘Complexity
by Aggregation’ distribution and have a better understanding of rela-
tive water use requirements that individual development projects will
have. This research provides a tool to understand the impact in
regional water demand of continuing a trajectory of growth domi-
nated by the irregular and fragmented landscapes of urban sprawl
(Feng & Li, 2012). A spatial pattern that can be associated with higher
demand for both indoor and outdoor domestic water use as larger
residential units and higher presence of amenities such as lawns and
swimming pools provide more opportunities to use more water (Har-
lan et al., 2009). On the other hand, a trajectory of growth directed to
develop vacant parcels nearby previously built areas (also known in
the literature as infill development, Paulsen, 2013) and incentivize
smaller housing units could result in lower domestic water use overall.

4.2. A Holistic Understanding of Water Use
By comparing different water use drivers in independent model struc-
tures (referred to as the Landscape Model, the Socio-economic Model
and the Environmental Model) we defined the types of drivers that
affect demand the most. In relation to our second research hypothe-
sis, we found that the spatial patterns of development influence DWU

more than the socio-economic or environmental drivers. We also found contrasting results in relation to
TWU based on the regression technique used. The better performance of the Landscape Models when fit to
DWU data, as opposed to TWU data, is likely due to the predominance of residential land. Development for
residential use represents the main driver of land conversion across the region and projections show this
trend to continue (Terando et al., 2014).

Figure 4. Distribution of complexity (measured by the Shape Index) by aggre-
gation (measured by the Aggregation Index) of the developed patch mosaic
for the 3,258 evaluated census tracts across North and South Carolina. For clar-
ity, each census tract is colored-coded within a development density gradient
and examples of specific landscapes characterized by the landscape metrics
are provided.

Figure 5. Measures of relative importance for Global Regression predictors of (a) domestic water use (DWU) and (b) total
development-related water use (TWU) with a 95% bootstrap confidence intervals. Method LMG.
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Incorporating metrics that describe the spatial patterns of development along with indicators of socio-
economic and environmental conditions improved model performance and provided a more holistic under-
standing of variations in water use. We concluded that the Holistic GWR model – integrating median age,
household income, temperature, NDVI, the Shape Index and the Aggregation Index – best explained DWU.
For TWU, however, including the Aggregation Index did not improve model performance. This is likely due

to different mechanisms of water demand for industrial and commer-
cial land use. Land conversion for commercial or industrial develop-
ment is commonly assumed to occur as a result of profit
maximization, government or neighborhood regulations and environ-
mental amenities (Fragkias & Geoghegan, 2010). While several theo-
ries describe how and where this process happens, employment
decentralization has been described as the dominant trend in the U.S.,
predominantly for manufacturing facilities (Glaeser & Kahn, 2001). Pat-
terns of dispersed industrial and commercial land use contrast with
the various degrees of residential land consumption that characterize
the region, which in turn might explain why the Aggregation Index is
not a robust driver for explaining TWU as it incorporates industrial
and commercial categories of use.

Socio-economic variables such as education, age and income have a
long history of use, particularly in econometric water use models
directed to draw policy and pricing recommendations for domestic
water use (Arbues & Villanua, 2006; Foster & Beattie, 1979; Martinez-
Espineira, 2002). In our study, education, age and income also signifi-
cantly explained a portion of DWU and/or TWU variance, but with

Figure 6. Geographically weighted regression spatial distribution of (a) domestic water use (DWU) local R-squared,
(b) total development-related water use (TWU) local R-squared, (c) DWU standard error and (d) TWU standard error.

Table 5
Monte Carlo Significance Test for Spatial Nonstationarity

Model Predictors p-value

GWR Holistic for DWU Intercept <0.01
Median Age 0.64
Household Income 0.10
Temperature <0.01
Maximum NDVI 0.08
Shape Index 0.01
Aggregation Index 0.01

GWR Holistic for TWU Intercept <0.01
Median Age 0.99
Education 0.79
Temperature <0.01
Maximum NDVI 0.03
Shape Index <0.01

Note. DWU 5 domestic water use, TWU 5 total development-related water
use, GWR 5 geographically weighted regression.
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relatively lower explanatory power (< 18%, Figure 5) compared to the physical environment and spatial pat-
terns of development. The use of vegetation and temperature variables have important applications in
explaining domestic outdoor water use (Breyer et al., 2012; Guhathakurta & Gober, 2007, 2010). We found
the environmental variables explained an important portion of water use across the study system (account-
ing for 20% of the DWU and 40% of the TWU model’s explanatory power, Figure 5). The addition of land-
scape metrics is a novel application in water use studies. Through our analysis, we were able to corroborate
previous studies that showed a correlation between land and water use (Chang et al., 2010; Shandas & Para-
ndvash, 2010; Stoker & Rothfeder, 2014). We found that landscape metrics accounted for up to 55% of the
Holistic DWU model’s explanatory power and up to 40% for the TWU model (Figure 5).

The models revealed a surprising inability to explain water use at some locations, such as Florence, SC (local
R-squared� 0.20). The region surrounding Florence has intense agriculture and pasture activities with small
towns scattered throughout, which may be associated with low regulation on private self-supply wells and
underestimates of development-related water use. The Raleigh-Durham International Airport, NC, repre-
sents another interesting example. The large extension of impervious cover that shapes the airport and
extends across most of the census tract could be comparable to a large continuous area of developed land
that characterizes a city center. However, the median age, education and household income covariates that

Figure 7. Spatial distribution of the domestic water use (DWU) geographically weighted regression coefficients. Higher
coefficients indicate a greater relationship between explanatory variables and DWU.
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help to explain water use in the models are close to zero for this census tract, causing the model to under-
perform. Similarly, protected land such as Great Smoky Mountains National Park, the Savannah River Site

nuclear complex and the Fort Bragg Military Reservation showed
model underperformance likely due to the specific nature of low pop-
ulation, low development or un-reported use. Overall, model perfor-
mance declined in areas with very low population levels; this pattern
is likely associated with instability in the spatially disaggregated esti-
mates in areas with low population and inherently large census tracts.
Our work suggests a need to standardize public water use records at
finer grain spatial resolutions in order to better estimate and project
water demand across the conterminous U.S. (Pickard et al., 2017).

4.3. Spatial Dependencies: Implications for Water and Land Use
Planning
In relation to our third research hypothesis, we found spatially varying
trends in development-related water use across the study system indi-
cating that the benefit of implementing design-oriented guidelines
could vary from one location to another. As such, geographically-
targeted water conservation strategies (as opposed to aspatial strate-
gies) are likely to be most useful when planning for more water-
efficient development. The coefficients estimated in this analysis can
help local and regional entities (e.g., cities, municipalities, counties
and state governments) better understand the implications of their
planning and development choices on future water demand, while
also helping to understand the sensitivity of future regional water

Figure 9. Distribution of geographically weighted regression coefficients of
Aggregation Index coefficients for domestic water use along development den-
sity gradient.

Figure 8. Spatial distribution of the total development-related water use (TWU) geographically weighted regression coef-
ficients. Higher coefficients indicate a greater relationship between explanatory variables and TWU.
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demand to likely patterns of urbanization. For example, if the sustainability of future water supply is of con-
cern, then rapidly growing rural or suburban communities where water use is negatively associated with
the Aggregation Index coefficient (Figure 9) may provide suitable locations to implement smart growth
strategies that incentivize infill or higher density development patterns. Promoting this pattern of growth
characterized by simple and aggregated forms of development can help such cities to accommodate future
growth in a manner that maximizes the efficient use of water. Similar findings have been previously estab-
lished for large metropolitan areas, where higher density household attributes have been associated with
lower water use rates (Guhathakurta & Gober, 2010; Shandas & Parandvash, 2010). It is not the intention of
our research to propose the use of landscape metrics as an alternative to traditionally used metrics such as
household density or building area, but rather to allow for a new dimension of analysis at larger scales.

We observed that coastlines exhibited higher Shape Index coefficients (Figures 7 and 8). For example, DWU
within 50 km of the coastline is on average 32% higher than other regions, and for TWU, the value is almost
twice as large. Clearly, the Shape Index coefficients are larger along the Carolina coast (Figures 7 and 8), if
we consider a scenario where the trajectory of growth leads to a one unit increase of the Shape Index, a
coastal census tract would demand an average of 8,000 more gallons a day for DWU than a mainland cen-
sus tract and an average of 37,000 more gallons a day for TWU. This effect might be associated with the flat
topography that presents less geographical constrains to development, allowing ‘leapfrog’ development to
expand more easily compared to more hilly and mountainous regions. This pattern of fragmented and
sprawling development has characterized much of the urban growth in the Southeast (Terando et al.,
2014).

In addition to changes in the magnitude of estimated coefficients across the study system, another impor-
tant aspect of the predictive potential of the GWR method is changes on the direction of the effect. Coeffi-
cients that change from positive to negative across the study system suggest variables that may be
spatially non-stationary. For example, in the global Holistic model the negative coefficient of median age
indicates that as a population grows older it demands less water for domestic use (Table 3). This relation-
ship is expected and is consistent with the literature (Arbues et al., 2010). However, the mapped GWR coeffi-
cient values revealed specific census tracts, mainly found in and around the Charlotte metropolitan area,
where median age and domestic water use are positively related (Figure 7). An analysis of these areas
revealed their census tracts rank among the top 15% average highest household income neighborhoods
across the region. High income neighborhoods often have larger lots and home sizes, numerous bathrooms
and the presence of a swimming pool, all structural attributes associated with higher outdoor water use
(Harlan et al., 2009; Kontokosta & Jain, 2015; Ouyang et al., 2014).

5. Conclusions

Our results highlight the importance of considering spatial connections between water use in developed
areas and its structural, socio-economic and environmental drivers. We found that metrics that described
the spatial patterns of development played a key role in explaining water use models’ explanatory power
and can assist in the development of locally meaningful conservation strategies. Overall, we found that
development guidelines that promote simple, cohesive, square-like configurations show potential for a
more efficient use of water across the study system, and likely across other regions with similar patterns of
land use.

Future estimates of development-related water use will benefit from the use of spatially explicit landscape
metrics. Our study opens a frontier for water resources researchers to develop coupled models of water use
and land change in an effort to explore alternative futures of urbanization and regional demands for
increasing scarce supplies of water.
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