
1 23

Water Resources Management
An International Journal - Published
for the European Water Resources
Association (EWRA)
 
ISSN 0920-4741
Volume 32
Number 3
 
Water Resour Manage (2018)
32:985-996
DOI 10.1007/s11269-017-1850-z

Evaluation of Using Remote Sensing
Evapotranspiration Data in SWAT

Prem B. Parajuli, Priyantha Jayakody &
Ying Ouyang



1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Science+Business Media B.V., part of Springer

Nature. This e-offprint is for personal use only

and shall not be self-archived in electronic

repositories. If you wish to self-archive your

article, please use the accepted manuscript

version for posting on your own website. You

may further deposit the accepted manuscript

version in any repository, provided it is only

made publicly available 12 months after

official publication or later and provided

acknowledgement is given to the original

source of publication and a link is inserted

to the published article on Springer's

website. The link must be accompanied by

the following text: "The final publication is

available at link.springer.com”.



Evaluation of Using Remote Sensing Evapotranspiration
Data in SWAT

Prem B. Parajuli1 & Priyantha Jayakody2 & Ying Ouyang3

Received: 16 March 2017 /Accepted: 31 October 2017 /
Published online: 7 November 2017
# Springer Science+Business Media B.V., part of Springer Nature 2017

Abstract This study applied a time series evapotranspiration (ET) data derived from the
remote sensing to evaluate Soil and Water Assessment Tool (SWAT) model calibration, which
is a unique method. The SWAT hydrologic model utilized monthly stream flow data from two
US Geological Survey (USGS) stations within the Big Sunflower River Watershed (BSRW) in
Northwestern, Mississippi. Surface energy balance algorithm for land (SEBAL), which uti-
lized MODerate Resolution Imaging Spectro-radiometer (MODIS) to generate monthly ET
time series data images were evaluated with the SWAT model. The SWAT hydrological model
was calibrated and validated using monthly stream flow data with the default, flow only, ET
only, and flow-ET modeling scenarios. The flow only and ETonly modeling scenarios showed
equally good model performances with the coefficient of determination (R2) and Nash
Sutcliffe Efficiency (NSE) from 0.71 to 0.86 followed by flow-ET only scenario with the R2

and NSE from 0.66 to 0.83, and default scenario with R2 and NSE from 0.39 to 0.78 during
model calibration and validation at Merigold and Sunflower gage stations within the water-
shed. The SWAT model over-predicted ETwhen compared with the Modis-based ET. The ET-
based ET had the closest ET prediction (~8% over-prediction) as followed by flow-ET-based
ET (~16%), default-based ET (~27%) and flow-based ET (~47%). The ET-based modeling
scenario demonstrated consistently good model performance on streamflow and ET simulation
in this study. The results of this study demonstrated use of Modis-based remote sensing data to
evaluate the SWAT model streamflow and ET calibration and validation, which can be applied
in watersheds with the lack of meteorological data.
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1 Introduction

Hydrological models are developed with several model parameters, which are adjusted by the
modeler during model calibration process. When the hydrological model predicts observed
data satisfactorily as suggested by literatures, it may be considered as adequately calibrated
(Moriasi et al. 2015). Precipitation, surface runoff, ET, and infiltration are major components
in the hydrological cycle, in which precipitation and ET are the two crucial components. It is
estimated that about 60% of the moisture input from the rain, yields back to the atmosphere
due to the ET process within the hydrological cycle (Korzun et al. 1978; L’vovich and White
1990). In addition, the ET component uses about half of the solar energy captured by the earth
surface (Hunt et al. 1986; Kiehl and Trenberth 1997). Hydrological model calibration process
can be benefitted with the ET data derived from remote sensing (Immerzeel and Droogers
2008; Bastiaanssen et al. 1998; Doherty 2005). Land use and land cover conditions may
impact on exchanges of water and energy between terrestrial and atmospheric layers. There-
fore, Land use and land cover data, which generally provide vegetation information to the data
layers are commonly utilized in hydrological modeling studies. Computer models utilize
vegetation information variables or its richness based on maximum green vegetation fraction
to estimate for ET, which are generally collected using remote sensing data (Broxton et al.
2014; Los et al. 2000). Vegetation absorbs fraction of photosynthetically active radiation such
as leaf area index, fraction of green leaves measured by MODerate Resolution Imaging
Spectroradiometer (MODIS). The MODIS data collection is carried by NASA’s Terra and
Aqua satellites, which provide biophysical and surface energy information or values for model
input to estimate ET (Justice et al. 2002).

Terrestrial land use and land covers conditions, energy, carbon, and biogeochemical cycling
are affected by hydrological processes (Potter et al. 2008). In addition, factors such as green
vegetation fraction is important for agriculture and water related to agroecosystems (Asner and
Lobell 2000; Lucht et al. 2002; Parmesan and Yohe 2003). In the terrestrial agroecosystems,
the ET, which is a combined form of evaporation and the transpiration, is considered a major
component of the hydrological cycle (Hussey and Odum 1992; Drexler et al. 2004;
Parasuraman et al. 2007; Gao 2008; Zhou and Zhou 2009). Penman-Monteith, Priestley-
Taylor, and the Hargreaves methods are generally used to estimate ET, which are based on
climatological data such as heat flux, aerodynamic component, temperature etc. (Lopez-Urrea
et al. 2006; Zhang et al. 2008). Depending upon the method used for estimating ET, different
set of climatological daily input data are required in the hydrological model. These input data
includes heat flux, daily maximum and the minimum air temperature, relative humidity, solar
radiation and wind speed. The daily maximum and minimum air temperatures, solar radiation,
and humidity data are needed to estimate ET using Priestley-Taylor method. The Hargreaves
ET estimation equation needed daily maximum and minimum air temperatures data.

The actual ETestimation is a difficult process as it involves a complex instrumentation as
well as physical and biological processes. The lack of measured meteorological data in the
various watersheds to represent spatial conditions of the watershed can make ET estimation
process even further complex. While field measured ET data are lacking, remote sensing
data can be utilized to estimate net energy and the ET. Remote sensing data are widely
available for the large scale watersheds or regional scale and easily accessible than the field
measured data. The remote sensing data can provide essential information required to
quantify the net energy and the aerodynamic effects of the evapotranspiration process
(Tang et al. 2007; Gamage et al. 2011).
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In the last few decades, development of hydrological models is growing to address the
concerns from small to large scale watersheds modeling with distributed parameters.
Especially for the large watershed scale modeling, the remote sensing (RS) data can provide
a useful information for estimating ET (Overgaard et al. 2006). Accordingly, modeling
methods are needed for validating the ET data retrieved fromRS in the hydrological models.
The objective of this study was to present an operational approach to validation of RS-
derived ET data using a distributed hydrological model. The RS derived ET data, along with
other field observed data including USGS stream flow data were used to calibrate and
validate a hydrological model. In this study, the soil and water assessment tool (SWAT)
model was applied and model predicted stream flow values were compared with observed
stream flow data. The RS derived ET data were also validated accordingly. Among the
advanced watershed scale, distributed parameter based hydrological models, the SWAT
model has been widely applied for hydrological studies (Lirong and Jianyun 2012; Shrestha
et al. 2012; Parajuli et al. 2013, 2016). In addition, the SWAT model was also applied to
water quality (Pisinaras et al. 2010; Cho et al. 2012; Dakhlalla et al. 2016), and crop growth
functions (Masih et al. 2011; Kim et al. 2013; Parajuli et al. 2013, 2016; Kim and Parajuli
2014) studies in various watersheds. The SWAT model has been used with appropriate
calibration, validation, and sensitivity analysis (Kannan et al. 2007; Immerzeel and
Droogers 2008; Thampi et al. 2010; Parajuli et al. 2013; Dakhlalla and Parajuli 2016;
Daggupati et al. 2015; Yuan et al. 2015) as well as the climate change study (Ficklin et al.
2009). The method presented in this paper were tested and evaluated in the study area.

Calibration and validation of the SWAT model in the watershed studies are mostly
focused on using stream flow data only (Stone et al. 2001; Rosenberg et al. 2003; Payne
et al. 2003; Christensen et al. 2004; Parajuli 2010; Parajuli et al. 2013, 2016). In addition,
lack of field measured weather data in the watersheds can make ET estimation process
complex. While field measured ET data are lacking, RS data can be utilized in the model to
estimate ET. This study offers an important addition to the existing literatures to evaluate the
SWATmodel streamflow and ETcalibration based on remote sensing derived ET data. Four
modeling scenarios were developed for the SWAT model simulation in this study. The
specific objectives of this study was to compare SWATmodel streamflow and ETcalibration
and validation using (i) default, (ii) stream flow only, (iii) MODIS ET only, and (iv) both
stream flow and MODIS ET modeling scenarios, which are unique methods.

2 Material and Methods

2.1 Watershed and Model Use

The study area in this research is the Big Sunflower River Watershed (BSRW) which is
located in the west central Mississippi, USA (Fig. 1). The watershed is located within the
eleven Mississippi counties (Coahoma, Bolivar, Tallahatchie, Sunflower, Leflore, Wash-
ington, Humphreys, Sharkey, Issaquena, Yazoo and Warren). The watershed is dominated
by agriculture with more than 72% croplands, primarily by corn and soybean crops.
However other crops such as cotton, rice are also available in the watershed. Agricultural
activities within the BSRW may have direct impact on the health or water quality of the
Gulf of Mexico as it feeds the Mississippi River near Vicksburg, MS via the Sunflower and
Yazoo Rivers.
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The SWAT model is a continuous, semi-distributed hydrological and water quality
model with daily or sub-daily time scales, simulates surface runoff, sediment and nutrient
yields, and crop yields from the agricultural watersheds (Arnold et al. 1998; Neitsch et al.
2011). The SWAT considers watershed, sub-watersheds, and hydrological responsive units
(HRUs) as various spatial units in the model. The HRUs are lumped land areas in the
watershed sub-basins, which consist of unique soil, land cover, and management conditions
in the model (Neitsch et al. 2011). The SWAT model can be simulated in a daily, monthly,
annually depending on need. Model calculates water yield, sediment yield, nutrient yield,
lateral flow and groundwater flow, evapotranspiration, crop yield, and in-stream process of
water quality parameters for each HRU in every sub-watersheds and the watershed outlet.

The SWAT model considers crop planting and harvesting, crop rotations, tillage
operations, irrigation management, and fertilizer application inputs as described by users
in the model. The SWAT model in this modeling study used the curve number (CN)
method to estimate surface runoff. The SWAT model utilized Environmental Policy
Integrated Climate (EPIC) model within the SWAT to estimate crop growths, potential
heat units, hydrological parameters including ET (Neitsch et al. 2011). The detailed SWAT
model sub-routine descriptions are available in the theoretical documentation (Neitsch
et al. 2011).

Fig. 1 Big Sunflower River watershed showing USGS gages and sub-watersheds within the State of Mississippi
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2.2 Model Input and Modeling Scenarios

In this study rainfall and temperature data were utilized from seven weather stations in
which six weather stations data were available from the National Climatic Data Center
(NCDC 2013; Fig. 1) and one from the Delta Research and Extension Center (DREC) within
the watershed (DAWC) 2012). This study utilized monthly stream flow data (2002 to 2009)
from the Merigold, and Sunflower USGS gage stations available within the watershed. The
soil data base in the SWAT model were created using Soil Survey Geographic Database
(SSURGO) data (USDA 2005), which showed twelve major soils in the watershed. Primar-
ily, fine-silty soil contributed about 62% of the watershed area (Parajuli et al. 2016). The
USDA cropland data layer of 30 m by 30 m resolutions were utilized to generate land use
data input in the model (USDA/NASS 2009). This study also utilized 30 m × 30 m pixel
digital elevationmodel (DEM) data (USGS 2010) to delineate topographic characteristics of
the watershed. Model inputs considered auto irrigation and auto fertilization only for corn
crop. The common crop rotation in the watershed is corn after soybean crop rotation with
conventional tillage (NASS 2013). The PenmanMonteith equation was used to describe the
potential evapotranspiration (PET) algorithms in the SWATmodel (Neitsch et al. 2011). The
MODIS data as carried by NASA’s Terra and Aqua satellites was used for ET based model
calibration (Mu et al. 2011).

Four modeling scenarios were considered for the hydrologic calibration of the SWATmodel
in this study. These modeling scenarios include: (i) SWAT model default scenario considered
as a baseline condition after all inputs in the model representing the current watershed
conditions, (ii) Flow-based modeling scenario considered calibration of flow related hydro-
logical parameters in the model, (iii) ET-based modeling scenario considered use of Modis-
based remote sensing ET data for hydrological calibration, and (iv) Flow-ET-based modeling
scenario considered both flow-based and ET-based methods.

2.3 Streamflow Calibration and Validation

The SWAT-CUP SUFI-2 was used to automatically calibrate the SWAT model at the beginning
(Abbaspour et al. 2007; Parajuli et al. 2013) then manually adjusted parameters to improve
model performance. The SWAT model was calibrated and validated using monthly measured
USGS stream flow data from the two USGS gage stations Merigold and Sunflower. In
addition, to the twelve stream flow calibration parameters for the SWAT hydrologic model
calibration as described in Parajuli et al. (2013); this study added two more parameters during
refining model calibration. Therefore the total of fourteen hydrological parameters were
selected for the model calibration. These parameters were curve number (cn2), base flow
recession constant (alpha_bf), delay time for aquifer recharge (gw_delay), Manning’s Bn^
value for the main channel (ch_n2), available water capacity (sol_awc), surface runoff lag
coefficient (surlag), aquifer percolation coefficient (rchrg_dp), plant uptake compensation
factor (epco), soil evaporation compensation factor (esco), revap coefficient (gw_revap),
threshold water level in shallow aquifer in base flow (gwqmn), threshold water level in
shallow aquifer for revap (revapmn), maximum canopy storage (canmx), and effective hy-
draulic conductivity in main channel alluvium (ch_k2). The canmx parameter was ranged from
0.00 to 100.00 with 2 as the final value considered during model calibration. Similarly, the
ch_k2 parameter was ranged from 0.00 to 150.00 with 20 as the final value considered during
model calibration. Model predicted outputs were statistically analyzed using Nash–Sutcliffe
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model efficiency index (NSE), and coefficient of determination (R2) based on previous
literatures (Moriasi et al. 2007; Parajuli 2010; Parajuli et al. 2013; Kim and Parajuli 2014).

3 Results and Discussion

3.1 Monthly Stream Flow

The SWAT model predicted monthly stream flow values were calibrated and validated using
eight years of monthly measured stream flow data from the Merigold and Sunflower USGS
gage stations. The SWAT model simulation considered two years warm up period to improve
hydrologic predictions. Monthly measured stream flow data from the Merigold, and Sunflower
from January 2002 to December 2005 were used to calibrate the SWAT model, and data from
January 2006 to December 2009 were used to validate the SWAT model (Table 1). The
statistics of the model performance demonstrated the R2 values up to 0.86 and NSE values up
to 0.83 in both Merigold and Sunflower gage stations (Table 1).

Monthly measured USGS mean stream flow at Merigold, and Sunflower were 24.1 m3 s−1,
and 32.4 m3 s−1 respectively during the model calibration and validation period. The SWAT
default modeling scenario over-estimated monthly mean stream flows in both the Merigold
and Sunflower gage stations. The SWAT model default modeling scenario simulated monthly
mean stream flow of 35 m3 s-1 at Merigold (~45% over-prediction, R2 and NSE from 0.39 to
0.78), and 47.5 m3 s-1 at Sunflower (~46% over-prediction, R2 and NSE from 0.42 to 0.78)
gage stations within the watershed (Table 1, Figs. 2 and 3).

The SWAT model flow only modeling scenario simulated monthly mean stream flow of
26.9 m3 s-1 at Merigold (~11% over-prediction, R2 and NSE from 0.78 to 0.86), and
36.5 m3 s-1 at Sunflower (~13% over-prediction, R2 and NSE from 0.72 to 0.86) gage
stations within the watershed (Table 1, Figs. 2 and 3).

The SWAT model ET only modeling scenario simulated monthly mean stream flow of
28.0m3 s-1 atMerigold (~16% over-prediction, R2 and NSE from 0.75 to 0.82), and 38.4m3 s-
1 at Sunflower (~19% over-prediction, R2 and NSE from 0.71 to 0.79) gage stations within the
watershed (Table, Figs. 2 and 3). The SWAT model both flow and ET modeling scenario
simulated monthly mean stream flow of 27.0 m3 s-1 at Merigold (~12% over-prediction, R2
and NSE from 0.69 to 0.81), and 36.9 m3 s-1 at Sunflower (~14% over-prediction, R2 and NSE
from 0.66 to 0.83) gage stations within the watershed (Table 1, Figs. 2 and 3).

Table 1 Model calibration and validation efficiencies for Merigold and Sunflower stations with different
modeling scenarios

Modeling scenarios Merigold Merigold Sunflower Sunflower

Calibration Validation Calibration Validation

R2 NSE R2 NSE R2 NSE R2 NSE

Default 0.78 0.39 0.78 0.44 0.74 0.52 0.78 0.42
Flow only 0.84 0.78 0.86 0.80 0.78 0.72 0.86 0.81
ET only 0.82 0.80 0.78 0.75 0.79 0.78 0.75 0.71
Flow & ET 0.77 0.69 0.81 0.79 0.73 0.66 0.83 0.81

ET, evapotranspiration; R2 , coefficient of determination; NSE, Nash-Sutcliffe Efficiency Index
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Based on monthly mean stream flow prediction, the SWAT model flow only scenario had
the closest match with the USGS measured monthly mean stream flow during model calibra-
tion and validation as followed by both flow and ET stream flow modeling scenario, ET only
stream flow modeling scenario and default stream flow modeling scenario. However, based on
model efficiency (R2 and NSE) values ET only stream modeling scenario (R2 and NSE from
0.74 to 0.78) was equally good as flow only stream flow modeling scenario (R2 and NSE from
0.71 to 0.82) during model calibration and validation for monthly mean stream flow at
Merigold and Sunflower USGS gage stations.

3.2 Evapotranspiration

In this study, spatial distribution of the MODIS-based ET on surface energy balance was
utilized as an observed data as similar to previous studies (Venturini et al. 2007; Mu et al.
2011) to compare with SWAT model simulated ET outputs. The MODIS-based ET data was
compared with the SWAT model simulated ET outputs for the prior model calibration and
validation period from January 2002 to December 2009. The SWAT model simulation

Fig. 2 Model calibration and validation with four stream flow modeling scenarios at Merigold gage station

Fig. 3 Model calibration and validation with four stream flow modeling scenarios at Sunflower gage station
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considered default ET, flow-based ET only, ET-based ET only, and flow-ET-Based ET
modeling scenarios in this study. The statistics of the model predicted four modeling scenarios
in Table 2 below showed the R2 values up to 0.72 and NSE values up to 0.60 during model
calibration and validation. The model performance in this study showed reasonable results as
supported by previous studies (Venturini et al. 2007; Gamage et al. 2011; Bowman et al. 2015).

The average monthly MODIS-based ET for the model calibration and validation period
(January 2002 to December 2009) was 46.8 mm. In this study, the SWAT model generally
over-predicted ET in all modeling scenarios as compare to MODIS-based ET (Fig. 4). The
default ET predicted average monthly ET of 59.8 mm (27.5% over-predicted), flow-based
ET predicted average monthly ET of 69.1 mm (47.3% over-prediction), the ET-based ET
predicted average monthly ET of 50.8 mm (8.4% over-prediction), and flow-ET-based ET
predicted average monthly ET of 54.6 mm (16.5% over-prediction).

The SWAT model simulated annual average ET, water yield (WYLD) and precipitation
outputs from 2002 to 2009 (Fig. 5). Water yield is generally estimated annually is a mean
water depth in mm that leave from the watershed to the stream.Water yield in fact is a sum of
surface flow, lateral flow, and ground water flow subtracted from the transmission loss
including pond abstractions as described in the SWAT model documentation (Neitsch et al.
2011). Annual average precipitation values were determined generally greater than ET and
WYLD values. However, average annual precipitation values for 2003, 2005 and 2007 were
slightly lower than combined ET and WYLD values (Fig. 6).

Table 2 Model calibration and validation efficiencies for the watershed with four ET modeling scenarios

Modeling scenarios Calibration Validation

R2 NSE R2 NSE

Default ET 0.71 0.28 0.70 0.27
Flow-based ET only 0.56 −0.34 0.50 −0.38
ET-based ET only 0.61 0.50 0.63 0.60
Flow-ET-based ET 0.68 0.50 0.72 0.60

ET, evapotranspiration; R2 , coefficient of determination; NSE, Nash-Sutcliffe Efficiency Index

Fig. 4 Simulated evapotranspiration (ET) with four ET modeling scenarios from the watershed
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Annual mean water balance was calculated by subtracting annual mean rainfall with the
sum of ETandWYLD. The calculated annual mean water balance for the watershed during the
model calibration and validation period (2002 to 2009) determined mostly greater with a
positive values with 1.04% for default, 3.39% for flow only, 15.75% for ET only, and 14.31%
for flow-ET modeling scenarios. However, annual mean water balance values were calculated
slightly lower with a negative values for the individual years of 2003 by 65 mm, 2005 by
98 mm, and 2007 by 15 mm only with the default modeling scenario (Fig. 6). However, model
simulated average annual water balance with slightly low negative values for 2003 by10 mm,
2005 by 57 mm, and 2007 by 2 mm only with flow only modeling scenario. It is possible to
have a continuation of ET and WYLD processes, when there is no rainfall or more ET losses
than rainfall due to other climatic factors including solar radiation (Hanson 1991). The SWAT
model also permits movement of water from the bank storage into an unsaturated area to fulfill

Fig. 5 Simulated evapotranspiration (ET), water yield (WYLD), and precipitation (PCP) outputs in mm

Fig. 6 Comparison of simulated sum of water yield and evapotranspiration with precipitation for four modeling
scenarios from the watershed
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the water demand for ET, which is considered as Brevap^ process in the model (Neitsch et al.
2011). The revap process can be significant in the watershed like the BSRW, where deep-
rooted plants are growing due to corn and soybean cropping system and saturated zones are
not very far below the surface.

4 Conclusions

The SWAT hydrological model was calibrated and validated within the BSRW using monthly
stream flow data from the two USGS gage stations and four modeling scenarios with the
default, flow only, ET only, and flow-ET scenarios. The flow only and flow-ET modeling
scenarios showed equally consistent model performances for both coefficient of determination
(R2 from 0.66 to 0.87) and Nash Sutcliffe Efficiency (NSE from 0.59 to 0.84), followed by ET
only (R2 and NSE from 0.74 to 0.78) and default (R2 and NSE from 0.33 to 0.78) scenarios
during model calibration and validation at Merigold and Sunflower gage stations within the
watershed.

This study used Modis-based ET data to compare the SWAT model simulated ET outputs
with four modeling scenarios with the default, flow only, ET only, and flow-ET scenarios. The
SWAT model generally over-predicted ET in all four modeling scenarios as compare to Modis-
based ET. Out of four modeling scenarios, the ET-based ET predicted the closest average
monthly ET (~8% over-predicted) followed by flow-ET (~16%), default (~27%), and flow
based (~47%) ET scenarios. As discussed, the ET-based modeling scenario also had consis-
tently good model performance on monthly streamflow simulation from both Merigold and
Sunflower gage stations with R2 and NSE values from 0.74 to 0.78. This study demonstrated
use of Modis-based remote sensing data to evaluate calibration and validation of hydrological
model SWAT and ET, which can be applied in the watershed with the lack of meteorological
data.
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