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Abstract This paper proposes an alternative and potentially novel approach to ana-
lyzing the law of one price in a nonlinear fashion. Copula-based models that consider
the joint distribution of prices separated by space are developed and applied to weekly
prices for lumber products. The copulas capture nonlinearities that arise in the extremes
of the joint distributions of price differentials and suggest faster equilibrating adjust-
ments when deviations from parity are extreme.
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1 Introduction

Notions of price parity, spatial arbitrage, and price transmission characterize many
basic principles and relationships in economics. At the core, markets should efficiently
function so as to eliminate any potential for riskless profits through arbitrage and trade.
This fundamental condition is often called the “Law of One Price” (LOP). There has
been considerable interest in and debate about the empirical validity of the Law of One
Price (LOP), especially as it pertains to markets for tradable goods. On the one hand,
economists take it as being nearly axiomatic that freely functioningmarkets for traded,
homogeneous products should ensure that prices are efficiently linked across regional
markets, the implication being that no persistent opportunities for spatial arbitrage
profits exist.1 The general implication underlying these basic concepts is that prices
for homogeneous products at different geographic locations in otherwise freely func-
tioning markets should differ by no more than transport and transactions costs. A large
body of research often finds that the adjustment lags required to restore arbitrage equi-
libria are far longer than would seem natural based upon any reasonable understanding
of the mechanics of physical trade as it pertains to the markets in question.

Recent research on spatial price linkages has turned to nonlinear models in an
attempt to better capture the effects of unobservable transactions costs. In this paper,
we propose an extension to these nonlinear models in the form of copulas. We use
various goodness-of-fit criteria to compare copula model estimates to the conventional
error correction models typically used to evaluate price parity. Our empirical analysis
provides strong evidence that copula models better capture the nonlinearities inher-
ent in spatial price linkages than is the case for more conventional approaches. Our
application is to regional North American markets for oriented strand board (OSB), an
important construction material that is widely traded among regional markets. We find
that alternative copula specifications are generally favored over a Gaussian copula as
well as over linear and nonlinear error correction models of the type typically applied
in empirical studies of spatialmarket integration. An evaluation of the copula estimates
suggests that patterns of adjustment to large deviations from parity conditions differ
from adjustments to smaller price shocks and thus confirm the presence of nonlinear
patterns of adjustment.

Early empirical studies generally fail to support the LOP. Isard (1977) found rather
conclusive evidence against the LOP using disaggregate data for traded goods. Isard’s
conclusions were subsequently confirmed for a variety of commodities in a wide
array of market settings by, among others, Richardson (1978), Thursby et al. (1986),
Benninga and Protopapadakis (1988), and Giovannini (1988). Goodwin et al. (1990),
however, found some support for the LOP when it is specified in terms of price expec-
tations as opposed to observed prices. Following Engle and Granger’s seminal paper
(1987), cointegration techniques have been widely used to rationalize the LOP as a
long-run concept. By adopting this view of the LOP, economists have been able to find
more compelling evidence in favor of the LOP, including, for example, Buongiorno

1 Distinctions between tests of LOP and spatial market integration are not especially meaningful. In both
cases, the economic phenomena being evaluated (spatial market arbitrage) is identical. A survey of both
strands of literature can be found in Fackler and Goodwin (2001).
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and Uusivuori (1992) (US pulp and paper exports), Michael et al. (1994) (international
wheat prices), Bessler and Fuller (1993) (US regional wheat markets), and Jung and
Doroodian (1994) (softwood lumber markets).

The most recent literature in this area applies nonlinear refinements of autoregres-
sive or vector error correction models in analyzing price relationships. The underlying
motivation is that adjustments to equilibrium may not be linear and that this nonlin-
earity may, in turn, be associated with hard-to-observe transactions costs associated
with arbitrage. The theoretical underpinnings for transactions costs-induced nonlin-
earity in the LOP are put forward by Dumas (1992), although the basic idea dates
back at least to the work of Heckscher (1916), who notes that transactions costs may
define “commodity points” within which prices are not directly linked because the
price differences are less than the costs of trade.

The recent turn in the literature toward models that allow for nonlinearity in price
linkages includes applications of the smooth transition autoregressive (STAR) mod-
els of Teräsvirta (1994) and the discrete threshold error correction models of Balke
and Fomby (1997). A recent example includes an analysis of manufactured lumber
products (oriented strand board or OSB) in the USA undertaken by Goodwin et al.
(2011). Their analysis applies STAR models to consider price relationships among
spatially distinct North American markets for manufactured OSB. The application is
notable in light of the extreme volatility of markets for construction materials and
recent litigation that charged that OSB manufacturers had practiced discriminatory
and noncompetitive pricing during the latter part of the decade. The analysis reveals
that nonlinearity is an important feature of price relationships in these markets and
that the price parity relationships implied by economic theory and efficient arbitrage
are generally supported by the STAR models. We extend the work of Goodwin et al.
(2011) to consider a wider range of models for evaluating price parity relationships. In
particular, we undertake a comparison of linear and STAR error correction models to
the alternative specifications inherent in a variety of copulamodels.Wefind that copula
specifications are uniformly favored for evaluating price linkages in OSB markets.

Although copulamodels have been extensively used in financial economics and risk
management studies, they have not been extensively applied in modeling nonlinear,
spatial arbitrage relationships.2 In our application, copula models are used to capture
differences in patterns of adjustment that may arise when price differentials are very
large (i.e., large enough to exceed a transactions cost band). Copulas allow for varying
degrees of tail dependence and thus are able to capture patterns of adjustment that may
arise when price differentials are extreme.

Our approach is a natural extension of the existing (and abundant) time series eval-
uations of spatial price linkages. It involves direct examination of the joint probability

2 Patton (2006) allowed for time variation in the conditional joint distribution of the returns on the Deutsche
mark/US dollar and Japanese Yen/US dollar exchange rates by allowing the parameter(s) of a given copula
to vary through time. Smith et al. (2011) examined linkages among logarithmic prices in regional Aus-
tralian electricity markets but do not explicitly model the nonlinear error correction adjustment process
that is standard in spatial arbitrage models and that we consider here. Reboredo (2011) also examined the
comovement of crude oil prices using copulas, though his approach is also fundamentally different from
that considered here in that it does not directly consider the error correction process commonly applied in
models of spatial price linkages.
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distribution of the key economic variables of interest. In this way, the approach is
really no different than standard maximum likelihood methods applied to structural or
nonstructural econometric models. However, we give particular attention to the nature
of the jointness or correlation between these key variables. In particular, we allow this
correlation to be “state dependent” and therefore to depend upon market conditions at
any particular point in time. This is accomplished by considering a number of differ-
ent copula specifications that allow for varying dependency structures. Our empirical
application is to a set of 6 spatially distinct North American OSB markets.

We find that the adjustment to large departures from parity tends to provoke more
substantial equilibrating adjustments than is the case for smaller deviations. The cop-
ulas allow for significant differences in the strength of bivariate relationships among
prices in the tails of the marginal distributions of price differentials. That is, very
large differences in prices at spatially distinct locations (i.e., extreme values in the
tails of the distribution of price differentials) lead to substantially faster and more
significant adjustments toward equilibrium parity relationships. This result is revealed
through estimates of parametric copula models of the joint distribution characterizing
price linkages. This finding is consistent with the results found in other nonlinear,
autoregressive models that typically reveal stronger and faster adjustments to larger
deviations from parity. We compare our results to the standard vector autoregressive
and smooth transitionmodels commonly used to evaluate price parity. Goodness-of-fit
criteria are used to select the optimal copula specification and demonstrate that the
nonlinear tail behavior inherent in specific parametric copulas provides a better fit
to the data than is true for more conventional models. The results provide empiri-
cal support for the integration of these markets but also highlight the importance of
nonlinearities in the price adjustment process.

2 Econometric models of spatial price relationships

As we have noted, a vast empirical literature has considered a wide array of empiri-
cal models of price relationships across space, time, and market form. This literature
has evolved from a simple consideration of correlation coefficients and linear regres-
sion models to regime switching, time series models that allow for a form of “state
dependence” when characterizing price linkages.

Consider a homogeneous commodity traded in a common currency in two regional
or international markets represented, respectively, by location indices i and j. The
individual market prices are denoted by Pi and Pj . The per-unit revenue to arbitragers
selling in region j is therefore (1 − κ)Pj , where κ denotes the per-unit proportional
loss in value for the commodity due to transactions (or transport) costs, 0 < κ < 1.
In general, the greater the distance between locations i and j , the closer is κ to one. A
simple model of the law of one price that incorporates the effects of transactions costs
(and possibly other frictions) can be written as:

1/(1 − κ) ≥ Pi/Pj ≥ (1 − κ), (1)

or, after taking natural logarithms and denoting pi = ln(Pi ) and p j = ln(Pj ),

− ln(1 − κ) ≥ (pi − p j ) ≥ ln(1 − κ). (2)
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The implication from Eq. 2 is that there is a band, [−ln(1− κ), ln(1− κ)], within
which no profitable arbitrage activity will occur; arbitrage is, however, profitable when
log price differentials, pi − p j , fall outside of the limits of the band. Over time, we
would expect that log price differentials within the limits of the band may follow
something very close to a unit root process, likely without drift.3 However, log price
differences that fall outside of the limits of the band should be mean reverting. The
relationship in Eq. 2 implies a transactions cost band, which has often been assumed
in the literature, and which typically yields an empirical model consistent with the
threshold or smooth transition autoregressive models described above (see, for exam-
ple, Goodwin and Piggott 2001 and Balcombe et al. 2007). As noted, these models
typically find that market price adjustments to shocks in parity conditions tend to be
faster or more apparent when the shocks are large. Threshold models typically allow
the speed or degree of adjustment to vary in accordance with the size of the disequilib-
rium implied in parity relationships. In particular, threshold models usually recognize
the fact that small price differences may not exceed the costs of conducting spatial
trade and arbitrage, whereas large differences may imply arbitrage opportunities that
are more quickly eliminated. In this analysis, we use copula-based models as an alter-
native nonlinearmodel that capturesmuch of the same behavior addressed in nonlinear
threshold and smooth transition models.

The most recent literature is usually based upon a standard autoregressive model
of the form:

�(pit − p j
t ) = α + β(pit−1 − p j

t−1) + εt , (3)

where pi and p j are logarithmic prices in regions i and j , respectively, α and β are
parameters that reflect the degree of market integration, and εt is a random, white
noise error term.4 In particular, β represents the degree of “error correction” that
characterizes departures from price parity, which are reflected in large values of pit−1−
p j
t−1. The closer β is to zero, the slower will be the adjustment to shocks.5 The “error”

term represents proportional deviations from market equilibrium. In some cases, α

is taken to represent a proportional price difference that reflects transactions costs.6

If one is confident that the price differentials (pit − p j
t ) are stationary, an equivalent

representation can be expressed as:

(pit − p j
t ) = a + (1 + β)(pit−1 − p j

t−1) + αt + εt , (4)

3 We are agnostic as to the specific linkage among prices within any transactions cost band and allow
this relationship to be determined within the context of the overall joint distribution function. Alternative
nonlinear dependencies across the span of the marginals can be accommodated within the range of copula
functions that we consider. That said, we expect to see a stronger “error correction” type of relationship for
bigger deviations from parity.
4 See, for example, Taylor (2001), who applies regime switching, time series models of this form to
empirical tests of purchasing power parity—an aggregate version of the LOP.
5 A note of explanation regarding our nomenclature may be helpful in avoiding confusion. Here and below,

we refer to values of (pit − p j
t ) as the “price differential” and values of �(pit − p j

t ) as the “differenced
price differential.”.
6 A specification that is often referred to as an “iceberg” model, reflecting the fact that the value of the
commodity melts away via a proportionally lower price as it is shipped.
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where a is a constant that is absent from the first-differenced relationship implied in
(3) and t represents a linear time trend.

Recent empirical evaluations of spatial price linkages and the law of one price have
recognized that the presence of transactions costs, which are notoriously difficult to
measure but, nonetheless, are likely to be relevant in any empirical consideration of
spatial commodity trade, may result in nonlinearities in the estimates of Eq. 3. Two
specific avenues have been adopted to account for such nonlinearities. In the first, a
“threshold” parameter that reflects the presence of transactions costs is estimated. The
linkage between prices varies depending upon whether the departure from equilibrium
represented by pit−1 − p j

t−1 is large enough to evoke spatial arbitrage. In this case,
a discrete break occurs between regimes where one regime may represent a case of
no trade, while another represents conditions of profitable trade and arbitrage. These
models are typically referred to as “threshold autoregressive” (TAR) or “threshold
vector error correction” (TVEC) models. Alternatives to this simple model permit
the switching between regimes to occur at a gradual and smooth pace.7 The speed
and degree of adjustment are implied by parameters of a “transition” function that
incorporates nonlinear patterns of adjustment. A number of different specifications
of such “smooth transition autoregressive” (STAR) models have been developed in
the literature. These models have provided considerable flexibility in modeling spatial
and vertical price linkages. However, in empirical practice, they often suffer from
complications resulting from parameters that may be unidentified under certain null
hypotheses and a resulting need to rely upon nonstandard inferential techniques.

Our approach involves a simple extension or recharacterization of the fundamental
relationship expressed in Eq. 3.Wemake use of the widely recognized correspondence
between β in Eq. 3 (or the equivalent 1 + β in 4) and the standard, linear Pearson
correlation coefficient:

β̂ = ρ̂
σ̂y

σ̂x
, (5)

where y and x correspond to the random variables �(pit − p j
t ) and pit−1 − p j

t−1, ρ
is the Pearson correlation coefficient, and σy (σx ) represents the standard deviation
of random variable y (x). The “error correction” relationship that characterizes the
linkage between markets i and j is represented in the sample correlation coefficient
ρ. To the extent that β realizes regime switching, the coefficient ρ will also reflect
switching. If such switching is dependent upon market conditions (i.e., as reflected in
the price differential), the correlation coefficient ρ may exhibit state dependence.8

The empirical approach adopted here involves considering the joint distribution
functions of �(pit − p j

t ) and pit−1 − p j
t−1 and, alternatively, of p

i
t − p j

t and pit−1 −
p j
t−1. We make use of a widely recognized, fundamental result known as Sklar’s

7 The behavior underlying spatial price linkages is likely to be discrete—representing the two states of
trade/no trade. However, in that empirical evaluations of such models almost always involve some degree
of aggregation, the patterns of adjustment may be of a more smooth nature and therefore may favor the
STAR-type models.
8 As we discuss in greater detail below, the interpretations of the relationships in 3 and 4 are not fully
analogous within the context of joint distribution functions since temporal correlation may have important
implications for the interpretation of the implied density.
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(1959) Theorem, which implies that any continuous p−variate cumulative probability
function F can be represented using the marginals and a unique copula function C(·)
for which

F(x1, x2, ..., xp) = C(F1(x1), ..., Fp(xp); ξ), (6)

where Fi (·) are marginal distributions and ξ is a set of parameters that characterize
dependence.Copulamodels have recently realizedwidespread application in empirical
models of joint probability distributions. The models essentially use a copula function
to tie together marginal probability functions that may be related.9

There are a large number of parametric families of copulas applied in the liter-
ature. Two of the most commonly used copula families are elliptical copulas and
Archimedean copulas. Gaussian and t copulas are examples of elliptical copulas,
while the Clayton and Gumbel are among Archimedean copulas. In our analysis, we
consider a range of bivariate copula specifications that permit considerable flexibility
in representing the relationships and implied patterns of adjustments to prices in spa-
tially distinct markets. As we discuss below, we use goodness-of-fit criteria to choose
the optimal specification for each comparison of prices from pairs of OSB markets.10

Of course, as is true in any model specification problem, an infinite number of specifi-
cations exist and our consideration is intended to allow for a wide range of adjustment
processes. The copula functions that we consider come from a number of different
families of specifications, each of which has its own specific properties. Elliptical
copulas have the property of radial symmetry and thus possess identical tail depen-
dencies in extremes of the distribution. A second class of copulas—the Archimedean
copulas—permits a straightforward approach to modeling dependencies with a single
parameter. We also consider a class of two-parameter copulas that provide a greater
degree of flexibility and allow for a wider range of asymmetries than is possible with
single-parameter copulas. The elliptical copulas that we consider include the Gaussian
and t copulas. AmongArchimedean copulas, we evaluate the Clayton, Gumbel, Frank,
and Joe specifications. Two-parameter mixtures of Archimedean copulas considered
in our analysis include the Clayton–Gumbel, the Joe–Gumbel, the Joe–Clayton, and
the Joe–Frank copulas. For all asymmetric copulas, we also consider rotated versions
of the functions.11 Finally, we considered the asymmetric, skewed t copula of Demarta
and McNeil (2005). This four-parameter copula nests both the Gaussian and standard
t copulas as special cases.

9 For details on construction and properties of copulas, see, among others, Joe (1997) and Nelsen (2006).
Much of the work on copulas has been motivated by their applicability to the issues in risk management,
insurance and financial economics (see, among others, Rodriguez (2003), Cherubini et al. (2004),Hu (2006),
Patton (2006), and Jondeau and Rockinger (2006)). Extensive surveys on the use of copulas in economics
and finance are provided by Patton (2009, 2012) and Patton and Fan (2014).
10 Specifically, we consider goodness of fit for the following eighteen parametric copulas: the Gaussian,
t, Clayton, Gumbel, Frank, Joe, Clayton–Gumbel, Joe–Gumbel, Joe–Clayton, and the Joe–Frank copulas.
We also consider 180-degree rotations of the asymmetric copulas, which include all of the preceding except
for the Gaussian and t copulas.
11 A copula is rotated 180◦ by using 1 − uxi in place of uxi , where uxi is the quantile corresponding to
the marginal distribution for xi . Such rotations (by 90◦ or 270◦) can accommodate inverse correlations in
copulas that can only represent positive correlation in the unrotated form. Likewise, tail dependencies can
be reversed by rotating the copula 180◦.
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In the case of spatial price relationships and nonlinear patterns of adjustment, the
degree of dependence that characterizes relationships in the tails of the distribution is
of particular relevance. The notion of smooth or discrete regime switching models that
are commonly used in empirical studies of spatial arbitrage is that the relationships
among price differentials may be different when such differentials are large. Large
price differentials correspond to large deviations from equilibrium arbitrage condi-
tions and should therefore correspond to faster rates of adjustment to return markets
to equilibrium conditions. The fact that such dependence may be different for large
price differentials reflects the influences of unobservable transactions costs. In partic-
ular, price differentials that do not exceed transactions costs do not imply profitable
arbitrage opportunities, while large differentials in excess of transactions costs should
be eliminated quickly through arbitrage behavior. Copula models are especially well
suited to considering tail behavior in that they allow for more flexible characteriza-
tions of tail dependence. The coefficients of upper tail dependence, λU , and lower tail
dependence, λL , are defined and expressed as a function of a copula as:

λU = lim
u→1− P(X2 > F−1

X2
(u)|X1 > F−1

X1
(u)) = 1 − 2u + C(u, u)

1 − u
, (7)

and

λL = lim
u→0+ P(X2 ≤ F−1

X2
(u)|X1 ≤ F−1

X1
(u)) = C(u, u)

u
. (8)

Estimation of copula models proceeds along the lines of general maximum likeli-
hood estimation techniques. Parameters are chosen by maximizing a joint likelihood
function. Model fitting criteria such as the optimized log-likelihood function value or
Akaike or Schwartz–Bayesian information criteria (AIC and BIC) can also be used.
Of course, these criteria are equivalent among single-parameter copulas. In the case
of copulas with two or more parameters, the AIC and BIC criteria apply penalties for
each parameter estimated, with a stronger penalty being applied by the BIC. In our
application, we select from among the set of 18 possible copulas by selecting that
which minimizes the value of the BIC. Our results were not particularly sensitive to
using the AIC or BIC, though exceptions in terms of the optimal specification selected
did occur.12

An additional estimation issue pertains to the representation of the marginals. One
maychoose to estimate parameters describing themarginal densities prior to estimating
the copula model in a two-step procedure or, alternatively, estimate the marginals and
the copula parameters jointly in maximizing the joint likelihood function. The latter
approach will naturally be more efficient but may also present difficult numerical
optimization problems. If such a parametric approach to representing the marginals
is to be followed, one must have a priori knowledge of the appropriate parametric
family or must entertain a wider specification evaluation that includes both marginals
and the copula. This approach may be preferred if one is interested in properties of the

12 As a reviewer has noted, comparisons of goodness-of-fit criteria across alternative specifications provide
a heuristic basis for comparing alternative specifications. Our approach is reinforced by a consideration of
Cramér von Mises (CvM) and Kolmogorov–Smirnov (KS) tests of the specifications.
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individual marginals as well as the implied dependency relationships. Alternatively,
one can use nonparametric representations of the marginal densities by considering
the quantiles of the distributions and focus on a parametric specification of the copula
model representing dependence. We adopt this latter approach and use ranks of each
individual random variable to determine nonparametric quantile functions.

Our empirical approach involves the use of conventional model fitting criteria (the
Bayesian information criterion) to determine the optimal copula specification for each
pair of spatially distinct prices from among the 18 different copula functions that we
consider. In the case of single-parameter asymmetric copulas, a parametric structure
that only allows tail dependence in one direction may be implied. This is justified
if trade tends to mostly be unidirectional, as is typical in most regional commodity
market relationships. In such cases, depending on the direction of trade flows and
which price is usually higher, the sign of these parameters could be negative or positive.
This reflects the fact that an increase in the higher price or a decrease in the lower
price will trigger a tighter relationship between the two prices (in first-differenced
form) in the subsequent period and assumes that markets display a relatively stable
basis relationship, such that one price is generally above another (a characteristic that
exists in most regional markets, where one market is usually “upstream” and the other
is “downstream”). We first model the marginals nonparametrically and then use the
quantiles to define and estimate the copulas. We estimate the parameters of the copula
models using maximum likelihood techniques.13

3 Empirical application

For the empirical analyses, we consider regional North American markets for a promi-
nent traded commodity—oriented strand board (OSB). OSB is a manufactured wood
product that was first introduced in 1978 (the forerunner to oriented strand board was
waferboard).14 The Structural Board Association (SBA) reports that in 1980, OSB
panel production in North America was 751 million square feet (on a 3/8th’s inch
basis) and that by as early as 2005, this number had grown to 25 billion square feet.
The SBA also reports that by 2000, OSB production exceeded that of plywood, and
that by 2006 OSB production enjoyed a sixty-percent market share among all panel
products in North America. OSB now accounts for the largest share of the overall
panel wood products market.

Spatial linkages in the OSB market are of particular interest because it is a
good that is widely traded across considerable distances within the North Ameri-
can continent. Consumption is widespread and spatially dispersed, while production

13 Estimation and inferences were accomplished using the “COPULA” and “NLP” procedures of SAS and
the “copula” and “VineCopula” packages of the R language. Details are available in Chvosta et al. (2011),
Schepsmeier et al. (2015), and Yan (2012). Excellent overviews of the R packages and implementation
issues are presented by Yan (2007) and Czado (2011).
14 OSB is engineered by using waterproof and heat-cured resins and waxes and consists of rectangular-
shaped wood strands that are arranged in oriented layers. OSB is produced in long, continuous mats which
are then cut into panels of varying sizes. In this regard, OSB is similar to plywood, althoughOSB is generally
considered to have more uniformity than plywood and is, moreover, cheaper to produce.
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tends to be concentrated in particular regions such as the USA, South and East-
ern Canada. Depletion of old-growth timber stocks that traditionally served as a
source for panel wood products brought about tremendous growth in the use of
engineered wood products such as OSB. A burgeoning housing market (and its
more recent contraction) has brought about a number of significant shocks to this
rapidly expanding industry. Construction market responses to large hurricanes such as
Andrew in 1992 and Katrina in 2005 are another source of OSB market price volatil-
ity that merits clearer understanding for better quantifying the economic impacts
of these catastrophic events. These and related factors underscore the importance
of understanding and quantitatively measuring linkages among regional OSB mar-
kets.

The data set consists of OSB in six regional North American markets. Specifi-
cally, the regions examined are (1) Eastern Canada (production deriving from plants
in Ontario, Quebec, and New Brunswick); (2) western Canada (production from
British Columbia, Manitoba, Saskatchewan, and Alberta); (3) mid-Atlantic USA
(production from North Carolina, Virginia, and West Virginia); (4) North Central
USA (production deriving from plants in Wisconsin, Michigan, and Minnesota); (5)
Southeast USA (production deriving from plants in Georgia, Alabama, Mississippi,
South Carolina, and Tennessee); and (6) Southwest USA (production deriving from
plants in Texas, Louisiana, Arkansas, and Oklahoma). The result is that there are fif-
teen pairwise spatial price relationships that may be examined. The price data are
for panels of 7/16th’s inch thickness and are expressed in US dollars per thousand
square feet. All price data are observed on a weekly basis and were obtained from
the industry source Random Lengths.15 The data span the period from October 2,
1998, through July 20, 2012, which yields 720 weekly observations. The basic unit
of analysis used throughout the analysis is the natural logarithm of the price ratio,
that is, ln(Pi

t /P
j
t ), where i and j indicate regional locations (i.e., i, j = 1, . . . , 6)

and t is a time index such that t = 1, . . . , T , where T = 720. The price data
are illustrated (in logarithmic and log-differential form) in Fig. 1. Histograms of
the marginal distributions of the logarithmic price differentials ln(Pi

t /P
j
t ) and the

first-differenced log price differentials �ln(Pi
t /P

j
t ) are presented in Figs. 2 and

3. Nonparametric kernel density estimates and a normal density are also presented
with each histogram. In most cases, the log differentials show a degree of skewness
and the first-differenced values appear to be leptokurtic relative to a normal den-
sity.

We first consider the time series properties of individual prices and price dif-
ferentials. The individual logarithmic prices are all nonstationary. Table 1 presents
augmented Dickey–Fuller tests of the stationarity of the price differential and the sta-
tionarity of the residual of a regression of the first price on the second price of the pair.

15 Random Lengths is an independent, privately owned price reporting service, providing information on
commonly produced and consumed wood products in the USA, Canada, and other countries since 1944.
Reported open-market sales prices are based on hundreds of weekly telephone interviews with producers,
wholesalers, distributors, secondary manufacturers, buying groups, treaters, and some large retailers. The
regional OSB price data used are FOB mill price averages
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Fig. 1 OSB price series (in log terms). a Price series b log differences relative to North Central USA

In every case, the tests indicate that the differentials are stationary and the individual
prices are cointegrated.16

We next consider the relationship between the first difference of the price differ-
ential, �(pit − p j

t ), and the lagged price differential, pit−1 − p j
t−1. A standard error

16 Nonstationarity tests for the individual prices are not presented here but are available on request. The

cointegration relationship is evaluated using the residuals from ln(Pi
t ) = α + βln(P j

t ) + εt . Note that a
test of stationarity of the price differentials is equivalent to restricting α = 0 and β = 1.
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Mid-Atlantic US / Western CanadaMid-Atlantic US / Western Canada

-0.20 -0.16 -0.12 -0.08 -0.04 0.00 0.04 0.08 0.12
0

10

20

30

40

50

60
Distribution of dp12

Mid-Atlantic US / Western CanadaMid-Atlantic US / Western Canada

-0.175 -0.125 -0.075 -0.025 0.025 0.075 0.125 0.175
0

10

20

30

40

50
Distribution of dp12

Mid-Atlantic US / Western CanadaMid-Atlantic US / Western Canada

-0.175 -0.125 -0.075 -0.025 0.025 0.075 0.125 0.175
0

10

20

30

40

50
Distribution of dp12

Mid-Atlantic US / Western CanadaMid-Atlantic US / Western Canada

-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15
0

10

20

30

40

50

60
Distribution of dp12

Mid-Atlantic US / Western CanadaMid-Atlantic US / Western Canada

-0.18 -0.14 -0.10 -0.06 -0.02 0.02 0.06 0.10 0.14
0

10

20

30

40
Distribution of dp12

Mid-Atlantic US / Western CanadaMid-Atlantic US / Western Canada

-0.12 -0.08 -0.04 0.00 0.04 0.08 0.12 0.16
0

10

20

30

40
Distribution of dp12

Mid-Atlantic US / Western CanadaMid-Atlantic US / Western Canada

-0.13 -0.09 -0.05 -0.01 0.03 0.07 0.11 0.15
0

10

20

30

40
Distribution of dp12

Mid-Atlantic US / Western CanadaMid-Atlantic US / Western Canada

-0.105 -0.075 -0.045 -0.015 0.015 0.045 0.075 0.105 0.135 0.165
0

10

20

30

40
Distribution of dp12

Mid-Atlantic US / Western CanadaMid-Atlantic US / Western Canada

-0.128 -0.098 -0.068 -0.038 -0.008 0.022 0.052 0.082 0.112
0

5

10

15

20

25

30
Distribution of dp12

Mid-Atlantic US / Western CanadaMid-Atlantic US / Western Canada

-0.128 -0.098 -0.068 -0.038 -0.008 0.022 0.052 0.082
0

10

20

30

40

50
Distribution of dp12

Mid-Atlantic US / Western CanadaMid-Atlantic US / Western Canada

-0.113 -0.083 -0.053 -0.023 0.007 0.037 0.067 0.097
0

20

40

60

80
Distribution of dp12

Mid-Atlantic US / Western CanadaMid-Atlantic US / Western Canada

-0.163 -0.113 -0.063 -0.012 0.038 0.088 0.138 0.188
0

10

20

30

40
Distribution of dp12

Mid-Atlantic US / Western CanadaMid-Atlantic US / Western Canada

-0.084 -0.060 -0.036 -0.012 0.012 0.036 0.060 0.084
0

10

20

30

40
Distribution of dp12

Mid-Atlantic US / Western CanadaMid-Atlantic US / Western Canada

-0.15 -0.11 -0.07 -0.03 0.01 0.05 0.09 0.13 0.17
0

10

20

30

40
Distribution of dp12

Mid-Atlantic US / Western CanadaMid-Atlantic US / Western Canada

-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15
0

10

20

30

40
Distribution of dp12

(a) E Can/NC US (b) E Can/SE US (c) E Can/SW US (d) E Can/MA US (e) E Can/W Can

(f) NC US/SE US (g) NC US/SW US (h) NC US/MA US (i) NC US/W Can (j) SE US/SW US

(k) SE US/MA US (l) SE US/W Can (m) SW US/MA US (n) SW US/W Can (o) MA US/W Can

Fig. 3 Histograms and kernel density estimates of logarithmic price differentials (�(pi − p j ))

correction type of model of the form typically used to evaluate the law of one price
(such as in Eq. 3) was estimated using OLS methods. The time series properties of
the price differentials were also evaluated using augmented Dickey–Fuller tests. A
finding of nonstationarity in the price differentials would suggest a lack of price par-
ity in that individual market prices are allowed to wander arbitrarily far apart. The
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estimation results and nonstationarity testing results are presented in Table 1. In every
case, the tests strongly reject the null hypothesis of nonstationarity of the price differ-
entials. Table 1 also presents the half-lives associated with each of the error correction
model estimates. Half-lives represent the period of time (in weeks) required for one-
half of a deviation from parity conditions to be eliminated. The half-lives range from
6-15weeks and thus indicate a reasonably strong degree of integration among the
regional OSB markets. In fact, the half-lives of deviations from equilibrium condi-
tions implied by these estimates are very similar to those presented by Goodwin et al.
(2011) in an application of STAR models to a similar set of OSB data.17 The linear
relationships among the individual markets imposes a constant pattern of adjustment
with no differences in adjustments to large versus small shocks. As we have noted, the
presence of unobservable transactions costs suggests the potential for nonlinearities
in adjustments. In particular, models of the LOP and of parity conditions often reveal
nonlinear patterns of adjustments with larger deviations from parity provoking faster
adjustment (and shorter half-lives) than smaller deviations. Small deviations from par-
ity may not provoke any adjustment, suggesting that the error correction coefficient
β in Eq. 3 is zero, which corresponds to an infinitely long half-life and equivalently,
locally nonstationary behavior of the price differentials. Smooth and discrete threshold
models relax this assumption by permitting two (or more) regimes that correspond to
different patterns of adjustment. Such models provide additional flexibility relative to
the standard error correction model but still are limited by the number of regimes that
are parameterized and by the manner in which switching among regimes is modeled.

In addition to the conventional error correction specification of price parity, we
also considered a smooth transition autoregressive (STAR) error correction model.
We allowed for two regimes that are linked by a logistic transition function of the
form:

�(pit − p j
t ) = (α + β(p j

t−1 − pit−1)) + F(τ, γ )(α + β(p j
t−1 − pit−1)) + εt , (9)

where F(·) is the logistic transition function with a threshold parameter of τ and a
speed of adjustment parameter of γ :

F((p j
t−1 − pit−1), τ, γ ) = 1

1 + eγ ((p j
t−1−pit−1)−τ)

. (10)

This specification suggests that regime switching will be triggered by the lagged price
differential (i.e., the forcing variable).

In addition to the linear and STAR error correction models, we consider three alter-
native specifications as a benchmark for evaluating the copula model estimates. This
includes a Gaussian copula, which is similar in spirit to the linear models, a t copula,
which allows for positive but symmetric tail dependence, and a skewed t copula, which
allows for asymmetric tail dependence. The t copula nests theGaussian, and the skewed
t copula nests the t and Gaussian copulas. It should be noted that the goodness-of-fit
statistics for the conventional error correction models cannot be directly compared to

17 Deviation half-lives are given by ln(0.5)/ ln(1 − β).
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those for the copula models since the copula models do not parameterize the marginal
distributions. However, a Gaussian copula (Table 3) provides an analogous benchmark
for evaluating the fit of the copula models.

Table 2 presents log-likelihood function and BIC values for the linear and STAR
error correction specifications. In every case, the linear model specification is strongly
preferred by theBIC.TheSTARmodels involve an eight-dimensional set of parameters
and the penalty associated with the loss in degrees of freedom significantly offsets the
modestly higher log-likelihood function values associated with the STAR model. The
nonlinearity tests of Lukkonen, Saikkonen, and Teräsvirta are included in the table
and indicate the presence of nonlinearity in 5 of the 15 cases. STAR model estimates
are only presented in those cases where linearity is rejected. Teräsvirta (1994) had
shown that STAR models may suffer from an identification problem when a linear
specification is supported. The transition parameters indicate very swift switching
between regimes in every case.18

Table 3 presents BIC criteria for the optimal copula specification (from the 18
models considered) and for the t, skewed t, and Gaussian copulas. The error correction
specification of price differentials usually favor alternatives to the t and Gaussian
specifications. However, the Gaussian model is favored in 4 of the 15 cases. In most
cases, a survival Gumbel or Clayton specification receives the most support. In the
case of the copula model in levels, a t-specification is favored in 6 of the 15 cases. In
both model specifications, significant tail dependence is suggested.

Table 4 presents maximum likelihood estimation results for a copula representation
of the standard error correction model of the LOP. In particular, the joint distribution
of �(pit − p j

t ) and (p j
t−1 − pit−1) is represented by copula model estimates, with the

parametric form of the copula being chosen by minimizing the Bayesian information
criterion (BIC) among the 18 different copula specifications considered. The marginal
distributions of each variable are represented using nonparametric, empirical cd f ’s.
Note again that the interpretation of the copula estimates as representing the joint
probability distribution function may be complicated by the temporal correlation that
is inherent in the specification, which relates the first difference in the price differential
to the lagged value of the differential. Note also that we switch the sign of the price
differential (essentially rotating the relationship) in order to represent the relationship
in terms of positive dependence rather than the negative dependence associated with
the error correction parameters in Table 1. We undertake this simple transformation to
accommodate the fact thatmanyArchimedean copulas are only capable of representing
positive dependency relationships. In the case of the Gaussian and t copulas, θ̂1 is the
correlation parameter, and for the t parameter, θ̂2 is the degrees of freedom parameter.

A variety of different copula specifications are found to be optimal in representing
the linkages among the 15 different pairs of market prices. In most cases, the optimal
specification tends to be asymmetric with zero tail dependence in one of the tails.
Interpretation of tail dependence in cases where such dependence is only allowed
in one tail can be aided by a consideration of the typical basis relationships among
markets. In particular, to the extent that one market tends to export to another, we

18 In the interest of space and in light of the BIC values, we do not present estimates of the STAR model.
These estimates are available from the authors on request.
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generally expect to see price differences tending to be either positive or negative, but
not both. This reflects the presence of transactions costs which are a component of
basis price differences. The asymmetry in commodity flows is a relatively common
feature in most basic commodity markets, including manufactured wood products.
Figure 2 presents nonparametric densities for the price differentials for all six pairs
of markets. In nearly every case, definite patterns of basis, reflecting a relationship
where one market price is generally above another, are indicated. Further, skewness
is apparent in all of the nonparametric densities illustrated in Fig. 2, indicating that
large departures from price equality are more common in one direction than another.
This suggests that the asymmetric tail dependence associated with the Clayton and
Gumbel copulas (and their rotated versions) may be appropriate. The parameter values
defining the copula relationships are all highly statistically significant.

Deheuvels (1979) introduced the idea of rank-based, nonparametric empirical cop-
ula functions and demonstrated that they converge uniformly to the underlying true
parametric copula. Genest andRivest (1993),Wang andWells (2000), andGenest et al.
(2009) discussed a number of goodness-of-fit statistics based upon general Cramér von
Mises (CvM) and Kolmogorov–Smirnov (KS) types of statistics. These tests are based
on a comparison of the nonparametric empirical copula function and the proposed
parametric copula. In the case of rotated copulas, the uniform variates are transformed
and the goodness-of-fit procedure for the corresponding nonrotated copula is used.
Berg and Bakken (2006) noted that the KS statistic tends to be sensitive around the
median of the distribution and less sensitive to deviations in the tails. In contrast, they
point out that the CvM statistic tends to be stable across the distribution, including
deviations in the tails. We apply both the CvM and KS specification tests to evaluate
the goodness-of-fit for each fitted copula model. Genest et al. (2009) noted that the
limiting distribution of the statistic may be sensitive to sample size and to the family
of copulas included under the composite null hypothesis. They recommend a double
bootstrap procedure as an alternative to tabular critical values.We pursue this approach
and utilize 1,000 bootstrap replications in our evaluation of each specification.

The test statistics support the chosen specification in 12 of the 15 cases. The
alternative versions (CvM and KS) of the goodness-of-fit statistics lead to identi-
cal conclusions at the α = 0.05 level, though differences arise at smaller α levels.
In the cases of the Eastern Canada/North Central US, North Central US/Southeast
US, and the Southwest US/Mid-Atlantic US price comparisons, the specification tests
do not support the chosen specification at the 0.05 level. However, the specification
is supported by at least one of the specification tests at the α = 0.01 in every case.
Specifically, the KS test supports the specifications in every case though the CvM test
rejects the specification at the 0.01 level for Eastern Canada/North Central USA and
North Central USA/Southeast USA

Table 4 also presents the values of Kendall’s τ statistic. Noting that the sign of
the implied dependency is reversed, these values suggest a reasonable degree of pos-
itive dependency and thus support a general notion of market integration. Upper and
lower tail dependencies are also presented for the estimated copula for each pair of
markets. In most cases, significant dependency in one or the other tail (again reflect-
ing the fact that the Archimedean copulas impose zero dependency in one tail) is
revealed. Only in the cases of the Eastern/Western Canada, Mid-Atlantic US/Western
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1256 B. K. Goodwin et al.

Canada, North Central US/Western Canada, and Southeast US/Western Canada price
comparisons did the estimates suggest zero dependency in both tails (i.e., a Gaus-
sian copula specification). Results from these four cases are consistent with constant
linear correlation and thus are analogous to the OLS regression estimates of the stan-
dard error correction model represented by Eq. 3. The nature of the price linkages
implied by the copula models can be illustrated through a consideration of the joint
probability density function. A constant linear relationship is implied in the elliptical
shape imposed by a Gaussian copula. Positive tail dependencies that correspond to
nonlinear patterns of adjustment to deviations from parity are implied for joint dis-
tribution functions that deviate from an elliptical shape. In particular, the types of
adjustments implied by nonlinear error correction models such as threshold autore-
gressive models are represented by joint densities that are “pinched” in one or both
tails.

An alternative specification that involves reparameterizing the relationship implied
by Eq. 3 into that of 4 involves a copula model of the joint distribution of (pit − p j

t )

and (pit−1 − p j
t−1). Patton (2009) discussed the application of copulas for autocorre-

lated, univariate time series of the form C(yt , yt−1), which is analogous to our second
specification where yt = pit − p j

t . In a fashion identical to that used in the preced-
ing application, maximum likelihood estimation methods were used to estimate the
specification that minimized the BIC across the 18 different copulas considered. The
resulting estimates and summary statistics are presented in Table 5. Several differ-
ences in terms of the form of copula and the implied extent of tail dependence are
apparent when compared to the results in Table 4. Of course, the specification of the
data generating process is different and one would not anticipate any direct corre-
spondence in terms of the optimal copula or degree of tail dependence. The CvM
and KS goodness-of-fit statistics support the specification for 12 of the 15 cases at
the α = 0.01 level and 11 of the 15 cases at the α = 0.05 level. Although the
alternative specification tests generally agree and the p-values tend to be very sim-
ilar, some differences do exist. An interesting finding is that a much greater degree
of dependency in opposite tails is apparent and in no case do the results support a
standard Gaussian specification. Dependencies are generally large and Kendall’s τ

values tend to be around 0.7–0.8. This reflects a high degree of temporal dependence
in the price differentials though, as was indicated by the ADF testing results presented
in Table 1, the roots of the process appear to be considerably away from 1.0. An
implicit test of the optimal copula specifications against a conventional linear model
(fit by maximum likelihood methods) can be derived from a consideration of the
goodness-of-fit criteria and tests for a standard Gaussian copula model. A Gaussian
specification is preferred by the BIC criterion in only 4 of the 15 cases for the error
correction specification and in none of the comparisons of the price differentials in
levels.

Figures 4 and 5 present the joint probability distribution contours for the 15 dif-
ferent price comparisons. Figure 4 presents the distribution for changes in the price
differentials, while Fig. 5 presents the analogous distributions for differentials. A vari-
ety of different patterns of tail dependence are notable. In most cases, the dependence
is tighter in one extreme, indicating more adjustment for extreme values of the price
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Fig. 4 Joint probability density function from estimated copulas (simulated using standard normal

marginals): C(�(pit − p j
t ), (pit−1 − p j

t−1))
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Fig. 5 Joint probability density function from estimated copulas (simulated using standard normal

marginals): C((pit − p j
t ), (pit−1 − p j

t−1))
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(a) E Can/NC US (b) E Can/SE US (c) E Can/SW US (d) E Can/MA US (e) E Can/W Can

(f) NC US/SE US (g) NC US/SW US (h) NC US/MA US (i) NC US/W Can (j) SE US/SW US

(k) SE US/MA US (l) SE US/W Can (m) SW US/MA US (n) SW US/W Can (o) MA US/W Can

Fig. 6 Estimated copula function mean relationships (nonparametric marginals): C(�(pit − p j
t ), (pit−1 −

p j
t−1)). Mean relationship (red line) estimated from simulated copula models with nonparametric marginal

densities. (Color figure online)

differential. The copulas are illustrated using random variates drawn from a stan-
dard normal distribution for the marginals.19 The positive degree of tail dependencies
represented by the estimates in Tables 4 and 5 is obvious in the joint densities. For
example, the joint distributions for price pairs from Eastern Canada/North Central
USA (panel (a)) and Eastern Canada and the Southwest USA (panel (c)) exhibit obvi-
ous tail dependence. Likewise, the elliptical, symmetric distributions with zero tail
dependencies are apparent for the price pairs generated from a Gaussian copula. This
finding is consistent with the typical nonlinear patterns of adjustment that are often
revealed in nonlinear models of price parity. In economic terms, the results suggest
that market linkages may not be as strong when price differentials are small, but that
adjustment occurs rapidly when large deviations from parity arise. This is consistent
with the presence of a transactions cost band that inhibits price adjustments to small
deviations from parity but that reflect significant adjustments in response to large
shocks to price differentials.

Perhaps of greatest interest is a consideration of how the price adjustment process
varies over the different quantiles of the marginal distributions. We used the nonpara-
metric density estimates of themarginals and the estimated copula function parameters
to illustrate the price relationships.20 Fig. 6 represents the relationships between first-

19 Standard normal marginals are used only to illustrate the dependencies in the joint distributions. We use
the empirical marginals to evaluate the nature of price adjustment below.
20 Mean relationships were estimated by simulating data from the estimated copula and the nonparametric
marginal densities. Splines andhigh-ordered polynomial expressionswere thenfit to the simulated data.Note
that simulation of the joint distributions using nonparametric density estimates involved generating random,
dependent draws from the univariate values and then using a nonparametric estimate of the inverse cd f . A
fine grid was defined for the kernel density estimates of the density, and then, quantiles were matched to the

randomly drawn uniform variates to generate values of the two dependent variables (�(pit − p j
t ), (p j

t−1 −
pit−1)).
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(a) E Can/NC US (b) E Can/SE US (c) E Can/SW US (d) E Can/MA US (e) E Can/W Can

(f) NC US/SE US (g) NC US/SW US (h) NC US/MA US (i) NC US/W Can (j) SE US/SW US

(k) SE US/MA US (l) SE US/W Can (m) SW US/MA US (n) SW US/W Can (o)MA US/W Can

Fig. 7 Estimated copula function mean relationships (nonparametric marginals): C((pit − p j
t ), (pit−1 −

p j
t−1)). Mean relationship (red line) estimated from simulated copula models with nonparametric marginal

densities. (Color figure online)

differenced price differentials (on the vertical axis) and the lagged price differentials
(on the horizontal axis). The mean relationship implied by the copula estimates is
represented by the line. The parametric relationships that underlie the error correcting
price adjustment processes for the regional/international OSB markets imply impor-
tant nonlinearities. In particular, large deviations from parity typically tend to invoke
a stronger adjustment among prices. Figure 7 presents the same mean relationships
among the current and lagged price differentials. Again, nonlinearities in the error
correcting price adjustment processes appear to characterize market linkages, though
the degree of nonlinearity that is apparent in the figures is less obvious than is the case
when the relationship is expressed in first-differenced form.

Amore straightforward approach to illustrating the price adjustment process can be
obtained by considering the derivative of the relationship between the expected value of
the first-differenced price differential in time t and the value of the price differential in
time t−1. That is, we consider the adjustment processes that are implied by the copula
estimates by differentiating the expected first-differenced differential with respect to
the lagged value of the price differential:

∂E�(pit − p j
t )

∂E(p j
t−1 − pit−1)

, (11)

where E represents the expectations operator. In the case of the simple, linear error
correction model, this derivative is constant and is given by β in Eq. 3. In the case
of the nonlinear, copula models (of which a simple linear relationship is a special
case that corresponds to an elliptical Gaussian copula), the derivative may vary across
the domains of the marginals. The relationship is determined by the optimal copula
function and the estimates of the parameters that characterize this function. Figure 8
presents these relationships for the standard error correctionmodel, and Fig. 9 presents
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Fig. 8 Implied adjustment process from error correction copula model (Specification 1) ∂(�(pit −
p j
t )/∂(pit−1 − p j

t−1)). Dashed red line corresponds to slope parameter from conventional linear model
and blue curve represents copula model patterns of adjustment. (Color figure online)
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Fig. 9 Implied adjustment from Markov process copula model (Specification 2) ∂(pit − p j
t )/∂(pit−1 −

p j
t−1)). Dashed red line corresponds to slope parameter from conventional linear model and blue curve

represents copula model patterns of adjustment. (Color figure online)

the analogous relationships for the reparametrization of this relationship implied by
the joint distribution of the current and lagged values of the differentials. In each case,
the figures include the estimated values of β in Eq. 3.21

21 Derivatives are derived by solving the bivariate relationship suggested by the copula for one variable in
terms of the other. Splines and high-ordered polynomials were then used to parameterize this relationship,
and derivatives are obtained by differentiating this polynomial. This provides an accurate approximation of
the patterns of price responses that can be compared to conventional linear models.
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Several points are apparent from the figures. First, important differences in price
adjustments are apparent for extreme values of price differences. In most cases, the
adjustments appear to be stronger in one or the other tail of the distribution of the
lagged differentials. As noted above, this corresponds to the fact that most markets for
commodity trade tend to be downstream, such that important exporting regions tend to
ship to importing regions but the opposite flow of commodities may be rare. The price
adjustment processes are generally similar for the two alternative copula specifications
though a number of differences do exist. Recall that a negative value of the derivative
is expected and the larger is the derivative in magnitude, the faster is the adjustment,
and the smaller is the half-life of deviations. In most cases, the adjustment process
implied by the linear model, which is restricted to be constant across the distribution
of price differentials, has a value that is similar to the nonlinear adjustments in the
middle quantiles of the differentials but differs substantially in the tails. Again, this is
consistent with nonlinear adjustments that occur at a faster speed when prices are far
apart. Such adjustment, as is true inmost nonlinear time seriesmodels of the law of one
price, corresponds to the actions of spatial arbitragers and the frictions associated with
unobservable transactions costs. In those cases where a Gaussian is implied, the linear
pattern of adjustment that is implied by the copulas is apparent and the derivatives are
quite similar in numerical values to the constant values implied by the standard error
correction model. More nonlinearities appear to arise for comparisons involving the
Eastern Canada market. Likewise, a greater degree of nonlinearity appears to exist
for market linkages involving the North Central USA and the Southeastern USA.
The degree of adjustment, reflected by the magnitude of the coefficients, tends to be
smaller with less nonlinearities when markets are significantly separated by distance
(e.g., eastern and western Canada, the southeast USA and western Canada). Recall
that the parameters in the error correction specification correspond to the half-lives
of deviations from parity conditions. A much longer period of time is required to
eliminate significant departures from the equilibrium relationships that are expected to
correspond to efficient parity conditions. For example, a linear error correction model
implies that a shock to the parity condition between the southeast and southwest USA
requires over 12 weeks to eliminate one-half of the deviation, whereas an analogous
shock to the southwest US and western Canadian markets requires only 7weeks for
one-half of the shock to dissipate. The copulamodels demonstrate that such patterns of
adjustment usually depend upon the magnitude of the shock, with larger price shocks
corresponding to faster adjustments.

In summary, our results uniformly support the Law of One Price for regional and
international markets for a standardized product—oriented strand board. The product
is a leading construction material and is commonly traded among US and Canadian
markets. The markets appear to be strongly linked in most cases. Nonlinear adjust-
ments are confirmed in most cases. These results are to be expected in light of the
homogenous nature of the commodity and the fluid regional trade that exists. In accor-
dance with existing research, the results indicate that market adjustments are generally
larger in response to large price differences which reflect more substantial disequilib-
rium conditions (and therefore larger arbitrage opportunities). The implications are
similar to those provided in other estimation approaches that allow for nonlineari-
ties. In particular, regime switching and threshold models generally imply that price
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linkages and adjustment patterns are stronger and quicker when deviations from equi-
librium are large. This suggests the presence of transactions costs and Heckscher’s
“commodity points.” It is also notable that the existence of a national border between
the USA and Canada does not appear to significantly inhibit price transmission and
thus that efficient trade and integration exist between US and Canadian OSB mar-
kets.

4 Summary and concluding remarks

We evaluate the adherence to the economic conditions typically required for effi-
ciently linked markets by considering the degree and nature of dependence and the
strength of market linkages implied by copula models of joint distributions of spa-
tially related prices. Our application is to a set of 6 important US and Canadian
markets for oriented strand board (OSB), which is an important building material that
is widely traded across the North American continent. To allow and model nonlin-
ear behavior that might be caused by transactions costs, we adopt specific classes of
copula functions that allow for “state-dependent” correlation and dependence, where
the state is defined by the degree of market disequilibrium represented by spatial
price differences at any point in time. Our general approach involves the use of
model fitting criteria to select the optimal copula specification and maximum like-
lihood estimation of the parameters of the copula. We evaluate the specifications
using goodness-of-fit tests. We evaluate the price adjustment process and the inte-
gration of markets by considering derivatives of the functional relationships among
price differences and differentials, which can be compared directly to standard linear
error correction models. In most cases, important nonlinearities in price adjustment
are revealed.

We find that transactions costs bands are implied by certain nonlinear patterns
of correlation and that several market linkages appear to reflect unidirectional trade.
We consider two alternative specifications of the joint density of price linkages and
obtain similar results in each case, though differences do arise. The results provide
strong support for the Law of One Price in North American OSB markets. In every
case, the results correspond to an error correction type of process for regional price
differentials whereby deviations from parity conditions are of a temporary nature. In
some cases, the responses tend to be highly nonlinear, likely reflecting transactions
costs. In other cases, results are similar to those obtained for standard linear error
correction models.

We view our approach as one more generalization of the movement toward increas-
ingly flexible, nonlinear models of price linkages. Our approach has advantages over
other approaches involving thresholds in that standard maximum likelihood infer-
ences are possible and the results can be interpreted within the context of a joint
probability distribution function. More general approaches including those that allow
for the parameters of the joint distribution to be state dependent or time varying
remain as an extension to this work. Oh and Patton (2013) and De Lira Salvatierra
and Patton (2015) had considered time-varying, dynamic copula models of asset
price spreads and returns. A similar approach to evaluating structural changes in
OSB prices that may have arisen in response to the housing market crisis is an
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appealing avenue for additional inquiry into market relationships for building materi-
als.

References

BalcombeK, Bailey A, Brooks J (2007) Threshold effects in price transmission: the case of Brazilian wheat,
maize, and soya prices. Am J Agric Econ 89:308–323

Benninga S, Protopapadakis A (1988) The equilibrium pricing of exchange rates and assets when trade
takes time. J Int Money Financ 7:129–149

Berg D, Bakken H (2007) A copula goodness-of-fit approach based on the probability integral transform,
unpublished working paper. http://www.danielberg.no/publications/gofcomp

Bessler DA, Fuller SW (1993) Cointegration between U.S. wheat markets. J Reg Sci 33:485–501
Buongiorno J, Uusivuori J (1992) The law of one price in the trade of forest products: co-integration tests

for U.S. exports of pulp and paper. For Sci 38:539–553
Cherubini U, Luciano E, Vecchiato W (2004) Copula methods in finance. John Wiley and Sons, Chichester
Chvosta J, Erdman DJ, Little M (2011) Modeling financial risk factor correlation with the COPULA

rocedure, SAS Global Forum, Paper 340–2011. SAS Institute Inc., Cary
Czado C (2011) The world of vines. In: 4th Workshop on Vine Copula Distributions and Applications,

Technische Universität München, Munich, Germany, May 2011. https://www.statistics.ma.tum.de/
fileadmin/w00bdb/www/veranstaltungen/vine_world.pdf. Accessed 31 March 2017

Deheuvels P (1979) La Fonction de Dépendance Empirique et ses Propriétés: Un Test Non–Paramétrique d
Indépendance. Académie Royale de Belgique. Bulletin de la Classe des Sciences, 5e Série 65:274–292

De Lira Salvatierra I, Patton AJ (2015) Dynamic copula models and high frequency data. J Empir Financ
30:120–135

Demarta S, McNeil AJ (2005) The t copula and related copulas. Int Stat Rev 73:111–129
Dumas B (1992) Dynamic equilibrium and the real exchange rate in a spatially separated world. Rev Financ

Stud 5:153–180
Embrechts P, McNeil A, Straumann D (2002) Correlation and dependence in risk management: properties

andpitfalls. In:DempsterMAH(ed)Riskmanagement: value at risk andbeyond.CambridgeUniversity
Press, Cambridge, pp 176–223

Engle Robert F, Granger CWJ (1987) Co-integration and error correction: representation, estimation, and
testing. Econometrica 55(2):251–276

Fackler PL, Goodwin BK (2001) Spatial Price Analysis. In: Rausser GC, Garnder BL (eds) Handbook of
agricultural economics. Elsevier Science, New York

Fang HB, Fang KT, Kotz S (2002) The meta-elliptical distributions with given marginals. J Multivar Anal
82:1–16

Genest C, Rivest L-P (1993) Statistical inference procedures for bivariate Archimedean copulas. J Am Stat
Assoc 88(423):1034–1043

Genest C, Rémillard R, Beaudoin D (2009) Goodness of fit tests for copulas: a review and power study.
Insur Math Econ 44:199–213

Giovannini A (1988) Exchange rates and traded goods prices. J Int Econ 24:45–68
Glasserman P (2004) Monte-Carlo methods in financial engineering. Springer-Verlag, New York
Goodwin BK, Grennes TJ, Wohlgenant MK (1990) Testing the law of one price when trade takes time. J

Int Money Financ 9:21–40
Goodwin BK, Holt MT, Prestemon JP (2011) North American oriented strand board markets, arbitrage

activity, and market price dynamics: a smooth transition approach. Am J Agric Econ 93:993–1014
Goodwin BK, Piggott NE (2001) Spatial market integration in the presence of threshold effects. Am J Agric

Econ 83:302–317
Heckscher EF (1916) Vaxelkursens Grundval vid Pappersmyntfot. Ekonomisk Tidskrift 18:309–312
Hu L (2006) Dependence patterns across financial markets: a mixed copula approach. Appl Financ Econ

10:717–729
Isard P (1977) How far can we push the “Law of One Price”? Am Econ Rev 67:942–948
Joe H (1997) Multivariate models and dependence concepts. Chapman and Hall, London
Jondeau E, Rockinger M (2006) The Copula-GARCH model of conditional dependencies: an international

stock-market application. J Int Money Financ 25:827–853

123

http://www.danielberg.no/publications/gofcomp
https://www.statistics.ma.tum.de/fileadmin/w00bdb/www/veranstaltungen/vine_world.pdf
https://www.statistics.ma.tum.de/fileadmin/w00bdb/www/veranstaltungen/vine_world.pdf


Copula-based nonlinear modeling of the law of one price… 1265

Jung C, Doroodian K (1994) The law of one price for U.S. softwood lumber: a multivariate cointegration
test. For Sci 40:595–600

LoMC, Zivot E (2001) Threshold cointegration and nonlinear adjustment to the law of one price.Macroecon
Dyn 5:533–576

Michael P, Nobay AR, Peel D (1994) Purchasing power parity yet again: evidence from spatially separated
markets. J Int Money Financ 13:637–657

Nelsen RB (2006) An introduction to copulas. Springer-Verlag, New York
Oh DH, Patton AJ (2013) Time-varying systemic risk: evidence from a dynamic copula model of CDS

spreads, (May 23, 2013). Economic Research Initiatives at Duke (ERID) Working Paper No. 167
Park H, Mjelde JW, Bessler DA (2007) Time-varying threshold cointegration and the law of one price. Appl

Econ 39:1091–1105
Patton AJ (2006) Modelling asymmetric exchange rate dependence. Int Econ Rev 47:527–556
Patton AJ (2009) Copula-based models for financial time series. In: Andersen TG, Davis RA, Kreiss J-P,

Mikosch T (eds) Handbook of financial time series. Springer Verlag, Berlin
Patton AJ (2012) A review of copula models for economic time series. J Multivar Anal 110:4–18
Patton AJ, Fan Y (2014) Copulas in econometrics. Annu Rev Econ 6:179–200
Reboredo JC (2011) How do crude oil prices co-move?: A copula approach. Energy Econ 33:948–955
Richardson DJ (1978) Some empirical evidence on commodity arbitrage and the law of one price. J Int

Econ 8:341–351
Rodriguez JC (2003) Measuring financial contagion: a copula approach. J Empir Financ 14:401–423
Schepsmeier U, Stoeber J, Brechmann EC, Graeler B, Nagler T, Erhardt T (2012) Package VineCopula

R-Project CRAN Repository, July 2015
Schweizer B, Sklar A (1983) Probabilistic metric spaces. Elsevier Science, New York
Sephton PS (2003) Spatial market arbitrage and threshold cointegration. Am J Agric Econ 85:1041–1046
Sklar A (1959) Fonctions de rèpartition àn dimensions et leurs marges. Publ Inst Stat Univ Paris 8:229–231
Smith MS, Gan Q, Kohn RJ (2011) Modelling dependence using skew t copulas: Bayesian inference and

applications. J Appl Econom 27:500–522
Taylor AM (2001) Potential pitfalls for the purchasing-power-parity puzzle? Sampling and specification

biases in mean-reversion tests of the law of one price. Econometrica 69:473–498
Teräsvirta T (1994) Specification, estimation and evaluation of smooth transition autoregressive models. J

Am Stat Assoc 89:208–218
Thursby MC, Johnson PR, Grennes TJ (1986) The law of one price and the modelling of disaggregated

trade flows. Econ Model 3:293–302
Wang W, Wells MT (2000) Model selection and semiparametric inference for bivariate failure-time data. J

Am Stat Assoc 95(449):62–72
Yan J (2007) Enjoy the joy of copulas: with a package copula. J Stat Softw 21(4):1–21
Yan J, Kojadinovic I (2012) Package ‘copula,’: multivariate dependence with copulas, R-Project CRAN

Repository

123


	Copula-based nonlinear modeling of the law of one price for lumber products
	Abstract
	1 Introduction
	2 Econometric models of spatial price relationships
	3 Empirical application
	4 Summary and concluding remarks
	References




