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Abstract
Spatial patterns are important features for understanding regional air quality variability. Statistical analysis tools, such as

empirical orthogonal function (EOF), have been extensively used to identify and classify spatial patterns. These tools,

however, do not directly reveal the related weather conditions. This study used singular value decomposition (SVD) to

identify spatial air pollution index (API) patterns related to meteorological conditions in China, one of world’s regions

facing catastrophic air pollution. The monthly API and four meteorological variables (precipitation, surface air temper-

ature, humidity, and wind speed) during 2001–2012 in 42 cities in China were used. The two leading SVD spatial patterns

display the API anomalies with the same sign across China and opposite signs between northern and southern China,

respectively. The meteorological variables have different relationships with these patterns. For the first pattern, wind speed

is the most important. The key regions, where the correlations between the API field and the wind speed’s SVD time series

are significant at the 99% confidence level, are found nationwide. Precipitation and air temperature are also important in

the southern and northern portions of eastern China, respectively. For the second pattern, the key regions occur mainly in

northern China for temperature and humidity and southern China for wind speed. Air humidity has the largest contribution

to this pattern. The weather-API relationships characterized by these spatial patterns are useful for selecting factors for

statistical air quality prediction models and determining the geographic regions with high prediction skills.
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1 Introduction

Large-scale air quality often displays certain spatial pat-

terns over a period of time, characterized by gradients of

air pollutant concentrations, local centers, and similarities

or contrasts between different regions. The annual fine

particulate matter PM2.5 concentrations in the United

States, for example, generally increase from about 2 lg/m3

in the central to about 15 lg/m3 in the eastern and western

coastal regions with the centers in southern California, the

Great Lakes, and the Gulf coast (Tai et al. 2010). The

ozone concentrations in Europe generally increase from its

northern and northwestern portions to the Mediterranean

coast centered in northern Italy and southern France

(Guerreiro et al. 2014).

Weather is one of the contributors to the spatial air

quality patterns (Honoré et al. 2008; Kassomenos et al.

2008; Wang et al. 2013; Yang et al. 2016). Atmospheric

processes such as droughts and heat waves can lead to

severe air pollution events over a large region (Wang et al.

2010). The PM2.5 center in the southern California

described above is associated with the stagnation condition

characterized by anticyclonic system, weak wind, no pre-

cipitation, and high temperature (Tai et al. 2010). Weather

patterns were found to be related to the orientation, gra-

dients, and characteristic patterns of daily air quality index
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(AQI) in the northern Mid-Atlantic of the United States

(Croft and Melendez 2009). Understanding the air quality

spatial patterns and their weather relationships would help

identify the major processes and mechanisms for the for-

mation of air pollution events and develop prediction tools.

China is one of the world’s regions where air pollution

has escalated dramatically in the recent decades (UN

2001). In 2013, 70 out of 74 major cities in China failed to

meet the ambient air quality standards for more than

144 days. In 2010, the high PM pollution was linked to 1.2

million premature deaths in China (Murray et al. 2012;

WHO 2014). Like in the United States, Europe, and many

other world regions, air pollution in China varies spatially

(Li and Wang 2013; Wei et al. 2009; Li et al. 2013; Wang

et al. 2013). The PM2.5 concentrations in China increase

from about 25 lg/m3 in the southern coast to more than

60 lg/m3 in northern China with a center of over 100 lg/

m3 in the Beijing mage-urban area (Rohdel and Muller

2015), and weather is an important factor for the regional

variability of air quality in the most polluted regions in

China (Kang et al. 2009; Han et al. 2009; Wang et al. 2010;

Zhang et al. 2014).

A large number of efforts have been made to monitor air

pollutions and analyze their relationships with weather.

One of the monitoring efforts was to measure air pollutants

and build an air pollution index (API) from 2000 in 42 key

cities in China. The API data have been extensively used

(Han et al. 2007; Li 2009; Liu et al. 2011; Li et al.

2012, 2013; Ren et al. 2013; Zhu et al. 2013; Zhan et al.

2013; Zhang et al. 2016; Tao et al. 2016). For example, Yu

et al. (2011) described the multi-dimensional phase space

for the API time series during a 10-year period in Lanzhou,

northwestern China and found obvious chaotic character-

istics resulted from the evolution of non-linear chaotic

dynamic systems.

The research on the weather-air quality relationship in

China as well as other world regions has been focused on

daily scale. However, there is increasing attention to long-

term (e.g., monthly and seasonal) relationships due to more

frequent occurrences of persistent air pollution events such

as forest and agricultural residue fires (Marlier et al. 2013),

winter residence heating, and spring dust storms (Zhang

et al. 2016). Long-term air pollution can affect outdoor

activities such as construction, farming, recreation, and

sport events.

Statistical techniques have been widely used to analyze

spatial air quality patterns and their empirical relationships

with weather (Cobourn 2007; Stadlober et al. 2008; Genc

et al. 2010; Zhang et al. 2012; Chien and Bangdiwala 2012;

Peterson et al. 2014; Gocheva-Ilieva et al. 2014; Kuo et al.

2015; Shahraiyni and Sodoudi 2016; Alyousifi et al. 2017).

Statistical models have great potential for long-term air

quality prediction through using averaged long-term

meteorological conditions provided by operational weather

forecasts. Also, statistical models are much more compu-

tationally efficient, which is critically important for oper-

ational long-term air quality prediction. In contrast,

dynamical models (Wang et al. 2004; Byun and Schere

2006; Sofiev et al. 2006; Tian et al. 2016) need much larger

computational resources to calculate complex atmospheric

air pollutant dispersion and transport, mixing and deposi-

tion, and chemical reactions. In addition, dynamical mod-

els depend on initial atmospheric forcing, which can affect

the subsequent atmospheric processes only for a short

period. As a result, current real-time air quality prediction

using dynamical models is mostly for 1–3 days (Zhang

et al. 2012).

One problem with statistical techniques is that, despite

air pollutants emitted mostly locally, air quality at a

specific location could be strongly affected by remote

conditions due to atmospheric transport. Different from

dynamical models which explicitly simulate air pollutant

transport and the related remote air quality effects of local

pollutant emissions, statistical techniques such as correla-

tion and regression analyses mostly consider the weather-

air quality relationships at individual sites.

Some spatial analysis tools can help solve this problem

to certain extent. Empirical orthogonal function (EOF), for

example, has been used to separate air quality conditions

into spatial patterns and temporal variations (Deng et al.

2013) through linear transformations of a field varying in

both space and time. A small number of spatially

orthonormal patterns are used to represent as much of the

variance as possible. Singular value decomposition (SVD)

(Bretherton et al. 1992; Wallace et al. 1992; Hu 1997; Wu

and Wu 2010) has the same capacity as EOF, but it sepa-

rates spatial patterns and temporal variations through linear

transformations of two fields varying in both space and

time and uses a small number of spatial patterns to repre-

sent as much of the covariance as possible. Thus, SVD is

more powerful than EOF in understanding the interactions

between two fields. Bretherton et al. (1992) compared

several methods of spatial analyses and indicated that SVD

is very simple to perform and interpret, has good general

performance without systematic bias, and directly produces

explicit measures of relationships between the derived

coupled patterns. An extremely valuable application of

SVD for predictive purposes can be obtained through

analyzing the heterogeneous correlation map, defined as

cross-correlations of a data field and its linear combination

with the SVD expansion coefficient series of the other data

field (Hu 1997).

SVD has been extensively used in meteorological

research (Wallace et al. 1992; Ding and Jiang 1996; Zhang

et al. 2010; Wang et al. 2011; Wang and Li 2012; Yao and

Li 2013; Susan and Christopher 2014; Ma et al. 2015; Yao
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et al. 2016). Wallace et al. (1992) compared applications of

several spatial analysis techniques to the interannual cou-

pling between wintertime Pacific sea surface temperature

anomalies and atmosphere 500-mb height and found that

SVD clearly isolates the two most important extratropical

modes of variability. Liu (2003a and b) found that the

prediction using the coupled SVD patterns are more skillful

than using statistical relationships at individual sites. Tao

et al. (2014) applied SVD to identify the relationships

between local temperature and remote sea-surface tem-

perature (SST) and found that extreme temperatures over

the Poyang Lake Basin were closely related to the North

Pacific SST. However, only few applications to ozone

spatial patterns in tropical and South Korea regions (Kim

et al. 2008; Seo et al. 2014) and environmental studies

(Zekri et al. 2016) are found.

This study was to analyze the spatial patterns of the air

quality index in China using the SVD technique. The

questions to be answered included (1) what are the leading

air pollution index spatial patterns that are closely related

to meteorological conditions, (2) what are the key geo-

graphic regions where the weather-air quality index cor-

relations are statistically significant, and (3) what are the

dominant meteorological variables for each of the leading

spatial air quality index patterns. The answers are expected

to provide scientific evidence for developing statistical

prediction tools for long-term air quality in China, as well

as other world regions.

2 Methods

2.1 Research area

Air quality in China was investigated (Fig. 1). For the

convenience of description, China is classified into seven

administrative divisions: Northwest (NW), North (NC),

Northeast (NE), East (EC), South (SC), Central (CC), and

Southwest (SW) China. The following terms for geo-

graphic regions are also used: northern China (including

NW, NC, and NE) and southern China (other divisions),

western China (the NW and SW portions west of 100�E)

and eastern China (rest of China), southeastern China (in-

tersection of southern and eastern China), northeastern

China (intersection of northern and eastern China), south-

western China (intersection of southern and western

China), and northwestern China (intersection of northern

and western China).

2.2 Air quality and meteorological data

The air pollution index (API) was used in this study.

China began to measure PM10, SO2, NO2, and other air

pollutants in 2000 in 42 key cities of environmental

protection (increased to 84 cities in 2004) by the Ministry

of Environmental Protection of China (http://www.mep.

gov.cn). API is estimated as follows. The concentration of

each pollutant is simplified as a single conceptual index

according to the pollutant concentration grading limit

table. The pollutant whose individual air pollution index

is the maximum among all kinds of pollutants is regarded

as the primary pollutant and its individual air pollutant

index is defined as the air pollution index. If the maxi-

mum individual air pollutant index is the same for two or

more pollutants, the primary pollutant is selected

according to the order of PM10, SO2, and NO2. Daily API

values were used to evaluate air pollution levels: 0–50

(excellent), 51–100 (good), 101–200, 201–300, and

301–500 (mild, moderate and severe pollution). We

selected the API sites and years with complete records.

Thus, the data from January 2001 to December 2012 at

the first 42 sites (Fig. 1) were used for this study.

Daily meteorological variables of precipitation (P), air

temperature (T), water vapor pressure (E), and wind speed

(V) at the corresponding 42 weather stations were obtained

from the China Meteorological Science Data Sharing Ser-

vice Network (http://cdc.nmic.cn).

Each original daily series at a site/station was first

converted to a monthly series, which consists of 144

samples (12 years 9 12 months). The seasonal cycle was

then filtered out by subtracting each value of a month from

its multiple-year average. The new series was further

normalized by dividing the standard deviation.

2.3 Singular value decomposition

Bretherton et al. (1992) applied the singular value

decomposition (SVD) to pattern analysis of two data series.

Here we briefly describe the SVD method following their

notations and some terms used in Hu (1997). We denote the

API data field as s(x,t) and a meteorological variable as

z(x,t), where x is space location and t is time. The SVD

analysis is a linear transformation:

s x; tð Þ �
XN

n

an tð Þpn xð Þ; ð1Þ

z x; tð Þ �
XN

n

bn tð Þqn xð Þ; ð2Þ

that identifies pairs of coupled spatial patterns, pn(x) and

qn(x) (also called left and right SVD spatial patterns,

respectively), and their temporal expansion coefficients,

an(t) and bn (t). Here N is the number of SVD modes, which

is equal to the number of space locations. The SVD
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analysis was conducted as follows: First, the cross-co-

variance matrix of s(x, t) and z(x, t), Csz; was calculated.

Secondly, the eigenvalues (also called singular values) rn
of the matrix were obtained by solving |Csz � rIj ¼ 0

where I is the Identity matrix. Next, the eigenvectors [that

is, the SVD patterns pn xð Þ and qn xð Þ] corresponding to each

eigenvalue were obtained. pn xð Þ and qn xð Þ and an(t) and bn
(t) are the components of an SVD mode.

All modes are arranged so that their rn appear in

descending order (i.e., ri � rj if i\jÞ. The first pair of

singular patterns describes the largest fraction of the squire

covariance between the two fields and each succeeding pair

describes a maximum fraction of square covariance that is

unexplained by the previous pairs. The contribution of the

nth mode to the total covariance of the two fields is mea-

sured by squared covariance fraction.

SCFn ¼ r2
n=

XN

n

r2
n; ð3Þ

and the cumulative contribution from the first k modes,

CSCFn, is the sum of their SCFn. The variance contribu-

tions of pn(x) to s(x, t) and qn(x) to z(x, t) are defined as

Cn;p ¼
XK

t

a2
n tð Þ=

XN

n

XK

t¼1

sðn; tÞ; ð4Þ

Cn;q ¼
XK

t

b2
n tð Þ=

XN

n

XK

t¼1

zðn; tÞ; ð5Þ

The correlations between expansion coefficient series

rn �
XK

t

an tð Þbn tð Þ; ð6Þ

have the feature with their magnitude that ri � rj if i\j.

The heterogeneous correlation maps are defined as:

corleft;n �
XK

t

s x; tð Þbn tð Þ; ð7Þ

corright;n �
XK

t

z x; tð Þan tð Þ; ð8Þ

They are called left and right heterogeneous correlations,

respectively. The SVD analysis would produce corleft;n xð Þ
from Eq. 7 and qn xð Þ from Eq. 2 based on historical

measurements. If z(x, t ? 1) is known from prediction

(e.g., weather forecast), bn t þ 1ð Þ can be obtained from

Fig. 1 The air quality measurement sites. Also shown are the administrative divisions of Northwest (NW), North (NC), Northeast (NE), East

(EC), South (SC), Central (CC), and Southwest (SW) China
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Eq. 2. Then s(x, t ? 1) (future API) can be obtained from

Eq. 7.

The SVD analysis was conducted using NCL (https://

www.ncl.ucar.edu/) and MATLAB (https://www.math

works.com/product/ltc/matlab.html). Same results were

obtained from the two tools.

2.4 Analysis method

SVD analysis was made separately between API and P, T,

E, or V. The SVD analysis of this study was focused on left

heterogeneous correlations, corleft;n xð Þ; because the pur-

pose of this study was to provide scientific evidence for

developing statistical prediction tools for long-term air

quality index [that is, s(x,t)] based on meteorological

conditions [that is, bn(t)]. The areas where the correlations

were statistically significant at the 99% confidence level

(p\ 0.01 and the critical value is 0.22) were defined as key

regions. The correlations within the key regions that were

significant at the 99.9% level (p\ 0.001 and the critical

value is 0.28) were regarded as strongly significant. The

correlations in other regions that were significant at the

95% level (p\ 0.05 and the critical value is 0.17) were

regarded as weakly significant.

3 Results

3.1 API spatial patterns and temporal variations

Annual API is larger in northern than southern China,

increasing from about 40 in SC to over 100 in Lanzhou and

Urumqi of NW. API is larger in winter (Fig. 2; Table 1),

176 in Urumqi and 145 in Lanzhou. In spring, the API

center at Urumqi no longer exists, while API at Lanzhou is

reduced to 128. API is the lowest in summer, only about 80

in NW and NC. API bounces back to about 90 in autumn,

with Urumqi becoming a pollution center again. Coal

combustion and dust are the major air pollution sources in

China, whose emissions are the largest during winter and

spring, respectively (Li et al. 2012). Weather is dry and

windy with frequent temperature inversion during the two

seasons, leading to more severe pollutant conditions.

Annual and seasonal APIs averaged over China

decreased during the 2001–2012 period (Fig. 3). The lar-

gest decrease occurred in springs during the first 3 years.

Among the three API components, PM10 was a dominant

contributor (about 80% during winter, and 90–95% during

other seasons) (Li et al. 2012). PM10 declined remarkably

over the years, same as API, mainly due to decreasing wind

speed and increasing precipitation in NW, while SO2, and

NO2 either had no clear trends or declined slightly after

2007.

Note that this trend differs from the fact that the air

quality in China has been worsening in the recent decade,

mainly caused by dramatic increases in man-made air

pollutant emissions (sulfates, nitrates, etc.) due to the rapid

increases in industry size, automobile number, and urban-

ization. While some particles such as biomass smoke could

occur at both fine (2.5 lm or smaller in dynamic diameter)

and coarse ([ 2.5 lm) scales and therefore their PM10

concentrations are often proportional to PM2.5 concentra-

tions, the man-made air pollution particles are mainly at

fine scales and most natural air pollution particles such as

dust, sea-salt, etc. are mainly at coarse scales. Thus, API,

which includes PM10 but not PM2.5, mainly reflects the

recent trend in concentrations of natural air pollutants.

3.2 Leading SVD modes

The squared covariance fraction of the first SVD mode

(SCF1) is greater than 50% for all meteorological variables

(Table 2). The accumulated SCF are greater than 80% for

the first two modes (CSCF2) except for precipitation, which

is 70%. SCF3, however, is reduced to a single digit. Thus,

only the first two SVD modes are analyzed below.

3.3 SVD patterns and time series

In the description below, we will simply denote SVD

heterogeneous correlations between API and a meteoro-

logical variable MET = P, T, E, or V as corl;n METð Þ,
where l = left or right and n is mode; the SVD expansion

coefficients as an METð Þ; bn METð Þ; and the correlations

between the coefficient series as corl;n METð Þ.

3.3.1 Precipitation

corleft;1 Pð Þ (Fig. 4a) is positive across China except for a

small SW area with extensive key regions over southeast-

ern China. The correlations in most of the key regions are

strongly significant. In addition, the correlations in NC are

weakly significant. Correlations in other regions are

insignificant. corright;1 Pð Þ (Fig. 4b) is mostly negative in

eastern China with a small key region along the south-

eastern coast. This result indicates that lower precipitation

will result in higher air pollution index in eastern China and

the role of precipitation is important for air quality mainly

in southeastern China.

Note the sign ambiguity with SVD analysis (Bro and

Kolda 2008). The cross-covariance matrix of s(x, t) and z(x,

t) would yield a pair of p(x) and q(x) with a(t) and b(t), or a

pair of - p(x) and - q(x) with - a(t) and - b(t). The

negative pair would yield the same left and right hetero-

geneous correlations shown in Fig. 4a and b but with
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opposite signs. This means that more precipitation will

result in lower air pollution.

corleft;2 Pð Þ (Fig. 4c) is negative in southeastern China

and positive in other regions. No key region is found

despite weakly significant correlations in NE and NC as

well as a very small western SW area.corright;2 Pð Þ (Fig. 4d)

is mostly negative in northeastern China and positive in

southeastern China, also without a key region. Thus, API

and precipitation change oppositely, which is the same as

mode 1. The differences are that, instead of the same sign

across eastern China, the changes in API or precipitation

are opposite between its southern and northern portions,

and the relationship is not close without key regions.

The accumulated variance contribution of the first two

API modes to the original API field is 42.27%. The

corresponding contribution for precipitation, however, is

only 14.86% (Table 2), suggesting that even a small

precipitation anomaly could lead to a large change in

API.

An(P) and bn(P) (n = 1, 2) tend to decrease over the

analysis period (Fig. 5). The magnitude of the decline is

larger for API than precipitation. Their short-term (inter-

Fig. 2 Spatial API distributions during winter, spring, summer, and autumn (a–d). The dots are measurement sites

Table 1 Monthly API values averaged 2001–2012 in 7 divisions and

entire China

Season NW NC NE EC SC CC SW China

Winter 125.4 95.3 90.1 77.7 58.4 91.8 78.5 88.2

Spring 100.8 89.6 80.7 79.7 53.2 85.2 72.2 80.2

Summer 70.1 70.4 63.4 62.8 40.7 69.2 58.6 62.2

Autumn 85.0 78.8 72.0 74.3 54.7 85.1 66.5 73.8

Annual 95.3 83.5 76.6 73.6 51.8 82.8 69.0 76.1

NW, NC, NE, EC, SC, CC, and SW represent Northwest, North,

Northeast, East, South, Central, and Southwest China (see Fig. 1 for

the seven administrative divisions in China)

50

60

70

80

90

100

110

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

AP
I

Annual Winter Sring Summer Autumn

Year

Fig. 3 Inter-annual variations of annual and seasonal API values

averaged over 42 sites in China
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monthly) variations have the same signs except for a

number of time segments (e.g., the first half of 2001, 2008

and 2011 for mode 1). rn Pð Þis 0.54 (n = 1) and 0.4 (n = 2)

(p\ 0.001 for both) (Table 2). The magnitude of the short-

term variations is also larger for API than precipitation for

each mode.

The long-term (inter-annual) decline trend can be

interpreted as follows. For n = 1, for example,corleft;1 Pð Þ
is determined by the product of API and b1(P) (Eq. 7). API

Table 2 Singular values (r),

squared covariance fraction

(SCF), cumulative squared

covariance (CSCF),contribution

of left (right) SVD pattern to the

variance of left (right) field,

CAPI (CMET), and correlation

between the left and right SVD

time coefficient series r. P, T, E,

and V represent precipitation,

temperature, water vapor

pressure, and wind speed,

respectively

Met Mode r SCF (%) CSCF (%) CAPI (%) CMET (%) r (%)

P 1 3.41 57.80 57.80 27.9 8.28 0.54

2 1.61 12.80 70.60 14.37 6.58 0.40

3 1.11 6.08 76.68 3.58 8.27 0.49

4 1.04 5.36 82.04 4.85 4.55 0.53

T 1 7.14 80.63 80.63 30.52 52.42 0.43

2 2.68 11.38 92.00 9.89 11.62 0.60

3 1.38 3.02 95.02 5.01 8.26 0.51

4 0.95 1.44 96.46 4.82 4.90 0.47

E 1 5.69 68.84 68.84 21.58 35.42 0.49

2 2.58 14.16 83.00 20.93 7.20 0.50

3 1.61 5.48 88.48 6.13 7.23 0.58

4 1.33 3.78 92.26 3.89 7.41 0.60

V 1 11.26 87.08 87.08 32.73 30.72 0.85

2 2.69 4.97 92.05 8.39 9.33 0.73

3 2.02 2.79 94.85 8.70 5.96 0.67

4 1.48 1.49 96.34 5.53 4.54 0.71

Fig. 4 Spatial patterns of heterogeneous correlations between API and precipitation: left and right correlations of mode 1(a–b) and mode 2 (c–d)
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declines over the analysis period (Fig. 3), meaning that the

normalized API is positive in the first portion of the period

and negative in the second portion. Because corleft;1 Pð Þ is

positive (Fig. 4a), b1(P) has to be positive in the first

portion and negative in the second portion.

3.3.2 Air temperature

Similar to corleft;1 Pð Þ, corleft;1 Tð Þ (Fig. 6a) is positive

across China with the key regions in eastern China. The

correlations in NC are strongly significant. In addition, the

Fig. 5 SVD time coefficient series between API and precipitation for modes 1 (a) and 2 (b)

Fig. 6 Spatial patterns of heterogeneous correlations between API and air temperature: left and right correlations of mode 1(a–b) and mode 2 (c–

d)
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correlations in NE and eastern NW are weakly significant.

corright;1 Tð Þ (Fig. 6b) is positive in eastern China with

extensive key regions. Correlations in the key regions are

mostly strongly significant. The sign is opposite to

corright;1 Pð Þ; meaning higher surface air temperature will

result in higher air pollution index in this region. In addi-

tion, positive and negative correlations with small areas of

key regions are found in the western NW and SW,

respectively, but the corresponding corleft;1 Tð Þ is very small

in these regions.

Also similar to corleft;2 Pð Þ, corleft;2 Tð Þ (Fig. 6c) is posi-

tive with a small area of key regions in the western NC and

eastern NW. The correlations in the two sides of the key

region from western SW to NE, however, are weakly sig-

nificant. Meanwhile, corleft;2 Tð Þ is negative in southeastern

China with the key regions at a few sites. corright;2 Tð Þ
(Fig. 6d) is positive and negative in NW and most eastern

China with the key regions in a narrow southern coastal

zone, NC, and NW. Unlike mode 1, however, there is no

corresponding close relationship between corleft;2 Tð Þ and

corright;2 Tð Þ.
The long-term trends and short-term variations with a

n(T) and b n(T) (n = 1, 2) (Fig. 7) are similar to those of

precipitation. The difference is that the magnitude of short-

term variations is comparable between API and tempera-

ture, except at a few times when the magnitude of tem-

perature short-term variations is larger. rn Tð Þis 0.43

(n = 1) and 0.6 (n = 2) (p\ 0.001 for both) (Table 2).

3.3.3 Water vapor pressure

corleft;1 Eð Þ (Fig. 8a) is positive with the key regions in

eastern NW, NC, and NE (strongly significant in NC), and

negative in southeastern China without a key region.

corright;1 Eð Þ (Fig. 8b) is mostly positive except for NE,

with the key regions (mostly strongly significant) in

western and southeastern China. corleft;2 Eð Þ (Fig. 8c) is

positive across China with the key regions (mostly strongly

significant) in southeastern China. corright;2 Eð Þ (Fig. 8d) is

negative in eastern China with a small area of key region in

western NW, but positive with the key regions in western

China.

The spatial patterns of mode 1 (2) for water vapor

pressure are similar to those of mode 2 (1) for precipitation.

Thus, water vapor pressure has the same role as precipi-

tation in air pollution anomalies described above. The

difference is that water vapor pressure is a more important

meteorological variable for the opposite air quality index

anomalies between southern and northern China, while

precipitation is more important for the same air quality

change across eastern China. In addition, the magnitude of

the positive values in corleft;1 Eð Þ (Fig. 8a) and

corright;1 Eð Þ(Fig. 8b) is much larger than the corresponding

values in corleft;2 Pð Þ (Fig. 4c) and corright;2 Pð Þ(Fig. 4d),

while the key regions are located mainly in western China

for corright;2 Eð Þ(Fig. 8d) rather than eastern China for

corright;1 Pð Þ (Fig. 4b).

The long-term trends and short-term variations with a

n(E) and b n(E) (n = 1, 2) (Fig. 9) are similar to those of

precipitation. rn Eð Þis 0.49 (n = 1) and 0.5 (n = 2)

(p\ 0.001 for both) (Table 2).

Fig. 7 SVD time coefficient series between API and air temperature for modes 1 (a) and 2 (b)
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3.3.4 Wind speed

corleft;1 Vð Þ (Fig. 10a) is positive with the key regions

covering all of China. The correlations are strongly sig-

nificant everywhere except a small area along the southern

coast. The values even reach 0.5 in NC. corright;1 Vð Þ
(Fig. 10b) is positive with the key regions in NC and NE as

well as a small area of NW, and negative in SC and eastern

SW without a key region. Thus, stronger winds in northern

Fig. 8 Spatial patterns of heterogeneous correlations between API and water vapor pressure: left and right correlations of mode 1(a–b) and mode

2 (c–d)

Fig. 9 SVD time coefficient series between API and water vapor pressure for modes 1 (a) and 2 (b)

742 Stochastic Environmental Research and Risk Assessment (2018) 32:733–748

123



China and weaker winds in southern China lead to larger

air pollution index.

corleft;2 Vð Þ (Fig. 10c) is negative in southern China with

the key regions along the southern coast, and positive in

northern China with weakly significant correlations in north-

ern NC. The corright;2 Vð Þ (Fig. 10d) is positive in southern

China and negative in northern China without a key region.

The spatial patterns indicate that stronger wind lead to lower

air pollution index in both southern and northern China.

a1(V) and b1(V) (Fig. 11) decline remarkably with time.

a2(V) and b2(V) however have a totally different long-term

trend, decreasing from 2001 to 2003, staying low until

2007, and then increasing towards 2012. Their short-term

variations for both modes are relatively smaller. rn Vð Þ is

0.85 (n = 1) and 0.73 (n = 2) (p\ 0.001) (Table 2), both

the highest among the four meteorological variables.

4 Discussion

4.1 Spatial air pollution index patterns

With a 50–80% contribution to the total covariance of API and

wind, precipitation, or temperature, the same API anomalies

across the entire eastern China (first SVD API pattern) should

be mostly seen if the anomalies are driven by one or more of

these meteorological variables. In contrast, with a 70% con-

tribution to the total covariance of API and air humidity, the

southern and northern portions of eastern China would more

likely experience opposite API anomalies (the second spatial

API pattern) if air humidity is a main weather driver.

There are several possible causes for the second pattern

of regional differences mainly between the south and north

rather than the west and east. First, according to China’s

regulations, the government sponsored winter residence

heating system with coal combustion as a major heat

source in the past is operated in northern China rather than

the entire country. Secondly, spring dust storms mainly

have the tracks from west to east in northern China, while

southern China is barely affected. Thirdly, the summer and

winter monsoon systems in eastern China move in the

south-north direction and often lead to opposite anomalies

between the south and north. For example, a longer stay

than normal in the south of the summer monsoon system

would produce more rainfall there but less in the north,

reducing API in the south while increasing it in the north.

4.2 Weather relationships

The weather conditions corresponding to the air pollution

index anomalies cross entire eastern China (first pattern)

are found to be lower precipitation/humidity, and higher

Fig. 10 Spatial patterns of heterogeneous correlations between API and wind speed: left and right correlations of mode 1(a–b) and mode 2 (c–d)

Stochastic Environmental Research and Risk Assessment (2018) 32:733–748 743

123



temperature in this region, and stronger wind speed in the

northern and weaker in the southern portion. This agrees

with the previous studies using other analysis approaches

(Duan et al. 2008; Li 2009; Li et al. 2012, 2013; Deng et al.

2013). Rainfall and atmospheric water vapor can wash out

air pollutants through wet deposition. Sands from dust

storms and urban construction sites are one of the major

PM10 sources in northern China. High wind speed and

warm temperature lift more dust particles from the ground

into the air in northern China, while larger wind leads to

larger transport and dispersion from highly air polluted

urban to less polluted rural area in southern China (Tian

et al. 2005; Ren et al. 2005; Han et al. 2007; Li et al. 2014).

This study further indicates that wind speed has the closest

relationship with air pollution index and its impacts cover

all of China for this pattern. The largest impacts occur in

northeastern China for wind speed and air temperature, but

in southeastern China for precipitation.

For the opposite air pollution index anomalies between

southern and northern portions of eastern China (the second

pattern), precipitation and humidity play the same role in

air pollution index changes as the first pattern (that is, the

larger they are, the less serious air pollution is). Humidity

has the closest relationship with air pollution index among

all variables for this pattern. Wind speed has the role as the

first pattern in the southeastern China (that is, the larger

wind speed is, the weaker air pollution index is). Tem-

perature, however, plays an opposite role to the first pat-

tern, that is, air pollution index becomes more serious in

either northern or southern portion of eastern China when

temperature is lower. High air temperature usually indi-

cates unstable atmosphere, which is in favor of vertical

transport of air pollutants.

4.3 Air pollution index prediction

The contributions of the first two SVD patterns to the

variance of original API are about 40–42% (Table 2),

suggesting that nearly half of the monthly API variations in

China could be explained by meteorological variations.

Thus, meteorological conditions could be useful for pre-

dicting API at monthly scale. The following procedure

could be used to develop a prediction model. First, for one

of the meteorological variables analyzed in this research

[z(x, t) in Eq. 2], its value at the next month, t ? 1, can be

obtained from operational monthly weather forecast pro-

vided by the weather services in many countries including

China. Secondly, obtain time coefficient bn(t ? 1) using

z(x, t ? 1) and the SVD pattern, qn(x), which is already

known from this study. Third, obtain the left field s(x,

t ? 1) [i.e., API(x, t ? 1)] using Eq. 7 based on b n(t ? 1)

and the left heterogeneous correlation, corleft, n(x), which is

already known.

Note that the SVD formulas of Eqs. 2 and 7 are con-

current rather than predictive relationships. The prediction

here is meant to use predicted weather for the next month

to obtain the air pollution index of that month. Apparently,

the skill of the prediction of monthly air pollution index is

dependent on the skill of monthly weather prediction.

4.4 Air quality measurement sites

All API sites except two were located in eastern China

(approximately east of 100�E). Thus, eastern China was

fully represented, but geographical details in western China

likely were missed in the SVD analysis.

Fig. 11 SVD time coefficient series between API and wind speed for modes 1 (a) and 2 (b)

744 Stochastic Environmental Research and Risk Assessment (2018) 32:733–748

123



Most sites were located in province capitals, with both

administrative and scientific reasons. In China, major

administration agencies of a province, including environ-

mental protection and meteorological services, are located

in the capital. Meanwhile, the capital usually is the largest

city in the province with the largest population and industry

and therefore is the most polluted. Thus, the air quality

measurement sites were located mostly in the province

capitals rather than being evenly distributed in space.

However, in west of proximately 100�E, there are only two

provinces of Xizhang (Tibet) and Xingjiang, so only two

sites were found. The two provinces were sparsely popu-

lated and pollution was much less concerned in comparison

with eastern China. Furthermore, many environmental

factors such as industry category, population density, and

topographic factors in addition to air pollutant emissions

and weather can influence API in the sample cities. These

factors need to be considered if simulating and predicting

air pollution concentrations. But this is not the case for this

study because it used the API measurements rather than

modeling. The measurements already included the influ-

ences of all factors at providence level.

4.5 Conversion from site to grid-point values

The inverse distance weighting (IDW) method (Li and

Heap 2008) was used to convert the API and the SVD

results at the 42 sites to the regularly distributed grid points

for plotting purpose. The IDW obtains the value of a grid

point using the values at several nearby sites weighted by

an inverse function of the distance between the grid point

and each site based on the assumption that a site closer to

the grid point is more similar to it than those sites further

away in their values. The IDW works well for large-scale

meteorological data (Nalder and Wein 1998). However,

unlike the geostatistical technique such as the Kriging

method, the IDW method does not consider the impacts of

other factors with particular spatial structure such as

topography, rural emission sources such as desert dust and

farming-land biomass burning, etc. The data for these

factors were unavailable for this study. Note that these

limitations would not affect this study. First, as indicated

above, the method was used to convert data from sites to

grids for plotting purpose rather than to obtain more

detailed values between sites. Secondly, as showed in the

result section below, this study only analyzed two leading

SVD patterns, first having the same sign and the second

having opposite signs across China. They were large-scale

patterns and the original data provided enough spatial

resolution to represent these patterns.

5 Conclusions

The singular value decomposition (SVD) has been applied

to identify the spatial air pollution index patterns in China

and their weather drivers. The findings provide the answers

to the three questions for this study. First, there are two

leading patterns that are characterized by the same air

pollution index anomalies across China and opposite

anomalies between northern and southern China, respec-

tively. Secondly, the key regions in the first pattern are

nationwide in the correlations between the air pollution

index filed and SVD time series of wind speed, south-

eastern China for the meteorological conditions of precip-

itation and humidity, and northeastern China for

temperature. The key regions in the second pattern occur

mainly in northern China for temperature and humidity and

southern China for wind speed. Thirdly, the most important

meteorological variables are wind speed for the first pat-

tern, especially in the northern China, and air humidity for

the second pattern. Wind speed and temperature may play

opposite roles in air pollution index anomalies, depending

on geographic regions and spatial patterns. It can be con-

cluded that the long-term spatial patterns of air pollution

index in China are closely related to weather conditions

with the relationships varying with individual meteoro-

logical variables and geographic regions. These relation-

ships could help develop statistical air pollution index

prediction tools such as regression models by selecting

appropriate prediction factors and expecting the locations

with certain prediction skills.

API mainly considers PM10 concentration. China started

to monitor PM2.5, O3 and CO in 2012, which together with

the air pollutants included in calculating API are used to

formulate AQI (Wang et al. 2014a, b). AQI is a better

measure than API because PM2.5 and O3 are more closely

related to air pollution events, such as smog and haze, and

they have been increasing due to increasing auto numbers

and other fine particulate emission, which is opposite to the

long-term PM10 trend. AQI was not used in this study

because of its short time series. However, it could be a

good resource for future research.

Besides the ground measurements, the meteorological

conditions in the planetary boundary layer (PBL) and free

atmosphere such as PBL height and thermal stability are

also important for air pollution (Han et al. 2009). These

factors were not examined in this study. The physical

mechanisms for the weather-air quality relationships need

to be investigated through analyses of observational data

and simulations with numerical models.

This study focused on the effects of meteorological

fields on air pollution index. As atmospheric aerosols, air

pollutants can affect the atmospheric radiation, clouds, and
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local and regional climate (Liu 2005; Liu et al. 2013; Shi

et al. 2014). Further research based on the coupled SVD

weather-air quality patterns should be valuable to

improving our understanding to the roles of air pollutants

in regional climate anomalies.
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Stadlober E, Hörmann S, Pfeiler B (2008) Quality and performance of

a PM10 daily forecasting model. Atmos Environ 42:1098–1109.

https://doi.org/10.1016/j.atmosenv.2007.10.073

Susan LR, Christopher JM (2014) Forecasts of seasonal stream flow

in West-Central Florida using multiple climate predictors.

J Hydrol 519:1130–1140

Tai APK, Mickley LJ, Jacob DJ (2010) Correlations between fine

particulate matter (PM2.5) and meteorological variables in the

United States: implications for the sensitivity of PM2.5 to climate

change. Atmos Environ 44:3976–3984

Tan J, Zhang Y, Ma WC, Yu Q, Wang Q, Fu QY, Zhou B, Chen JM,

Chen LM (2016) Evaluation and potential improvements of

WRF/CMAQ in simulating multi-levels air pollution in megacity

Shanghai, China. Stoch Environ Res Risk Assess. https://doi.org/

10.1007/s00477-016-1342-3

Tao H, Fraedrich K, Menz C, Zhai J (2014) Trends in extreme

temperature indices in the Poyang Lake Basin, China. Stoch Env

Res Risk Assess 28:1543–1553. https://doi.org/10.1007/s00477-

014-0863-x

Tao L, Zhou YT, Li RF (2016) Characteristics of haze days and air

pollution index (API) and their relationship with weather

conditions at four large cities/districts of China. Trans Atmos

Sci 39:110–125

Tian L, Lu RY, Xing WT, Wang L, Wang X, Wang W, Wang JF

(2005) Studies on city ambient air quality in China during

2001–2004. J Arid Land Resour Environ 19:101–105

UN (United Nations Economic and Social Commission for Asia and

the Pacific) (2001) Air quality in Asia and the Pacific: an

analysis in relation to national and international standards,

United Nations Publications, 2001 - Air - 113 pages. Book News

Inc., Portland

Wallace JM, Smith C, Bretherton CS (1992) Singular value decom-

position of wintertime sea surface temperature and 500-mp

height anomalies. J Clim 5:561–576

Wang C, Li D (2012) Analysis of the interannual variation of the

summer precipitation over the Yellow River basin and the effect

factors based on MTM-SVD method. Chin J Atmos Sci

36:823–834

Wang TJ, Hu ZY, Xie M, Zhang Y, Xu CK, Chao ZH (2004)

Atmospheric sulfur deposition onto different ecosystems over

China. Environ Geochem Health 26:169–177

Wang F, Chen DS, Cheng SY, Li JB, Li MJ, Ren ZH (2010)

Identification of regional atmospheric PM10 transport pathways

using HYSPLIT, MM5-CMAQ and synoptic pressure pattern

analysis. Environ Model Softw 25:927–934. https://doi.org/10.

1016/j.envsoft.2010.02.004

Wang R, Wu L, Wang C (2011) Typhoon track changes associated

with global warming. J Clim 24:3748–3752

Wang J, Qiu C, Liu HB, Cao J, Wang DC, Dong XG (2013)

Characteristics of air quality and the correlation between API

and meteorological elements in major cities of Shan Dong

province. Ecol Environ Sci 22:644–649

Wang H, An J, Shen L, Zhu B, Pan C, Liu Z, Liu X, Duan Q, Liu X,

Wang Y (2014a) Mechanism for the formation and microphys-

ical characteristics of submicron aerosol during heavy haze

pollution episode in the Yangtze River Delta, China. Sci Total

Environ 490:501–508. https://doi.org/10.1016/j.scitotenv.2014.

05.009

Wang W, Maenhaut W, Yang W, Liu X, Bai Z, Zhang T, Claeys M,

Cachier H, Dong S, Wang Y (2014b) One-year aerosol

characterization study for PM2.5 and PM10 in Beijing. Atmos

Pollut Res 5:554–562

Wei YX, Tong YQ, Yin Y, Chen K (2009) The variety of main air

pollutants concentration and its relationship with meteorological

condition in Nanjing city. Trans Atmos Sci 32:451–457

WHO (2014) Air quality deteriorating in many of the world’s cities

http://www.who.int/mediacentre/news/releases/2014/air-quality/

en/

Wu HB, Wu L (2010) Methods for diagnosing and forecasting climate

variability. China Meteorological Press, Beijing, 371 pp

Yang YQ, Wang JX, Gong SL, Zhang XY, Wang H, Wang WQ

(2016) PLAM-a meteorological pollution index for air quality

and its applications in fog-haze forecasts in North China. Atmos

Chem Phys 16:1353–1364. https://doi.org/10.5194/acp-16-1353-

2016

Yao HR, Li DL (2013) The relationship between Asian jets and the

winter monsoon and their impact on climate in China. Acta

Meteorol Sin 71:429–439

Yao SX, Huang Q, Zhao C (2016) Variation characteristics of rainfall

in the pre-flood season of South China and its correlation with

sea surface temperature of Pacific. Atmosphere 7:5. https://doi.

org/10.3390/atmos7010005

Yu B, Huang C, Liu Z, Wang H, Wang L (2011) A chaotic analysis

on air pollution index change over past 10 years in Lanzhou,

northwest China. Stoch Environ Res Risk Assess 25:643–653.

https://doi.org/10.1007/s00477-011-0471-y

Zekri H, Mokhtari AR, Cohen DR (2016) Application of singular

value decomposition (SVD) and semi-discrete decomposition

(SDD) techniques in clustering of geochemical data: an

environmental study in central Iran. Stoch Env Res Risk Assess

30:1947–1960

Stochastic Environmental Research and Risk Assessment (2018) 32:733–748 747

123

https://doi.org/10.1016/S0140-6736(12)61899-6
https://doi.org/10.1016/S0140-6736(12)61899-6
https://doi.org/10.1080/10962247.2013.851044
https://doi.org/10.1371/journal.pone.0135749
https://doi.org/10.1371/journal.pone.0135749
https://doi.org/10.5194/acp-14-6395-2014
https://doi.org/10.3390/atmos7020015
https://doi.org/10.1016/j.atmosenv.2005.09.069
https://doi.org/10.1016/j.atmosenv.2005.09.069
https://doi.org/10.1016/j.atmosenv.2007.10.073
https://doi.org/10.1007/s00477-016-1342-3
https://doi.org/10.1007/s00477-016-1342-3
https://doi.org/10.1007/s00477-014-0863-x
https://doi.org/10.1007/s00477-014-0863-x
https://doi.org/10.1016/j.envsoft.2010.02.004
https://doi.org/10.1016/j.envsoft.2010.02.004
https://doi.org/10.1016/j.scitotenv.2014.05.009
https://doi.org/10.1016/j.scitotenv.2014.05.009
http://www.who.int/mediacentre/news/releases/2014/air-quality/en/
http://www.who.int/mediacentre/news/releases/2014/air-quality/en/
https://doi.org/10.5194/acp-16-1353-2016
https://doi.org/10.5194/acp-16-1353-2016
https://doi.org/10.3390/atmos7010005
https://doi.org/10.3390/atmos7010005
https://doi.org/10.1007/s00477-011-0471-y


Zhan W, Zhang Y, Ma W, Yu Q, Chen L (2013) Estimating

influences of urbanizations on meteorology and air quality of a

Central Business District in Shanghai, China. Stoch Environ Res

Risk Assess 27:353–365. https://doi.org/10.1007/s00477-012-

0603-z

Zhang PB, Guan ZY, Cai JX (2010) Impacts of inter annual variations

of Australian high on the summer temperature in China by SVD

analysis. Trans Atmos Sci 33:58–66

Zhang Y, Bocquet M, Mallet V, Seigneur C, Baklanov A (2012) Real-

time air quality forecasting, part I: history, techniques, and

current status. Atmos Environ 60:632–655

Zhang XL, Tang YX, Xiong YJ, Zhang RJ, Meng W, Cao XY (2014)

Analysis and numerical forecast of a regional for-haze in North

China plain. J Univ Chin Acad Sci 31:337–344

Zhang LB, Liu YQ, Hao L (2016) Contributions of open crop straw

burning emissions to PM2.5 concentrations in China. Environ Res

Lett 11:014014

Zhu B, Wang HL, Shen LJ, Kang HQ, Yu XN (2013) Aerosol spectra

and new particle formation observed in various seasons in

Nanjing. Adv Atmos Sci 30:1632–1644. https://doi.org/10.1007/

s00376-013-2202-4

748 Stochastic Environmental Research and Risk Assessment (2018) 32:733–748

123

https://doi.org/10.1007/s00477-012-0603-z
https://doi.org/10.1007/s00477-012-0603-z
https://doi.org/10.1007/s00376-013-2202-4
https://doi.org/10.1007/s00376-013-2202-4

	Singular value decomposition analysis of spatial relationships between monthly weather and air pollution index in China
	Abstract
	Introduction
	Methods
	Research area
	Air quality and meteorological data
	Singular value decomposition
	Analysis method

	Results
	API spatial patterns and temporal variations
	Leading SVD modes
	SVD patterns and time series
	Precipitation
	Air temperature
	Water vapor pressure
	Wind speed


	Discussion
	Spatial air pollution index patterns
	Weather relationships
	Air pollution index prediction
	Air quality measurement sites
	Conversion from site to grid-point values

	Conclusions
	Acknowledgements
	References




