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Abstract
1.	 Climate change vulnerability assessments are commonly used to identify species 
or populations at risk from global climate change, but few translate impact assess-
ments to climate change adaptation actions. Furthermore, most climate change 
adaptation efforts emphasize where to implement management actions, whereas 
timing remains largely overlooked. The rate of modern climate change introduces 
urgency in evaluating whether delaying conservation actions compromises their 
efficacy for reaching important conservation targets.

2.	 We evaluated the importance of multiple climate change adaptation strategies includ-
ing timing of actions on preventing extinctions for a threatened climate-sensitive spe-
cies, the Eastern Massasauga rattlesnake (Sistrurus catenatus). We parameterized a 
range-wide population viability analysis model that related demographic sensitivities 
to drought events and human-modified land cover to assess vulnerability to future 
climate change. Using simulations, we assessed the efficacy and trade-offs associated 
with alternative climate adaptation strategies aimed at maximizing the number of fu-
ture populations including when to initiate conservation actions, duration of manage-
ment, number of managed populations, and local management effectiveness.

3.	 Population-level projections under future climate change scenarios revealed a 
broad-scale pattern of range contraction in the southwestern portion of the cur-
rent range. Along the extinction gradient, we identified demographic strongholds 
and refugia critical for population persistence under climate change as well as 
populations at high risk of extinction and candidates for climate change adapta-
tion actions.

4.	 In the context of future climate change, the timing of conservation actions was 
crucial; acting earlier maximized chances of achieving conservation targets. Even 
considering uncertainty in climate change projections, delaying actions was less 
efficient and introduced undesirable trade-offs including the need to implement 
conservation actions for longer or targeting more populations to achieve a similar 
conservation target.

5.	 Synthesis and applications. Our findings highlight how acting quickly reduces risk 
and improves outcomes for a highly vulnerable species under future climate 
change. Climate change vulnerability assessments require translation of 
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1  | INTRODUC TION

During periods of rapid environmental change, conservation actions 
that are not implemented in a timely manner may miss windows of 
opportunity resulting in inefficient use of resources, or at worst, fail-
ure to reach conservation goals. Delays can occur at various points 
in decision-making processes for threatened species management, 
including listing a species (Martin et al., 2012) or delayed implemen-
tation of on-the-ground conservation measures (Martin, Camaclang, 
Possingham, Maguire, & Chadès, 2017). Decisions on how quickly or 
how long to act, or when actions should change, such as shifting 
resources from monitoring to alternative actions, impact strategic 
interventions aimed at threatened species management and ulti-
mately biodiversity conservation (Lindenmayer, Piggott, & Wintle, 
2013; Ng, McCarthy, Martin, & Possingham, 2014). Managers faced 
with limited resources must make these decisions in the context of 
other considerations such as how many sites or populations to man-
age, and how aggressively to manage. Improved understanding of 
the long-term consequences of timing of conservation actions, and 
of the trade-offs involved in a broader management context, can 
aid decision making during periods of rapid environmental change.

Anthropogenic climate change introduces both uncertainty 
and urgency to the timing of management actions. Climate change 
varies not only regionally, but across multiple ecologically rele-
vant temporal scales (e.g., past and future changes in extremes 
and variability) (Garcia, Cabeza, Rahbek, & Araújo, 2014). There is 
increasing evidence of “tipping points” when small changes in the 
climate system result in strongly nonlinear responses and rapid 
shifts in novel climate space (Lenton, 2011). Consequently, both 
the rate and magnitude of exposure to climate change charac-
terize how stressors or opportunities for adaptation vary across 
a species’ range over time. Even independent of the additional 
complexities added by synergies with land-use change (Brook, 
Sodhi, & Bradshaw, 2008), spatial heterogeneity and temporal 
nonlinearities in climate change necessitate that assessments and 
actions be optimized both regionally and for specific time periods.

Climate change vulnerability assessments (CCVAs) evaluate the 
propensity and susceptibility of multiple species to be adversely im-
pacted by modern climate change (Pacifici et al., 2015). CCVAs in-
corporate a combination of intrinsic and extrinsic factors to capture 
sensitivity, exposure, and adaptive capacity, and link the spatial and 
temporal heterogeneity of future climate change to species traits 

or population trends (Williams, Shoo, Isaac, Hoffmann, & Langham, 
2008). Population viability analysis (PVAs) is one quantitative ap-
proach used to model extinction risk under climate change and as-
sociated range shifts through the interaction between population 
dynamics and changes in habitat suitability over space and time 
(Keith et al., 2008). Although PVA models are one of the more data 
intensive approaches used in a CCVA context, they are amenable to 
integrating the important components of vulnerability: sensitivity, 
exposure, and adaptive capacity (e.g., McCauley, Ribic, Pomara, & 
Zuckerberg, 2017; Naujokaitis-Lewis et al., 2013). From a practical 
standpoint, these models present a powerful approach to compare 
alternative climate change adaptation strategies using a common 
(probabilistic) currency of extinction risk (Pe’er et al., 2013).

CCVAs can support decisions for managing climate-sensitive spe-
cies and serve as a platform to assist with prioritization of adaptation 
actions. Given the resource constraints in conservation planning, 
quick management decisions need to be made regarding the most 
effective and efficient actions for reducing threats associated with 
future climate change (Pacifici et al., 2015). For individual species that 
are deemed to be especially vulnerable, translating model-based vul-
nerability to practical climate change adaptation strategies requires 
quantifying climate-demographic relationships and simulating the 
potential benefits of specific conservation actions (Game, Kareiva, 
& Possingham, 2013); however, moving from impact assessment 
to climate change actions is a step that still few CCVAs consider 
(Akçakaya, Butchart, Watson, & Pearson, 2014). Previous studies ap-
plying PVA models to evaluate alternative actions to reduce climate 
change impacts tend to emphasize the spatial dimensions of manage-
ment such as how many populations to manage, which populations 
to translocate, and where and how much habitat is required to off-
set climate change impacts (Fordham et al., 2013; Naujokaitis-Lewis 
et al., 2013; Regan et al., 2012). By comparison, the consideration of 
the timing of conservation actions, has been less frequently assessed 
in PVA-based management scenarios (but see McDonald-Madden, 
Runge, Possingham, & Martin, 2011). PVA model outputs can include 
estimates of expected time to extinction and can be used to inform 
early warning signals of climate risk, which are relevant for listing 
and categorizing species at risk of extinction (Stanton, Shoemaker, 
Pearson, & Akçakaya, 2015). However, such metrics do not directly 
inform decisions related to when to start or how long to implement 
an action. In the context of climate change and other rapidly changing 
threats it is imperative to consider the timing of management actions.

model-based outputs into tractable information for climate change adaptation 
planning. Quantifying trade-offs associated with the multidimensional decision 
space related to species conservation and recovery planning is a critical step in 
climate change adaptation.

K E Y W O R D S

climate adaptation, climate change, conservation planning, decision science, population 
dynamics, stage matrix model, threatened species, vulnerability assessment
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The goal of our study was to develop a novel species-specific 
CCVA for comparing trade-offs associated with alternative adapta-
tion strategies used for promoting persistence of a climate-sensitive 
species. In doing so, we evaluate a set of decision points that man-
agers commonly face including (a) when to implement actions, (b) 
how long to manage, (c) how many populations to target for man-
agement actions, and (d) how aggressively to manage. We first built 
a range-wide PVA model that incorporates relationships between 
demographics and climate change for the Eastern Massasauga 
Rattlesnake (Sistrurus catenatus—hereafter EMR), a threatened spe-
cies that has demonstrated rapid range contraction and vulnerabil-
ity to past climate change (Pomara, LeDee, Martin, & Zuckerberg, 
2014). Using our range-wide predictions of extinction risk under 
climate change, we explored the trade-offs associated with real-
istic management scenarios, while accounting for uncertainties in 
climate change projections. Our work addresses the heretofore 
overlooked issue of optimal timing of conservation actions in the 
context of climate change by better linking population-specific 
outcomes to tangible, concrete adaptation strategies that inform 
threatened species conservation and management into the future.

2  | MATERIAL S AND METHODS

2.1 | Study area and species

EMR is found throughout the Great Lakes Region and is federally threat-
ened in Canada (COSEWIC, 2002) and the U.S.A. (US Fish and Wildlife 

Service, 2016). Habitat loss is a primary driver of recent declines, and a 
dependency on semi-wetland habitats confers sensitivity to long-term 
changes in climate (Szymanski et al., 2016). Specifically, drought and 
flooding events pose a risk as EMR is dependent on stable water levels, 
especially during winter hibernation. Alongside habitat restoration and 
vegetation management, direct water-table manipulation is a candidate 
management action aimed at improving EMR persistence (Szymanski 
et al., 2016). We performed a CCVA for EMR by modelling range-wide 
population dynamics using demographic relationships linked to climate 
conditions and land use to assess extinction probability under differ-
ent scenarios of future climate change (Figure 1). Our approach builds 
on the demographic models of Pomara et al. (2014), who found that 
historic range-wide declines in EMR were associated with demographic 
sensitivities to both winter drought and summer flooding.

2.2 | Environmental variables

Previous research highlights the importance of environmental 
drivers of EMR adult active season survival rates including winter 
minimum temperature, summer cumulative precipitation, anthropo-
genic land cover, and winter drought (Pomara et al., 2014). Winter 
(November-March) minimum temperature (mean temperature of the 
coldest month) and summer (June-August) maximum precipitation 
(cumulative precipitation of the wettest month) were summarized 
annually from 1950 to 2010 at a spatial resolution of 0.5° from the 
Climate Research Unit (CRU) Time-Series (TS) v.3.22 dataset (Harris, 
Jones, Osborn, & Lister, 2014). Our measure of anthropogenic land 
cover included both agricultural and urban cover classes based on 

F IGURE  1 Overview of the climate change vulnerability assessment process including simulation-based approach to identify trade-offs 
with conservation action decision points that consider temporal dimensions: (1) when to start an action and (2) duration of action, or spatial 
dimensions: (3) number of populations managed and (4) local management effectiveness
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the North American Land Change Monitoring System classification 
(NALCMS). Specifically, we used the proportion of agricultural and 
urban cover within a 5-km radius to capture the landscape-scale ef-
fects of human impact on land cover (NALCMS, 2010). We assumed 
that land cover remained static under future climate change scenar-
ios due to unavailable future projections of land cover change.

We used the Standardised Precipitation-Evapotranspiration Index 
(SPEI) as a drought index instead of the Palmer-Drought Severity 
Index. SPEI incorporates a measure of potential evapotranspiration 
(PET), and by capturing the effect of changing temperatures on water 
availability it improves on drought indices relying only on precipita-
tion, especially in the context of climate change applications (Vicente-
Serrano, Beguería, & López-Moreno, 2010). We selected a 12-month 
long period for derivation of SPEI as this corresponds to a temporal 
resolution of drought characterization of relevance to EMR popula-
tion dynamics that are modelled on an annual time-step. SPEI data 
were accessed from the SPEIbase v2.3.1 (Beguería, Vicente-Serrano, 
Reig, & Latorre, 2014), which uses climate data from the CRU TS 
v.3.22 dataset (Harris, Jones, et al., 2014) and employs the Penman-
Monteith method for estimation of PET. Monthly SPEI values were 
averaged over the five winter months of November through March, 
for each year from 1950 to 2010, at a spatial resolution of 0.5°.

2.3 | Climate change projections

Using the delta method, we produced finer-resolution and bias cor-
rected annual climate projections for each climate variable, including 
winter SPEI, winter minimum temperature, and summer cumulative 
precipitation. This ensured a continuous dataset from the observation-
based data (recent historical climate data) and model-based climate 
projections (future data). Methodology followed (Harris, Grose, et al., 
2014) and details are included in the Supporting Information. Gridded 
projections of winter minimum temperature and summer cumulative 
precipitation were downloaded at a resolution of 12 km (Reclamation, 
2013). Gridded projections of the original SPEI data varied in spatial 
resolution, but were downscaled to a common resolution of 0.5° 
(Table S1; Cook, Smerdon, Seager, and Coats (2014)).

Global climate projections were based on the World Climate 
Research Programme’s (WCRP’s) Coupled Model Intercomparison 
Project phase 5 (CMIP5) multimodel dataset, for the highest 
Representative Concentration Pathway (RCP) 8.5. RCP8.5 corresponds 
to a radiative forcing of approximately 8.5 W/m2 and represents the 
largest increases in greenhouse gases across all RCPs. Current emis-
sions continue to track this high end emission scenario (Peters et al., 
2013). Given the need to develop robust adaptation strategies we se-
lected this single yet currently realistic scenario and applied a larger 
number of Global Circulation Models (GCMs) (n = 11) to capture higher 
inter-model climate model uncertainties (Table S1, Lutz et al., 2016).

2.4 | Survival modelling

We modelled the relationship between adult active season survival 
estimates and environmental variables using binomial generalized 

linear models with a logit link function. Survival rates from across 
the species range from Jones et al. (2012) were expressed as pro-
portions, and each observation (n = 17) was weighted by the num-
ber of cases (i.e., telemetered snakes, which ranged from 12 to 48). 
Specification of main effects was constrained to a maximum of three 
variables to facilitate interpretation, and all variable combinations 
were considered using an information-theoretic approach. We used 
Akaike’s information criterion for small sample sizes (AICc) to identify 
highest ranked models, given the data. To account for model-based 
uncertainty with our models of EMR active season survival, and 
given our primary goal of prediction, we model-averaged parameter 
estimates of the top 95% confidence model set (i.e., cumulative AICc 
weight of models ≤0.95) (Symonds & Moussalli, 2011). We projected 
active season survival rates based on model-averaged parameter es-
timates annually through 2100 using the adjusted future annual time 
series based on climate anomalies (Banner & Higgs, 2017). Thus, 
survival rates varied over space and time and incorporated the sim-
ulated future climate projections associated with winter minimum 
temperature, summer cumulative precipitation, and SPEI on an an-
nual time-step. Projections were performed for each of the GCMs 
independently. Model selection, model-averaging, and assessment 
of variable importance were performed using the MuMIn package 
(Barton, 2013) using R v.3.2.0 (R Core Team, 2015).

2.5 | Climate-driven PVA model

We parameterized a population-level range-wide demographic 
model for EMR where fecundity and survival estimates were com-
bined to parameterize a females-only, age-based with 11 classes, 
stochastic population model across the geographical distribution 
of EMR (Table S2, Faust, Szymanski, & Redmer, 2011; Pomara et al., 
2014). Survival rates varied by population (npop = 226) annually from 
1965 to 2100. Climate-driven population dynamics were introduced 
to adult (ages 3–9) and senescent (age 10) age class survivals using 
the statistical adult survival model projections, with future estimates 
(2011 onward) based on downscaled climate projections for each 
of the 11 GCMs independently. Using RAMAS GIS software v6.0 
(Akçakaya & Root, 2013), temporal trends in adult and senescent 
adult survival rates were specified as time series of relative changes 
in survival estimates. Further details including parameterization of 
the climate-driven PVA model and model validation data and meth-
ods are in the Supplementary Information.

Simulations of range-wide population dynamics were initiated in 
1965 and run forward to 2100, for each GCM (n = 11) separately. 
Population status from 2010 were used to initiate future model runs 
and were based on expert-derived data synthesized in Pomara et al. 
(2014; see Supplementary Information). Each simulation incorpo-
rated demographic and environmental stochasticity and was run 
10,000 times. To identify populations representing demographic re-
fugia from climate change, we quantified the projected population-
level probability of quasi-extinction under climate change. We set 
the quasi-extinction threshold at 25 individuals following Faust 
et al. (2011), which reflected populations considered effectively 
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extirpated and was based on the best available expert knowledge. 
We synthesized results over multiple future time points (current: 
2010, mid-century: 2050, late-century: 2100) by averaging out-
comes 10 years prior to minimize variation associated with annual 
variability in projections.

2.6 | Simulating management decision 
points and actions

Managers often require making decisions around number of popula-
tions to manage, the timing of management actions, and which type 
of management action to implement. We translated these decisions 
into population-level consequences using a simulation approach 
where investments in conservation actions were varied to explore 
trade-offs in the decision landscape (Figure 1). We represented these 
decision points by simulating improvements to adult survival given 
the evidence for demographic sensitivities in relation to various cli-
matic factors (Pomara et al., 2014). For the EMR, restoring wetland 
habitat and direct water-table management are two different actions 
that might improve survival by minimizing local drought effects.

We randomly sampled the number of populations to target for 
management actions in a given simulation. We applied a random 
uniform distribution where the minimum number of populations 
was set to 5 with a maximum representing the number of popula-
tions with a corresponding predicted quasi-extinction probability of 
≥0.1. This upper limit threshold reflects the criteria used to identify 
self-sustaining populations based on the recent status assessment 
of EMR in the USA whereby populations with a probability of per-
sistence >0.9 were qualitatively considered robust (Szymanski et al., 
2016). EMR consists of three genetically distinct subunits, where 
each subunit is considered to represent an area of unique adaptive 
diversity (Western, Central, and Eastern; Ray et al., 2013). To ensure 
representation across this gradient of genetic diversity, we randomly 
sampled populations by genetic subunit.

To address the importance of timing of conservation actions, 
we varied two parameters: the year that the conservation action 
began and the duration of management. We applied a uniform dis-
tribution to randomly sample the start year of management, which 
ranged from 2011 to 2090. The number of years an action was im-
plemented varied between 1 and 50 years and was sampled from a 
uniform distribution. Our conservation actions were initiated during 
the sampled start year and implemented in successive years until 
the number of sampled years was reached. Our timing variables re-
flected when to start and how long to manage, but did not consider 
when to switch between alternative conservation actions.

We introduced two levels of conservation effectiveness to cap-
ture the variable effect of local (i.e., population-level) management 
to improve survival. Two different actions that may improve survival 
by minimizing local drought effects are restoring wetland habitat 
and direct water-table management. However, one might be more 
effective than the other, they might be implemented in tandem or 
separately, and either may be implemented with varying intensity 
or success. We distinguished between the two levels by modifying 

adult survival rates to increase to 0.78 (mean of survival estimates; 
moderate level) or to 0.90 (this represents the top 10th percentile of 
predicted estimates based on modelled outcomes; high level), when 
and where they fell below these rates; higher rates were not altered. 
This range of values represents a realistic range of survival estimates 
for EMR across its range (Jones et al., 2012). Once the duration of 
the management action ceased, the survival rates returned to the 
projected survival values based on the statistical demographic-
environmental variables relationship.

The simulation experiments were implemented using a modified 
version of an R-based program that enables automated sensitivity 
analyses of metapopulation dynamics models using RAMAS GIS 
software (Naujokaitis-Lewis & Curtis, 2016). Parameters were var-
ied simultaneously using a global sensitivity analysis approach, with 
a total of 2000 replications performed for each of the 11 GCMs. This 
resulted in a total of 22,000 replications that captured variations as-
sociated with simulations in management scenarios while addressing 
uncertainty associated with selection of GCM.

Population dynamics models were run to 2100 at which point 
population-level abundances were converted to a binary measure, 
whereby an extant population was defined as a population with 25 
or more individuals. We chose to apply climate projections until 2100 
despite the increased uncertainty with GCM projections made fur-
ther into the future as quantitative analyses of probability of extinc-
tion generally require longer timeframes. This can ensure potential 
lagged demographic responses are captured, which can be an issue 
for extremely long-lived species, and this is also a standard time 
frame (100 years) required when using PVAs to assess IUCN Red List 
status (Pe’er et al., 2013). We selected the number of extant popu-
lations across the range of EMR as our metric, and our conservation 
goal was to maximize the projected number of extant populations 
at different combinations of parameter values. We used a boosted 
regression tree (BRT) to evaluate the relative influence of the var-
ied parameters, including choice of GCM model, on the number of 
extant populations. We specified a Poisson link function and used 
untransformed data. We fit the BRT with up to two-way interactions 
by applying a tree complexity value of 2. The learning rate was spec-
ified at a value of 0.01, which was optimized to ensure a minimum 
of 1,000 trees were fit (Elith, Leathwick, Hastie, & Leathwick, 2008). 
The relative influence of each predictor variable was assessed by 
calculating its contribution to reducing the overall model deviance 
of the BRT model. We identified important modelled interactions 
by quantifying the strength of pairwise interactions while keeping 
nonfocal variables at their mean values. Implementation of the BRT 
model was performed in R v.3.3.0 (R Core Team, 2015) using the 
gbm package (Greg Ridgeway with contributions from others , 2015).

3  | RESULTS

3.1 | Demographic climate change refugia

The 6 best supported models of active season survival based on the 
top 95% confidence model set (i.e., cumulative AIC weight of models 
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≤0.95) included: winter minimum temperature (winterTemp), sum-
mer maximum precipitation (summerPrecip), winter Standardized 
Potential-Evapotranspiration Index (winterSPEI), and anthropogenic 
land cover (ALC) (Table 1). A table of the complete model selection 
outputs is included in Table S3. The relative variable importance val-
ues in the final model-averaged outcome across the top 95% confi-
dence model set were 96% for winterSPEI, 88% for summerPrecip, 
41% for ALC, and 22% for winterTemp (Table 2). Model projections 
to both mid- (2050) and late-century (2100) depicted a strong spa-
tial gradient in quasi-extinction risk across the EMR’s range with in-
creasing risk over time (Figure 2). Quasi-extinction risk was lowest 
in the northeast with a distinct extinction risk gradient increasing to 
the southwest, highlighting a broad-scale pattern of range contrac-
tion towards the northern periphery of the range. The general spa-
tiotemporal pattern of quasi-extinction risk was consistent across 
GCMs, but the largest sources of model uncertainty associated with 
choice of GCM occurred among populations within the south-central 
portion of the range, and were highest across late-century projec-
tions (Figure S1). Validation outcomes of our population dynamics 

model included an AUC of 0.78, indicating acceptable discrimination 
(Hosmer & Lemeshow, 2000). Classification metrics included a sen-
sitivity value of 0.93, and specificity of 0.62. These outcomes indi-
cate that the model was better at classifying true presences (extant) 
than absences (extirpation).

3.2 | Trade-offs between climate change adaptation 
decision points

Based on BRT analyses, the choice of GCM had the largest relative 
influence (50.4%) on the predicted number of occupied populations 
followed by start year of management action (24.8%), number of 
populations (19.2%), number of years (5%), and local management ef-
fectiveness (1.6%). Model outputs were most sensitive to the choice 
of GCM, with some GCMs leading to more pessimistic outcomes 
relative to others. Despite this disagreement among climate models, 
earlier implementation of management actions consistently resulted 
in maximising the number of predicted extant populations across the 
geographic range of EMR (Figure 3a, Figure S2).

We found an important interaction between start year and 
number of populations (Table S4, Figure 3a, Figure S2). Our results 
suggest that delaying implementation of management actions will 
require managing up to double the number of populations to achieve 
a similar conservation target than if actions were implemented ear-
lier. For example, with a conservation target of 160 populations, if 
actions were implemented in the year 2020 approximately 40 pop-
ulations would require some form of direct management, assum-
ing a trajectory reflected by the intermediate GCM, CSIRO-MK3 
(Figure 4, black-filled dot). Should actions be delayed to 2040, ap-
proximately 75 populations would require management interven-
tions to achieve the same conservation target (Figure 4, grey-filled 
dot). Delaying actions by about 20 years would thus require more 
than double the effort (i.e., number of populations) to achieve the 
same conservation target should actions have been implemented 
earlier. Ultimately, the cost of delaying actions until 2040 is the loss 
of approximately six populations (i.e., a conservation target of 154 
extant populations) for the same amount of effort (i.e., managing ap-
proximately 40 populations) (Figure 4, black-outlined dot). However, 
this lost opportunity associated with delaying actions is even greater 
with a higher amount of effort as demonstrated by the steep gradi-
ent space (Figure 4, grey-outlined and grey-filled dots).

We also found trade-offs between start year and the duration 
of management whereby delaying conservation actions would 

TABLE  1 Model selection outcomes of the logistic regression 
model of EMR active season survival as a function of winter 
minimum temperature (winterTemp), summer maximum 
precipitation (summerPrecip), winter Standardized Potential-
Evapotranspiration Index (winterSPEI), and anthropogenic land 
cover (ALC). The table includes log likelihood (logLik), adjusted AIC 
for small sample sizes (AICc), difference from the top model (∆AICc), 
and Akaike model weights (wi) for the top 95% confidence model 
set (i.e., cumulative AIC weight of models ≤0.95) and intercept-only 
model

Model logLik AICc ∆AICc wi

winterSPEI + 
summerPrecip

−37.59 83.03 0 0.424

winterSPEI + summer-
Precip + ALC

−36.29 83.92 0.89 0.27

winterSPEI + summer-
Precip + winterTemp

−37.01 85.36 2.33 0.13

ALC + winterTemp −39.91 87.66 4.63 0.042

winterSPEI + ALC −39.99 87.82 4.79 0.039

winterSPEI + ALC + 
winterTemp

−38.33 87.99 4.96 0.035

ALC −42.17 89.20 6.17 0.019

Intercept-only −52.04 106.35 23.32 3.7E-06

Parameter Estimate SE 95% CI
Relative 
importance (%)

Intercept 1.246 0.138 (0.975, 1.517) –

winterSPEI 0.447 0.194 (0.130, 0.805) 96

summerPrecip −0.455 0.236 (−0.859, −0.178) 88

winterTemp −0.041 0.109 (−0.508, 0.141) 22

ALC −0.122 0.191 (−0.671, 0.079) 41

TABLE  2 Parameter estimates, 
standard errors (SE), 95% confidence 
intervals and relative importance of 
model-averaged outcomes across the 95% 
confidence model set (cumulative 
wi≤ 0.95) for EMR adult active season 
survival
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necessitate managing for a longer number of years to achieve a sim-
ilar number of predicted extant populations (Table S4, Figure 3b, 
Figure S3). For example, if management were to start around 2020, 
on average 15 years of management would be needed to reach the 
target of 160 extant populations (Figure 3b CSIRO-MK3). However, 
delaying management by just 10 years to 2030 would require more 
than double the number of years of active management (30–50 years) 
to reach the conservation target. The number of populations and 
duration of management was the third ranked interaction, but this 
combination of variables resulted in the lowest number of predicted 
extant populations (Table S4, Figure 3c, Figure S4). To achieve a tar-
get of approximately 160 extant populations would require imple-
menting actions over 70 to 90 populations for a 30 to 50 year period. 
Although the choice of GCM was included in two interactions (with 
start year and number of populations respectively), the interaction 
size was negligible (Table S4). Overall, our results emphasize dimin-
ishing returns and loss of conservation opportunities as actions are 
delayed into the future.

4  | DISCUSSION

There is a critical need to develop species-specific models of cli-
mate change vulnerability and translate those model outputs into 
tractable information for conservation decision making. Here we 
demonstrate that testing alternative decision points around climate 
change adaptation actions through simulations can provide this link-
age. Using a range-wide PVA model built on climate-demography 
relationships, we identified geographic regions of EMR vulnerability 
to future climate change and potential refugium critical for species 
persistence (Keppel et al., 2015). While accounting for uncertainties 

in future climate change projections, we illustrate the relative impor-
tance of timing of management actions in comparison to other more 
commonly assessed management decision points. For EMR, delaying 
implementation of management actions meant increased effort was 
needed to achieve a similar conservation target, with more lost op-
portunities and fewer options as delays grew longer. Our findings 
suggest that timing of conservation is crucial and targeted actions 
can buffer the effects of future climate change on range-wide per-
sistence, but their effectiveness is mediated by interactions among 
different decision points and future climate uncertainty.

We documented a range-wide extirpation front that was consis-
tent across GCMs; however, GCM selection introduced substantial 
variation in extinction risk (Figure S1). This variation was evident to-
wards the contracting range edge and was most pronounced in late-
century projections, an expected finding given divergence among 
GCM projections over time (Beaumont, Hughes, & Pitman, 2008). 
The resulting continuum of outcomes based on multiple individual 
GCMs present an envelope of possible climate futures, which would 
not be evident using a GCM ensemble approach (Porfirio et al., 
2014). While variation across GCMs is thus evident, the dispropor-
tionate sensitivity of populations located at the contracting range 
edge is possibly amplified by variable population dynamics occur-
ring along the extinction front (Anderson et al., 2009). While we 
incorporated potential consequences of climate change and model 
uncertainty associated with GCMs, our models did not account for 
other factors, including future land-use change. Given that land-use 
change is a recognized historical threat to EMR (Pomara et al., 2014), 
our predictions are likely conservative in this regard and under-
estimate predicted extinction risk as climate is the only dynamic 
threat considered.

Performing a CCVA and identifying populations (or species) that 
are most vulnerable to climate change does not automatically trans-
late into action; managers are faced with making decisions aimed at 
reducing threats and improving species’ recovery. Decision points 
can include actions that are spatial (e.g., how many and which pop-
ulations to target) and temporal (e.g., when and how long to imple-
ment an action). Moving beyond impact assessment to the selection 
of climate change adaptation strategies that will maximize conser-
vation outcomes is a complex process, but one that would benefit 
from a comparison of anticipated actions using scenario-/simulation-
based approaches. In the context of CCVAs, this component remains 
largely over-looked (but see Fordham et al., 2013; Regan et al., 
2012), especially with respect to the timing of conservation actions.

Knowing the critical management decision points, such as 
when it is too late to start acting, is a pervasive question for de-
cision makers and conservation scientists. Adequate warning times 
for preventing extinctions will depend on a combination of factors, 
including political will, socio-economic considerations, species’ ex-
pected responses to management actions, management objectives 
set for a species, and anticipated magnitude of climate change in a 
focal area (Akçakaya et al., 2014). We presented our results by high-
lighting the trade-offs associated with the multidimensional decision 
space. As an example, we used a conservation target of 160 extant 

F IGURE  2 Predicted population-level extinction probability 
of the Eastern Massasauga Rattlesnake in the past (1980), current 
(2010), mid- (2050), and late-(2100) century. Future extinction 
predictions represent ensemble-based syntheses averaged across 
11 Global Circulation Models used to project future climate 
change
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EMR populations and highlighted the opportunity cost of delaying 
actions in relation to the number of populations requiring manage-
ment action (Figure 3a CSIRO-MK3, Figure 4). The trade-offs are 
more apparent further into the future, and past the year 2045 a crit-
ical window of opportunity is surpassed as this target is no longer 
possible. Thus, based on these model outcomes for EMR, a critical 
window might be defined as the first 20 years (i.e., to 2040) as this 
is when consequences of trade-offs associated with conservation 
efforts are minimized. Because different managers may set targets 
differently, our approach makes the quantitative trade-offs explicit 
whereby informed decisions can be taken. Overall, our results sug-
gest the advantages of early action outweigh the possible costs 
of delaying implementation during periods of rapid environmental 
change.

Managers have several different options to conserve species 
threatened by climate change including in situ approaches that 
have the potential to offset both current and impending threats 
(Greenwood, Mossman, Suggitt, Curtis, & Maclean, 2016). In the 
case of EMR, direct water-table manipulation and vegetation man-
agement are proposed in situ strategies aimed at minimizing drought 

and flooding effects on existing EMR populations (Faust et al., 2011). 
These types of habitat modifications could provide effective changes 
to local climatic conditions experienced by EMR and help to mini-
mize negative outcomes associated with climate change. Managing 
species or populations in situ can present challenges as actions 
may not translate immediately into improved recovery outcomes 
and should also be robust to future climate change and associated 
uncertainties. Furthermore, knowledge associated with species’ re-
sponses to a specific action is typically sparse, and different actions 
could result in being more or less effective for species recovery and 
adaptation to climate change (Bonebrake et al., 2018). While we sim-
ulated two levels of conservation effectiveness, this did not strongly 
influence our model outcomes. This low ranking suggests that other 
decision points (i.e., number of populations) be prioritized as they 
are expected to have a larger impact; however, there is potentially 
larger variability in conservation effectiveness than captured by 
our simulation parameters. Efforts aimed at gaining more empirical 
knowledge of species’ responses to actions is likely to improve the 
effectiveness of management actions including whether there is evi-
dence for diminishing returns of effectiveness over time.

F IGURE  3 Contour plots depicting the relationship between decision points around management actions and range-wide number of 
populations predicted extant. Each row represents a two-way interaction based on the boosted regression tree analysis with highest ranked 
interactions between (a) number of populations and start year, followed by (b) number of years and start year, and (c) number of years and 
number of populations. Simulations were performed across 11 Global Circulation Models (GCMs), with results presented for three GCMs 
ranging from the worst-case scenario GCM (i.e., lowest number of predicted occupied populations; IPSL-CM5A-LR), a moderate scenario 
GCM (CSIRO-MK3), and the best-case scenario GCM (MRI-CGCM3). Isolines represent increments of five populations
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Deciding how to incorporate climate model uncertainties into 
decision-making will depend on management context and levels of 
acceptable risk tolerance. Relative to decision points around con-
servation actions, the choice of GCM had the largest influence on 
the predicted number of occupied populations under future climate 
change. While this resulted in different quantitative predictions 
across GCMs resulting in a range of outcomes from worst-case sce-
narios to best case ones, the patterns and trade-offs between dif-
ferent conservation strategies remained consistent across GCMs. 
Despite this consistency, our projections of extinction risk are likely 
more optimistic owing to a higher false positive rate, based on our 
model validation, where future extirpations may have been misclas-
sified as persistence. While our projections further into the future 
remained more uncertain, further research and subsequent model 
refinement as new information becomes available have an important 
role to play in reducing uncertainties and informing robust actions 
(Shoo et al., 2013). More risk-averse management may be appropri-
ate for populations showing higher disagreement among GCMs, as 
management outcomes are less certain.

Identifying trade-offs associated with alternative conservation 
actions requires several simplifying assumptions in our simulations. 
We simulated actions that improved active season survival rates, 
assuming that implementation translated to an immediate increase 
in survival rates. Additionally, once the duration of an action was 
complete, survival rates returned to the original projections rather 
than staying elevated. Depending on the specific management ac-
tion, population-level responses could lag behind initial implemen-
tation. For example, direct water-table manipulation may result in 
immediate effects on survival while attempting to improve water-
table levels indirectly through restoration of vegetation is more likely 
to produce a more lagged (i.e., slower) response at the population 
level. This assumption may have resulted in overly optimistic results, 
but reinforces the need to act quickly. While our approach assists in 
prioritizing and evaluating temporal relative to spatial dimensions of 
conservation actions, we did not explicitly consider costs and subse-
quent trade-offs in a cost-efficiency framework (Sebastián-González 
et al., 2011), nor when to shift between management actions, which 
are important next steps. Despite these limitations, our approach to 
simulating both climate-driven threats and the effectiveness of ad-
aptation actions in a single framework can be readily extended to 
other species and systems, which include species currently known to 
be climate-sensitive and those anticipated to be most vulnerable to 
future climate change.

Real-world situations where decisions have been delayed have 
clearly contributed to species extinctions (Martin et al., 2012). These 
delays in conservation action have even greater implications during 
a time of rapid climate change that is unprecedented over decades 
and millennia (IPCC, 2014). Conservation prioritizations for climate-
threatened species have largely not addressed timing of conserva-
tion, yet we show here that timing is critical for improving persistence 
of a climate-threatened species, even while accounting for uncer-
tainties of future climate change. Delays in decisions and actions on-
the-ground are likely to have significant negative impacts on both 
currently declining climate-sensitive species and those vulnerable to 
unprecedented changes in climate and land-use practices. There is an 
urgent need to make decisions related to the management of climate-
sensitive species while there is still an opportunity to act.
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