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ical process models) and constitute a large uncertainty in projections of future tree species distribution shifts. We
investigate how species biological traits and environmental heterogeneity affect species distribution shifts. We
used a species-specific, spatially explicit forest dynamic model LANDIS PRO, which incorporates site-scale tree

Editor: Elena PAOLETTI species demography and competition, landscape-scale dispersal and disturbances, and regional-scale abiotic con-

trols, to simulate the distribution shifts of four representative tree species with distinct biological traits in the cen-
Keywords: tral hardwood forest region of United States. Our results suggested that biological traits (e.g., dispersal capacity,
Dispersal maturation age) were important for determining tree species distribution shifts. Environmental heterogeneity,
Demography on average, reduced shift rates by 8% compared to perfect environmental conditions. The average distribution
Landscape modeling shift rates ranged from 24 to 200 m year— ' under climate change scenarios, implying that many tree species
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vironmental heterogeneity. We suggest that climate-distribution models should include species demographic
processes (e.g., fecundity, dispersal, colonization), biological traits (e.g., dispersal capacity, maturation age),
and environmental heterogeneity (e.g., habitat fragmentation) to improve future predictions of species distribu-
tion shifts in response to changing climates.
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1. Introduction

There is mounting evidence that many tree species shift their distri-
butions in response to climate change. Paleo-ecological studies demon-
strate that tree species distributions tracked climate change during past
glaciations (Jump and Pefiuelas, 2005) and shifted hundreds to thou-
sands of meters per year during the recent glacial retreat (King and
Herstrom, 1997). Recent studies generally agree that tree species distri-
butions are shifting in response to recent climate change (Kharuk et al.,
2007; Ralston et al.,, 2016; Vayreda et al., 2016). For example, Woodall
et al. (2009) used region-wide forest inventory data to estimate tree
species shifts in the eastern United States and found that many tree spe-
cies are currently shifting northward at rates approaching 100 km/cen-
tury. Predictions of future tree species distributions under changing
climates suggest that many tree species will shift northward and up-
ward in elevation (Nathan et al., 2011; Zolkos et al., 2015; Wang et al.,
2015, 2016). Estimates from Dynamic Global Vegetation Models
(DGVMs) indicate that the shift rates in boreal and temperate biomes
may be higher than those in tropical biomes with the northernmost spe-
cies shifting at a rate of 100 km/century (Malcolm et al., 2002). The
niche model SHIFT suggests there is a high probability for tree species
colonization within a zone of 10-20 km from species current bound-
aries over 100 years (Iverson et al., 2004). Recent studies suggest that
many species may not move fast enough to track the changing climates
and consequently might go extinct at the trailing edges and be replaced
by subdominant local species or migrants from other locations, leading
to population declines and ecosystem composition changes (Zhu et al.,
2012; Corlett and Westcott, 2013; Wang et al., 2015, 2016; Sittaro
et al,, 2017). The changes in tree species distribution and composition
have important consequences for biodiversity and ecosystem services
such as carbon sequestration (Dawson et al., 2011; Garcia et al., 2014).

Species distribution shifts are a result of multi-scale demographic
processes: fecundity, dispersal, colonization, growth, and mortality
(Neilson et al., 2005; Thuiller et al., 2008). Fecundity occurs at site scales
and is dependent on species biological traits such as maturation age and
seed production (Clark, 1998). Dispersal occurs from hundreds of meters
to a few kilometer per year and is regulated by dispersal mechanisms
(e.g., wind, animal) and habitat connectivity, and ultimately determines
the upper limits of distribution shifts and species' ability to track environ-
mental changes in space and time (Schurr et al., 2007). Site-scale coloni-
zation and growth are regulated by site-scale biotic (e.g., competition)
and regional-scale abiotic controls (e.g., temperature, precipitation,
soil, terrain) (Wang et al.,, 2013; Liang et al,, 2015). Among these pro-
cesses, dispersal is important for inherently linking site-scale demog-
raphy and competition, landscape-scale heterogeneity (e.g., habitat
fragmentation), and regional-scale abiotic controls on tree species
distribution shifts (Nathan and Muller-Landau, 2000; Garcia et al.,
2017).

The presentation of these demographic processes and their interac-
tions with environmental changes is limited in current climate-
distribution models such as niche models (e.g., BIOMD, SHIFT-
DISTRIB) and biophysical process models (e.g., DGVMs, ED) (Ehrlén
and Morris, 2015; Zurell et al., 2016; Urban et al., 2016). This is because
niche and biophysical process models usually operate at relatively
coarse spatial resolutions with grid cells ranging from 10 to 50 km and
thus they are limited in their ability to spatially simulate the site- and
landscape-scale processes associated with distribution shifts (Neilson
et al., 2005; Thuiller et al., 2008). For example, although niche models
efficiently account for regional-scale abiotic controls on species distri-
bution using statistical methods, there is a lack of representation of un-
derlying mechanisms (e.g., demography) driving distribution shifts
(Guisan and Thuiller, 2005). Biophysical process models predict vegeta-
tion distribution by simulating biophysical processes, demography, and
biotic interactions (Keenan et al., 2011), whereas they highly simplify
site- and landscape-scale processes within each grid cell (McMahon
et al.,, 2011). Individual tree species are grouped into plant functional

types and abiotic factors (e.g., soil, temperature, and precipitation) are
assumed the same within each grid cell in biophysical models. Cur-
rently, no dispersal, unlimited dispersal, or uniform dispersal are com-
monly assumed in niche and biophysical process models when
predicting future species distribution shifts (Iverson et al., 2011;
McMahon et al.,, 2011). Recent efforts incorporate one or few factors
limiting dispersal in niche and biophysical process models, such as den-
sity, dispersal, habitat fragmentation or biotic interactions (e.g., Meier
et al,, 2012; Boulangeat et al.,, 2014; Snell, 2014). Meier et al. (2012)
assessed the influence of competition and habitat connectivity on spe-
cies migration rates under climate change using a species distribution
model; Snell (2014) simulated long-distance dispersal in a dynamic
vegetation model. However, factors that affect dispersal and associated
fecundity and colonization that are not accounted for constitutes a large
uncertainty in projections of future species distribution shifts (Thuiller
et al,, 2008; Lurgi et al., 2015; Urban et al., 2016).

Species-specific, forest dynamic models, such as gap models (Pacala,
1996) and landscape models (Lischke et al., 2006; Wang et al., 2014a,
2014b) ideally have the potential to address these uncertainties through
improving the predictions of future tree species distribution shifts. This
is because they operate at fine scales (e.g., 10-500 m) and predict the
response of individual tree species to environmental conditions by ex-
plicitly incorporating species demography and competition and the ef-
fects of environmental change on these processes (Shifley et al.,
2017). Although these models have been extensively used to explore
the species composition changes at site and landscape scales, the use
of these forest dynamics models to make predictions of tree species dis-
tribution shifts is still rare especially at large scales (e.g., regional, conti-
nental) (Morin and Thuiller, 2009; He, 2011; Gutiérrez et al., 2016).
Their use at large scales has been limited because they usually require
a large amount of data and knowledge for parameterization, restricting
their applications to a relatively small set of well-known tree species
(Jektsch, 2008). In addition, it is computationally demanding to model
fine-scale processes (e.g., individual species demography) at large scales
(Strigul et al,, 2008; Wang et al,, 2013).

In this study, we demonstrate the applicability of a spatially explicit
forest dynamic landscape model, LANDIS PRO for predicting tree species
distribution shifts at leading edges. LANDIS PRO predicts tree species
population and community dynamics as a result of site-scale tree spe-
cies demography and competition, landscape-scale dispersal and distur-
bances, and regional-scale abiotic controls (Wang et al., 2014a).
Extensive forest inventory data have been directly applied to parame-
terize over 50 common tree species in the eastern Unites States
(e.g., Wang et al., 2013; Brandt et al., 2014; Luo et al., 2014; Wang
et al., 2015, 2016, 2017; Xiao et al., 2017; Iverson et al., 2017; Jin et al.,
2017, 2018). Specifically, we address 1) how do tree species biological
traits and environmental heterogeneity affect tree species distribution
shifts at leading edges and 2) how climate change will affect species dis-
tribution shift rates?

2. Material and methods
2.1. LANDIS PRO model

LANDIS PRO tracks number of trees and size of each age cohort for
each tree species within each raster cell (Fig. 1, He et al., 2012; Wang
et al., 2013). Species demography including growth, fecundity, dis-
persal, establishment, and mortality is mainly driven by species biolog-
ical traits, such as maturation age, longevity, shade tolerance, dispersal
distance, maximum size, maximum stand density index, minimum
sprouting age, and maximum sprouting age. Growth occurs at each
time step and is simulated using growth rates (age-DBH relationship)
that vary among ecoregions to capture the environmental heterogene-
ity in soil, terrain, and climate. Trees cohorts generate seeds after
reaching their maturation age and total seeds for each species in given
raster cell are determined by mature tree density and fecundity capacity.
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Fig. 1. Overall design of the spatial forest dynamic modeling approach for simulating tree species distribution shift in LANDIS PRO.

Seeds dispersal is determined by dispersal capacity and habitat connectiv-
ity. LANDIS PRO simulates dispersal using a generic dispersal kernel pro-
posed by Clark (1998), where the probability (k) of seed travelling a
specific distance (x), is:

Cc

) M)
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where c is a shape parameter (e.g. ¢ = 1.0 was exponential curve, c = 2.0
was Gaussian curve, and ¢ < 1.0 was fat-tailed curve). A value of 0.5 is
used for all tree species to create fat-tailed kernels to capture the
long-distance dispersal. I'() is the gamma function, and « is a species-
specific dispersal distance parameter compiled from the literature
(e.g., Clark, 1998; Clark et al., 2005). The total seeds reaching a given for-
est site are accumulated from all mature trees within the dispersal ker-
nel. Seedling establishment is determined by abiotic controls at each
raster cell. Seedling colonization is regulated by seedling establishment
probability (SEP), species shade tolerance, and available growing capac-
ity. Trees die as a result of aging, competition, or disturbance. Competi-
tion is initiated once maximum growing capacity (MGSO) is reached.
Competition-caused mortality is simulated using Yoda's self-thinning
theory, where the number of trees decreases with increasing average
tree size on the stand and follows the —3/2 rule and bigger trees and
higher shade tolerance species generally have lower mortality rates
(Yoda, 1963; Wang et al,, 2013).

We stratified the regional abiotic controls in soil, terrain, and climate
of the whole geographic region into land types to capture their effects
on tree species population and community dynamics. Regional-scale
abiotic controls mainly determined tree species fundamental niches;
Demography, competition, and disturbances further modified species
fundamental niches and ultimately determined species realized niches.
Climate change affected tree species distribution and abundance. The
effects of climate change were triggered by changes to tree species fun-
damental niches, which were simulated in LINKAGE III, an ecosystem
model that modeled species' physiological responses to abiotic factors
including climate, soil, and atmospheric conditions (Dijak et al., 2017)
(Fig. 1). The fundamental niches from LINKAGES Il were characterized
as seedling establishment probability (SEP) and the maximum growing
capacity (MGSO) (He etal.,, 1999; Wang et al., 2016). The MGSO and SEP
were the same within a land type and different among land types. The
estimated MGSO and SEP were then input into LANDIS PRO as model
parameters to regulate species demography and competition at site
scale (raster cell) within given land types (Fig. 1); for further details

on these parameter estimation processes for LANDIS PRO see Wang
et al. (2015, 2016) and Dijak et al. (2017).

2.2. Test tree species with distinct biological traits

We identified four representative tree species in the eastern United
States to simulate their dispersal and distribution shifts: red maple (Acer
rubrum), loblolly pine (Pinus taeda), white oak (Quercus alba), and
white ash (Fraxinus americana). We included these four tree species be-
cause their species-specific distance parameters () of dispersal kernel
and reconstructed shift rates during past glaciations have been pub-
lished (e.g., Clark, 1998; Delcourt and Delcourt, 1987). They also have
distinct biological traits representing different life history strategies.
Red maple has the youngest maturation age, highest fecundity, and lon-
gest dispersal distance by wind. White oak has the oldest maturation
age, shortest dispersal distance by animal (e.g., squirrels, blue jays),
and second highest fecundity. White ash and loblolly pine have inter-
mediate maturation age, fecundity, and dispersal distance, but white
ash has relatively longer dispersal distance and older maturation age
than loblolly pine. Recent studies suggest that the four tree species
will respond differently to climate change because of different species
biological traits and breadth of climatic niches. From example, southern
tree species, loblolly pine and widely distributed tree species, red maple
may benefit from climate change, shift northward, and thus expand
their distribution ranges; However, northern tree species, white ash
may fare worse and contract their distribution ranges under future cli-
mates (Iverson et al., 2008; Wang et al., 2016). We compiled biological
traits for each tree species including maturation age, longevity, shade
tolerance, dispersal parameter o, age-size relationship, maximum size,
and maximum stand density index from previous studies and literature
(Table 1, Burns and Honkala, 1990; Wang et al., 2014b, 2015, 2016,
2017; Clark, 1998; Clark et al., 2005).

2.3. Experiment design

Multi-scale factors (e.g., demography, competition, climate change,
habitat fragmentation) act synergistically to drive tree species distribu-
tion shifts in a real landscape. To disentangle the synergetic effects, we
used a theoretical landscape (44,100 ha) to simulate tree species dis-
persal and distribution shifts at leading edges (Fig. 2). We divided the
landscape into 3 x 3 grid of nine equal-sized zones. Each zone was com-
prised of 350 x 350 raster cells with a cell size of 60 m (Fig. 2). To rep-
resent species limited seed sources and low seed density at leading
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Table 1

1217

Species biological traits used in the LANDIS PRO model to predict tree species distribution shifts in a representative forest landscape in the Central Hardwood Forest Region, USA, complied
from previous studies and literature (Burns and Honkala, 1990; Wang et al., 2014b, 2015, 2017; Clark, 1998; Clark et al., 2005).

Common Species Maturation Longevity Shade Dispersal distance parameter o Vegetative ~Maximum DBH (cm) Maximum Stand

name age tolerance probability density index (trees/ha)
Red maple Acer rubrum L. 10 150 4 30.8 0.9 65 700

White oak Quercus alba L. 40 300 4 12.9 0.6 75 570

White ash Fraxinus americana L. 30 250 3 19.3 0.6 65 570

Loblolly pine P. taeda L. 20 150 3 15.1 04 70 1100

edges, we located a single seed source for each tree species consisting of
100 mature trees at 40 years old in each of the corner raster cells of cen-
ter zone. The rest of area was not populated with trees but was available
for seed dispersal and colonization. The dimensions of each zone
(21,000 m) guaranteed that the fastest dispersing species (e.g., red
maple) could not disperse into the other three corner zones within
100 years to affect other species' dispersal through competition. We
used the landscape for three experimental scenarios.

We parameterized a scenario under perfect abiotic controls without
environmental heterogeneity (PNEH) by assuming that abiotic controls
in soil, terrain, temperature, precipitation, solar radiation, and wind
speed were 100% favorable for seedling establishment of four tree spe-
cies across the landscape (SEP values were 1.0 for four tree species).
There were no changes in abiotic conditions over the simulations
(e.g., no climate change, disturbance, and land use change) (Fig. 2). In
other words, seedlings were able to colonize any area where seeds
could disperse and thus distribution shifts were driven by tree species
demography.

We parameterized a scenario with current climate conditions and
environmental heterogeneity (CCEH) by using a representative land-
scape from the central hardwood forest region of United States
(CHFR). Environmental heterogeneity was the result of spatial variation
in abiotic controls including soil, terrain, climate, and habitat fragmenta-
tion. The landscape was mostly forested but moderately fragmented by
water, farmland, grassland, and urban areas (Fig. 2; Wang et al., 2015).
The non-forested areas resulted in habitat fragmentation and barriers

Perfect
environmental
conditions

Current climate

Central Hardwood
Forest Region, U.S.

for seed dispersal. We assumed there was no climate change, distur-
bance, and land use change in the landscape over the simulations.
Tree species distribution shifts were potentially affected by species de-
mography and environmental heterogeneity.

We parameterized a scenario with future climates and current envi-
ronmental heterogeneity (FCEH) by using the same representative
landscape in CHFR under GFDL A1FI climate conditions (IPCC, 2007)
from 2000 to 2100 and was held constant hereafter (Fig. 2). On average,
mean annual temperature was projected to increase by 6.0 °C and mean
annual precipitation was projected to decrease by about 15 cm by end of
the 21st century in this landscape under the GFDL A1FI climate change
scenario. In this scenario, tree species distribution shifts were driven
by tree species demography, environmental heterogeneity, and climate
change.

For both the CCEH and FCEH scenarios, the representative landscape
in CHFR was composed of 36 land types. The land type map (including
600 land types) was previously created for the whole CHFR by
intersecting 100 ecological subsections (delineated by evaluation and
integration of climate, physiography, lithology, soils, and potential nat-
ural communities) and 6 landforms (derived from digital elevation
model) (Wang et al., 2015). We used the estimates of the maximum
growing capacity (MGSO) and seedling establishment probability
(SEP) for the 36 land types under current climate and GFDL AIFI climate
scenarios from previous studies using the LINKAGES III ecosystem
model (Wang et al., 2015, 2016). Inputs to LINKAGES III included soil
data (e.g., organic matter, nitrogen, wilting point, field moisture

GFDL AIFI

Fig. 2. Three scenarios for simulating tree species distribution shifts at leading edges based on theoretical landscape representing perfect environmental conditions (left), current climate
conditions (middle), and GFDL AIFI climate conditions(right) for a representative landscape of the Central Hardwood Forest Region, U.S. A single seed source for each tree species with 100
mature trees at 40 years old was located in each of the corner raster cell of center zone (showed as four single black solid cells).
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capacity) from the National Resources Conservation Service Soil Survey
(http://soils.usda.gov/), wind speed data from the National Oceanic and
Atmospheric Administration-National Climatic Data Center (NOAA-
NCDC, 2002), current climate data (1980-2009) including daily precip-
itation at a 1/16th degree resolution and daily maximum and minimum
temperature (Maurer et al., 2002), daily solar radiation at 1-km resolu-
tion from DAYMET (Thornton et al., 2014), and the downscaled daily cli-
mate data for the period 2080-2099 under GFDL A1FI scenario from the
U. S. Geological Survey Center for Integrated Data Analysis (USGS CIDA)
Geo Data Portal (Stoner, 2011).

2.4. Model simulation and data analysis

We conducted model simulations under the three scenarios for
200 years from 2000 to 2200 at 10-year time step with five replicates
for each scenario to capture the stochasticity in the model. The distribu-
tion shift rates [m/year = total shift distance (m) / simulation years] for
each individual species were calculated before tree species met without
competition (about the first 100 simulation years). We reported the av-
erage distribution shift rates from five replicates and mapped the seed
dispersal and distribution shifts from one replicate simulation because
of extremely small variation among replicates. It was important to
note that our emission scenario AIFI was not realistic because none of
the emission scenarios represented a best guess of the future emissions
(IPCC, 2007). Likewise, our simulation results were not to be interpreted
as forecasts of futures, because complex interactions and feedbacks in
the coupled human and natural systems make true predictions
impossible (Liu et al., 2007). However, we believed some features
(e.g., demography, competition) allow greater realism than many cur-
rent alternatives.

We analyzed how shift rates were affected by tree species’ biological
traits, environmental heterogeneity, and climate change. We used one-
way analysis of variance (ANOVA) to determine if environmental het-
erogeneity (PNEH vs. CCEH) or climate change (CCEH vs. FCEH) was sta-
tistically significant on the average distribution shift rates for each
species. We also estimated the effects of environmental heterogeneity
and climate change on distribution shifts for each individual species
by calculating the percentage difference in shift rates between the
PNEH and CCEH scenarios, CCEH and FCEH scenarios, respectively.

3. Results

The average distribution shift rates for red maple, loblolly pine,
white ash, and white oak under the PNEH scenario within the first
100 simulation years were 200, 59, 56, and 30 m year™ !, respectively;
The distribution shift rates for red maple, loblolly pine, white ash, and
white oak in the CCEH and PCEH scenarios were 192, 54, 53, and
27 myear~! and 197, 56, 48, and 24 m year ', respectively (Fig. 3).
Shift rates were relatively low in the first few decades for four tree spe-
cies under three scenarios with very similar distance ranging from
800 m to 1000 m, followed by increases later in the simulation
(Fig. 3). As a result of high shift rates red maple spread across the entire
landscape under perfect environmental conditions by year 2150 and
much of the landscape under current climate and GFDL AIFI climate con-
ditions by year 2200 (Fig. 4). In contrast, loblolly pine, white ash, and
white oak had much lower shift rates and their distributions never ex-
panded very far from their initial seed sources, especially in the early de-
cades under the three scenarios (Fig. 4).

Environmental heterogeneity (CCEH), on average, reduced shift
rates by 8% compared to perfect environmental conditions (PNEH sce-
nario) (p < 0.05 for four species, Table 2) and decreases were greater
early in the simulation (13% in 2100) then later in the simulation (6%
in 2100; Fig. 5a). The decreases resulting from environmental heteroge-
neity varied across species and were 12, 10, 6, and 4% for white oak,
white ash, red maple, and loblolly pine, respectively.
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<>-Red maple_Current climate
18000 1 -#-Red maple_DEHGFDL
——Loblolly pine_Perfect conditions
~_-Loblolly pineCurrent climate
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Fig. 3. Simulated distribution shift rates for red maple, white ash, white oak, and loblolly
pine under perfect environmental conditions (solid lines), current climate (solid lines
with hollow circle markers), and GFDL AIFI (solid lines with solid rectangle markers)
climate conditions.

Compared to the current climate scenario, on average, the MGSO
was decreased by 28%; the SEP values were increased by 60% and 16%
for loblolly pine and red maple while they were decreased by 48% and
32% for white ash and white oak, respectively, under the GFDL A1FI cli-
mate change scenario. The shift rates on average were increased by 3%
for red maple and loblolly pine and were decreased by 7% for white
ash and white oak under climate change scenario (FCEH) compared to
current change scenario from 2010 to 2100 (p < 0.05 for four species,
Table 2) (Fig. 5b). Effects of climate change also varied by species and
were 4, 3, —8, —5% for loblolly pine, red maple, white oak, and white
ash, respectively.

4. Discussion

We investigated the effects of biological traits and environmental
heterogeneity on tree species distribution shifts using a species-
specific, forest dynamic model LANDIS PRO. Our results showed that
distribution shifts lagged behind for all tree species in the early decades
mainly because of limited seed sources from their low initial density and
limited distribution. The limited mature trees and distributions
constrained dispersal to realize their full dispersal ranges. This finding
is consistent with the recent studies that suggest that distribution shifts
are largely dependent on population density at the species leading
edges (Kubisch et al., 2011). Thus, although red maple had the greatest
dispersal capacity, it did not achieve long distance dispersal in the early
decades because of limited seed sources. However, red maple juveniles
quickly matured because of its youngest maturation age (10 years) and
thereby increased density to create a larger seed source, leading to in-
creases in shift rates in later decades. We suggest tree species distribu-
tion shift at leading edges under warming climates will likely not be
rapid especially in early 21st century because of the usual low density
near species' northern edges.

We captured the responses of individual tree species through incor-
porating species demography that was mostly driven by the species-
specific biological traits, such as dispersal capacity, maturation age,
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(a) PNEH scenario
year 40

year 80 year 40

(b) CCEH scenario
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year 150

350 raster cells x 60 m
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Fig. 4. Distribution shifts for red maple, white ash, white oak, and loblolly pine at year 40, 80, 100, and 150 in a theoretical landscape under perfect environmental conditions (a), in a
representative landscape of the Central Hardwood Forest Region, U.S. under current climate conditions (b) and under GFDL AIFI climate conditions (c) (white color represented non-
forested area and grey colors represented forested area with different shades of grey colors for different land types).

shade tolerance, vegetative probability, and fecundity. Although we did
not vary biological traits to analyze the contribution of individual trait,
among these biological traits, our results suggested that dispersal capac-
ity (dispersal distance parameter o) and maturation rate might be the
most important biological trait affecting shift rates. Because dispersal
capacity determined the potential distance seeds could travel and mat-
uration age determined tree generation time required for juveniles to
mature and produce the next generation and thus delayed tree species
distribution shifts. For example, wind-dispersed tree species red
maple (with the largest dispersal distance parameter o (30.8) and
youngest maturation age (10 years)) had the greatest shift rates
whereas animal-dispersed tree species white oak (with the smallest
dispersal distance parameter o (12.9) and oldest maturation age
(40 years)) had the slowest shift rates. Thus, species demography and
biological traits are important and should be incorporated to improve
prediction of future tree species distributions under climate change.
Our modeling approach reasonably captured the lagged effects of
environmental heterogeneity on tree species distribution shifts through
affecting tree species demography such as colonization and dispersal.
This finding confirms our expectations that abiotic controls are impor-
tant for predicting tree species distribution shifts (Thuiller, 2004). Al-
though we did not directly investigate the effects of different spatial
resolutions on distribution shifts, coarse grid cells (e.g., 10-50 km)
without environmental heterogeneity, that are used in niche and bio-
physical process models, may not capture the effects of the environ-
mental heterogeneity (Garcia-Valdes et al., 2015; Saltré et al., 2015).
Our results also suggested that there were interactive effects between
environmental heterogeneity and abundance of the seed source. Once

Table 2
Results of the analysis of variance (ANOVA) for environmental heterogeneity or climate
change effects on the average distribution shift rates for four tree species.

Environmental
heterogeneity

Climate change

d.f. p-Values

d.f. p-Values
Red maple 1 <0.05 1 <0.05
Loblolly pine 1 <0.05 1 <0.05
White oak 1 <0.05 1 <0.05
White ash 1 <0.05 1 <0.05

there was a sufficiently large seed source, the effects of environmental
heterogeneity decreased and distribution shifts were mainly limited
by dispersal capacity and maturation age. In our study, the representa-
tive landscape had low level of fragmentation and thus had low effects
on distribution shift rates. Because of the non-linearity of threshold ef-
fects of fragmentation, with the increasing level of fragmentation and
land use change, habitat fragmentation may have greater effects
(Garcia-Valdes et al., 2015; Dullinger et al., 2015).

In our study, we only used results in the first 100 simulation years
without competition (before tree species met) to quantify species shift
rates. Thus, we did not quantify the effects of competition on tree spe-
cies shift rates (after tree species met), because competition, demogra-
phy, and environmental heterogeneity acted in synergy, making
quantifying the sole competition effects difficult. This was a limitation
of our experimental design, which led to overestimates of tree species
shift rates. It is important to note the importance of competition in af-
fecting tree species distribution shifts because trees had to compete
with the existing tree species for growing space (Meier et al., 2012).
For example, red maple was not able to colonize on sites that were al-
ready fully-occupied by over 100 years-old white ash, white oak, or lob-
lolly pine trees (e.g., Figs. 4 and 5 at 150 years). However, although our
study overestimated the tree species distribution shift rates, our simu-
lated shift rates of 24-197 m year™! were generally comparable to pre-
vious pollen-reconstructed rates and field data-based estimated rates,
for example, 126-200 m year ! for red maple and 22-174 m year
for southern pine in Delcourt and Delcourt (1987), 30-200 m year ™!
for North American wind-dispersed trees in Nathan et al. (2011), and
36 m year~ ' for animal-dispersed trees species in Clark et al. (2005).
This finding generally agreed with previous studies that suggested the
distribution shifts at leading edges may be largely determined by re-
gional abiotic controls (e.g., temperature, and precipitation) and species
biological traits such as dispersal capacity (Thuiller, 2004).

Although our results should not be interpreted to predict real species
distribution rates, our overestimated simulated-shift rates of
24-197 m year™ ! support the hypothesis that many tree species may
not able to track climate change because the velocity of climate change
in the Upper Midwest of United States was >1000 m year~ ' (Loarie
et al., 2009). Such slow shift rates were mainly because of limited dis-
persal capacity and long generation time (e.g., decades) as well as envi-
ronmental heterogeneity such as habitat fragmentation (Zhu et al.,
2012; Sittaro et al., 2017). The failure of tree species to keep pace with
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Fig. 5. Effects of environmental heterogeneity and climate change on tree species distribution shifts, which were calculated as the percent difference in shift rates between a landscape with
perfect environmental conditions and a representative landscape with environmental heterogeneity (a) and between current climate conditions and climate change under the GFDL AIFI

scenario (b).

climate change will lead to significant species distribution and composi-
tion changes, and consequently have potential negative consequences
for biodiversity and ecosystem services. Forest management that favors
tree species that are better adapted to future climates may promote re-
silience and adaptation to climate change (Buma and Wessman, 2013).
For example, planting loblolly pine with limited seed source currently in
CHFR may facilitate its adaptation to future climates (Brandt et al.,
2014).

Our modeling resulting may be subject to uncertainties in conceptu-
alization, parameterization, and validation, which can affect model sim-
ulation results. Our conceptual design was based on well-established
ecological theories in population dynamics and stand dynamics. We
verified our conceptual design by comparing how tree species shift
rates were affected by species biological traits and environmental het-
erogeneity. Shift rates followed expected patterns among species and
scenarios, which provided some verification of our conceptual design.
We addressed parameterization uncertainties by evaluating the initial-
ized and calibrated parameters against extensive Forest inventory and
Analysis (FIA) data in previous studies (Wang et al., 2014b). We
assessed validation uncertainties by comparing the predicted shift
rates against reconstructed estimates from pollen and genetic data
and an experimental study.

5. Conclusion

We investigated the effects of biological traits and environmental
heterogeneity on tree species distribution shifts using a species-
specific, forest dynamic model LANDIS PRO. Dispersal capacity and mat-
uration age might be the most important biological trait in determining
tree species distribution shifts. Our results suggested that tree species
may not able to keep up with climate change because of limited dis-
persal capacity, long generation time, and environmental heterogeneity.
Although it is unlikely our model can forecast species distribution shifts,
we believe it has substantial greater realism than many current model-
ing approaches based assumptions of no dispersal, unlimited dispersal,
or uniform dispersal. We believe our modeling approach can be used
to develop more realistic predictions of how tree species will respond
to changing climates to guide decision making in natural resource man-
agement concerning climate change adaptation and mitigation.
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