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Wildfire, climate and ecosystem are interactive com-
ponents of the Earth system (Bowman et al 2009,
Andela et al 2017). Climate and fuel moisture, which
is heavily impacted by atmospheric conditions, are pri-
mary drivers for fire occurrence and behavior, while
vegetation provides necessary fuels for combustion
(Pyne et al 1996). On the other hand, fires can feed-
back climate and ecosystems by emitting carbon and
aerosols (Kloster et al 2010, Ward et al 2012, Urban-
ski 2014), which can affect the global carbon cycle
and atmospheric radiation. Removal of trees by fires
and subsequent multiple-year vegetation regeneration
modify albedo and leave area index (Gitas et al 2012,
French et al 2016), which would further change the
land—air fluxes of heat, water and momentum.

Research has traditionally focused on the wildfire
impacts of climate and vegetation, using the approaches
developed mainly based on empirical and statistical
weather—fire behavior relationships as well as empir-
ical and process-based vegetation—fire relationships.
Recent studies have turned more attention to the feed-
backs of fires to climate and ecosystems (Liu et al
2013). A most sophisticated tool for understanding
the complex interactions is Earth system modeling
such as the Community Earth System Model (CESM)
(Hurrell ef al 2013). An Earth system model includes
atmospheric models to provide the environmental con-
ditions for wildfires such as droughts, to simulate
atmospheric radiation and climate effects of fire carbon
and particle emissions, and to calculate the distur-
bances in land-air fluxes due to fire induced changes in
vegetation coverage, albedo and roughness. An Earth
system model also includes vegetation models such as
dynamic global vegetation models (DGVMs) (Bachelet
et al 2001) to simulate the carbon, water and nitrogen
cycles in the terrestrial ecosystems driven by atmo-
spheric chemistry, climate, land-use and land-cover
types and disturbances such as fires.

An urgent issue in fire—climate—ecosystem inter-
actions is the future fire trends under climate
change. Many general circulation models (GCMs) have

projected significant climate change by the end of
this century due to the greenhouse effect. This would
affect weather conditions important to fire ignition and
spread, including drought and heat wave frequencies
(IPCC 2013), wind strengths (McVicar et al 2012),
and potential for lightning changes (Clark et al 2017).
Climate change would also affect fuel loading and mois-
ture (Flannigan et al 2015), which would affect all
aspects of fire behavior (burned area, occurrence, dura-
tion, intensity, severity, seasonality, etc) (Spracklen
et al 2009). A special power of the Earth system mod-
els is their capacity in projecting future climate change
with the ecological and environmental consequences
and feedbacks (Kloster et al 2012, Li et al 2014, Ward
etal2016).

In a recent study, Wotton et al (2017) extended
the fire impacts of climate change from fire behavior
to fire suppression in the Canadian boreal forest. The
authors projected future fire intensity based on climate
change projections from three GCMs and the Canadian
Forest Fire Behavior Prediction System and found that
the number of crown fires would likely increase. They
examined future operational fire intensity thresholds
used to guide fire suppression decisions and showed
that the fraction of fires that are beyond the capacity
of suppression would increase substantially, even dou-
bling by the end of this century in some climate change
scenarios.

These findings suggest the needs for new develop-
ment and applications with Earth system modeling of
fire-climate-ecosystem interactions. First, the human
factor for fire termination should be treated more
dynamically. Fire termination is an essential process
besides fire ignition and spread in any fire module of a
DGVM. It is determined by both natural factors such
as weather, fuel availability and geographic barriers
and human causes such as suppression. The fraction
of unsuppressed fires in most vegetation models is
assumed to be inversely proportional to population
density with constants determined empirically or based
on historical data (Pechony and Shindell 2010). The
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result of increasing fires unsuppressed under changing
climate from Wotton et al (2017) suggests that climate
factor needs to be included in the calculation of the
fraction.

Second, the post-fire vegetation restoration could
be different between the present and future. Besides
DGVM simulation of post-fire dynamic tree regrowth,
an Earth system model also can predict the long-term
climatic impacts through specifying fire-induced land-
surface property disturbances based on historical data.
More crown fires and larger fraction of unsuppressed
fires revealed in Wotton et al (2017) mean longer
periods of tree regeneration in the future under cli-
mate change than the current estimation. Thus, the fire
tfeedbacks to climate and impacts on the carbon cycle
related to fire emissions and uptake by new generated
trees would be more significant in the future. Thus,
there might be a problem with the use of the histori-
cal approach in Earth system modeling to investigate
the feedbacks of fires to climate and ecosystems in the
future.

Finally, the black carbon (BC)—albedo—snow feed-
back induced by wildfire could be weaker than
previously estimated. Boreal fires contribute more BC
to the Arctic than anthropogenic sources during the
summer (Stohl et al 2006) and the deposition of BC
reduces albedo and increases solar radiation absorbed
by the surface, which in turn accelerates snow and ice
melting (Hansen and Nazarenko 2004 ). However, wild-
fires play an opposite role by removing trees, leading
to more snow coverage and therefore larger albedo
(French er al 2016). This would partially offset the
snow and ice melting role of the BC-albedo—snow
tfeedback. The finding of more crown fires under cli-
mate change from Wotton et al (2017) suggests an
even greater importance of the tree-removal and snow
increase effect in the future. Simulations with Earth
system models are needed to have a quantitative com-
parison between the two opposite roles.

Regional differences are concerned when mak-
ing global implications of the findings from Wotton
et al (2017). In tropical forests, there are no snow
related feedbacks; with more water and energy sup-
ply, tree regeneration might be less impacted even with
more crown fires in the future. In a savanna, the above
issues could be less significant because almost all fuels
are removed by fires. Even in the boreal regions outside
Canada, fire suppression management and thresholds
could be different, which would lead to varied impacts
of climate change on crown fires and unsuppressed
fire fraction. This concern could be addressed through
Earth system modeling and comparison of the impacts
of climate change on fire severity and suppression in
various geographic regions.

Another concern is the magnitude of projected cli-
mate change and fire impacts. Among the three GCMs
used for this study, the Hadley GCM has typically wet-
ter conditions overall across much of the forested area
of Canada. Therefore, the fire danger levels are lower
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and the summary results of fire behavior indices which
emphasize the extremes are less remarkable. Thus, the
future increase in crown fires and fraction of unsup-
pressed fires is generally much smaller for Hadley GCM
than the other two GCMs. Analyses of climate change
scenarios from other GCMs would provide more robust
evidence and quantitative estimates of the magnitude
for the fire impacts of climate change.
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