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ABSTRACT: Despite the advancement of remote sensing and geospatial technology in recent decades, maps of headwater streams
continue to have high uncertainty and fail to adequately characterize temporary streams that expand and contract in the wet length.
However, watershed management and policy increasingly require information regarding the spatial and temporal variability of flow
along streams. We used extensive field data on wet stream length at different flows to create logistic regression models of stream net-
work dynamics for four physiographic provinces of the Appalachian Highlands: New England, Appalachian Plateau, Valley and
Ridge, and Blue Ridge. The topographic wetness index (TWI) was the most important parameter in all four models, and the topo-
graphic position index (TPI) further improved model performance in the Appalachian Plateau, Valley and Ridge, and Blue Ridge.
We included stream runoff at the catchment outlet as a model predictor to represent the wetness state of the catchment, but
adjustment of the probability threshold defining wet stream presence/absence to high values for low flows was the primary
mechanism for approximating network extent at multiple flow conditions. Classification accuracy was high overall (> 0.90), and
McFadden’s pseudo R2 values ranged from 0.69 for the New England model to 0.79 in the Appalachian Plateau. More notable errors
included an overestimation of wet stream length in wide valleys and inaccurate reach locations amid boulder deposits and along
headwardly eroding tributaries. Logistic regression was generally successful for modeling headwater streams at high and low
flows with only a few simple terrain metrics. Modification and application of this modeling approach to other regions or larger areas
would be relatively easy and provide a more accurate portrayal of temporary headwaters than existing datasets. © 2018 John Wiley
& Sons, Ltd.
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Introduction

First- and second-order headwater streams account for 70–80%
of river network length (Downing et al., 2012) and transport
water, sediment, nutrients, organic matter, and contaminants
to downstream water bodies (Wohl, 2017). As a result, water
quality largely reflects the state of contributing headwaters (Al-
exander et al., 2007; Dodds and Oakes, 2008). Approximately
half of headwaters are temporary ephemeral or intermittent
streams that vary in wet length seasonally or between storms
(Nadeau and Rains, 2007; Buttle et al., 2012; Datry et al.,
2014). Changes in the active or ‘wet’ stream length can exceed
300% in humid (Jensen et al., 2017) as well as more arid envi-
ronments (Godsey and Kirchner, 2014). The spatial variability
of flow duration along streams impacts solute and sediment

loads from catchments, rates and types of biogeochemical re-
actions, availability of aquatic habitat, and movement of organ-
isms (Larned et al., 2010). However, maps that accurately
portray the location of temporary streams across flow condi-
tions are uncommon or nonexistent. Various logistical and
technological challenges continue to impede a comprehensive
inventory of headwaters and, instead, compel the use of model-
ing approaches to best represent these low-order stream
systems.

The location and length of headwater streams are highly in-
accurate on most existing maps (Skoulikidis et al., 2017). The
National Hydrography Dataset (NHD), which serves as the
standard representation of river networks for many environ-
mental models and watershed management programs in the
US can underestimate headwater length by 200% or more
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(Elmore et al., 2013; Fritz et al., 2013). Inconsistencies during
map production contribute to uncertainty, as source data are
not the same for all NHD, topographic, or Natural Resources
Conservation Service (NRCS) maps (Colson et al., 2008;
Hughes et al., 2011). Aerial photograph interpretation is the
most common method for delineating streams, but numerous
individuals analyzed photographs over decades using distinct
techniques, cartographic standards, and levels of precision
(Colson et al., 2008; Hughes et al., 2011). Field surveys provide
the source data for some maps, although there is usually no in-
dication of whether the surveyor mapped the actively flowing
stream or geomorphic channel as the network, which can result
in quite different representations (Adams and Spotila, 2005;
Jensen et al., 2017).
Maps rarely show the vast number of temporary headwater

channels where networks expand and contract in wet length
(Hansen, 2001). The temporary streams that do appear on maps
receive categorical flow duration classifications as either inter-
mittent or ephemeral. However, definitions of perennial, inter-
mittent, and ephemeral streams are not standardized;
classifications may reflect the frequency of flow (Hedman and
Osterkamp, 1982; Hewlett, 1982), water table position
(Hansen, 2001; Larned et al., 2007), seasonal position of flow
origins at base flow (Paybins, 2003), or geomorphological and
biological characteristics (Feminella, 1996; Hansen, 2001;
Johnson et al., 2009). Researchers now highlight the need for
objective, continuous measures of the frequency and duration
of flow that provide more ecologically relevant information
than categorical divisions (Leibowitz et al., 2008; Larned
et al., 2010, 2011).
Flow duration is difficult to determine from aerial photo-

graphs, which capture the stream network at a single moment
in time, or with limited field survey data. Perennial-intermittent
and intermittent-ephemeral boundaries move between months
or years (Fritz et al., 2008). Furthermore, stream networks are
often discontinuous, with perennial reaches separated by dry
channel segments that may rarely flow (Datry et al., 2014;
Godsey and Kirchner, 2014). As a result, flow duration classifi-
cations for the NHD and NRCS maps generally have low accu-
racy, according to the given classification criteria (Svec et al.,
2005; Colson et al., 2008, Fritz et al., 2013). Map errors also
vary regionally; the NHD tends to overestimate flow duration
in arid environments and underestimate flow duration in humid
areas (Fritz et al., 2013).
Field surveying continues to be the most accurate and reli-

able mapping method for streams (Płaczkowska et al., 2015)
yet is not feasible over large or remote areas. The increasing
availability and advancement of geospatial data and analysis
techniques in recent decades offers opportunities as well as
unique challenges for characterizing headwaters. High-
resolution aerial photographs only permit the identification of
streams in areas without heavy vegetative cover (Heine et al.,
2004). Satellite imagery and associated wetness or moisture in-
dices can effectively classify larger water bodies and wetlands,
but the spatial resolution is usually too coarse to detect head-
water streams. One exception is high-resolution near-infrared
LiDAR, which Hooshyar et al. (2015) employed to extract the
wet stream network in a region with exposed channels. Even
at sites without dense canopy cover, multiple collections of ae-
rial photographs or LiDAR is necessary during both wet and dry
conditions to accurately describe stream length variability.
Such efforts are expensive and impractical in many cases, al-
though unmanned aerial vehicles may help to alleviate this
burden in the future (Spence and Mengistu, 2016).
Automated stream extraction methods utilize digital eleva-

tion models (DEMs), which are often freely available at resolu-
tions finer than 10m for the continental USA. Channel

initiation thresholds based on flow accumulation, upslope
area, slope, or stream power are adequate for fourth-order
and larger channels (James and Hunt, 2010) but do not consis-
tently locate smaller headwaters (Heine et al., 2004). Alterna-
tively, modeling the stream network with logistic regression
outperforms channel initiation thresholds and other extraction
techniques (Heine et al., 2004; Sun et al., 2011). Using vari-
ables like upslope area, slope, and curvature, logistic regres-
sion determines the probability of the presence of a stream
channel at each catchment pixel. Despite the success of logistic
regression for delineating headwaters, model accuracy remains
lower for the temporary channel network (Russell et al., 2015).
Alternatively, because flow duration varies widely both along
and among non-perennial streams, we believe modeling efforts
should shift to continuous predictions of the wet, active net-
work through time rather than a single, stable configuration of
perennial or temporary channel length.

The object of this study is to utilize field data on the variabil-
ity of wet stream length in forested catchments spanning four
Appalachian physiographic provinces to create explanatory lo-
gistic regression models of the wet stream network as a function
of topographic metrics and runoff. Jensen et al. (2017) found
that expansion and contraction of headwater length with
stream flow occurs but also differs considerably in magnitude
across the Appalachian region. Flow permanence and, thus,
wet stream length largely align with geologic controls such as
lithology and the depth and heterogeneity of sediment (Winter,
2007; Jensen et al., 2017), which are not always evident from
geologic maps. The current study investigates the efficacy of
using topography, which reflects the underlying geology, to
predict the distinct observed stream length dynamics of the Ap-
palachians. This project is one of the first known attempts to
model headwaters as dynamic networks by including a contin-
uous wetness state variable (stream runoff) as a model parame-
ter (but see the use of accumulated precipitation by Sun et al.,
2011), whereas most published studies focus on reproducing
the locations of geomorphic channel heads or static representa-
tions of channel length. We developed explanatory rather than
predictive models, as our goal was to understand how terrain
attributes correspond to flow permanence in each province
rather than to maximize predictive accuracy (MacNally,
2000; Sainani, 2014). Detailed field data on the location and
length of wet stream reaches across flow conditions enabled
us to identify additional site characteristics aside from catch-
ment topography that contribute to model inaccuracy and
can, therefore, inform future stream delineation efforts.

Study area

We collected field data from headwater catchments in four
physiographic provinces of the Appalachian Highlands: the
New England (NE), Appalachian Plateau (AP), Valley and Ridge
(VR), and Blue Ridge (BR). We selected three forested catch-
ments smaller than 75ha from each province (Table I), as we
discovered that larger watersheds in these regions require more
than one day for an individual to map the stream network. The
study sites are in the Hubbard Brook Experimental Forest in
New Hampshire for NE, Fernow Experimental Forest in West
Virginia for AP, Jefferson National Forest at Poverty Creek and
the South Fork of Potts Creek in Virginia for VR, and Coweeta
Hydrologic Laboratory in North Carolina for BR (Figure 1).
We conducted field mapping at Hubbard Brook, Fernow, and
Coweeta because these experimental watersheds have weirs
recording stream flow and reference areas that are not subject
to timber harvests or other experimental manipulation. We
chose the VR sites at tributaries to Poverty Creek and the South
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Fork of Potts Creek based on the availability of 3m DEM data,
mature forest coverage, road access, and the location of the
catchments on National Forest.
The climate, geology, topography, and vegetation vary across

the four Appalachian provinces (Table I; see Jensen et al. (2017)
for further details). NE is the coldest study area and receives the
most snow, so peak stream flow usually occurs after snowmelt
in the late spring. The VR catchments are in a rain shadow and
have the lowest precipitation totals, while the BR sites are the
wettest. Snow is rare in BR due to warm winters. Substrate at
the NE sites consists of glacial till and drift deposits that vary

in thickness up to 8m (Benettin et al., 2015) and are underlain
by Lower Silurian pelitic schist and granulite of the Upper and
Lower Rangeley Formation (Barton, 1997). The glacial land-
scape is rounded and hummocky with little channel incision
(Figure 1). Soils are predominantly well-drained sandy loam
Spodosols (Likens, 2013). The AP catchments are located in
the gently folded Allegheny Mountains, which are character-
ized by steep slopes and broad, flat uplands (Morisawa,
1962). Devonian shales and sandstones of the Hampshire For-
mation form the underlying bedrock (Cardwell et al., 1968),
and soils are shallow (< 1m) silt and sandy loam Inceptisols

Table I. Study area attributes. Modified from Jensen et al. (2017)

Physiographic
province

Site namea

(watershed numberb)
Latitude (°N),
Longitude (°W)

Drainage
area (ha) Aspect

Mean elevation
(m) Geology Vegetation

New England NE13 (WS6) 43.95, 71.74 13.4 SE 690 schist, granulite northern
NE25 43.93, 71.77 25.1 NW 740 schist, granulite hardwoods
NE42 (WS3) 43.96, 71.72 42.4 S 632 schist, granulite

Appalachian AP14 (WS13) 39.06, 79.70 13.9 NE 773 shale, sandstone mixed
Plateau AP16 (WS10) 39.05, 79.68 15.7 SW 767 shale, sandstone hardwoods

AP37 (WS4) 39.05, 79.69 36.6 SE 822 shale, sandstone

Valley and VR25 37.28, 80.46 25.0 NW 750 shale, sandstone mixed
Ridge VR35 37.26, 80.48 34.8 N 729 shale, sandstone hardwoods

VR70 37.45, 80.49 69.9 S 1029 sandstone

Blue Ridge BR12 (WS18) 35.05, 83.44 12.4 NW 823 gneiss, amphibolite oak-hickory
BR33 (WS34) 35.06, 83.45 32.7 SE 1019 gneiss, amphibolite and cove
BR40 (WS40) 35.05, 83.46 39.6 E 1052 gneiss hardwoods

aNumbers in site name indicate the drainage area in hectares.
bIf applicable, designated watershed number at the experimental forests.

Figure 1. Hillshade views of regional topography in the four study areas. [Colour figure can be viewed at wileyonlinelibrary.com]
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(Losche and Beverage, 1967). Folded and thrust faulted sedi-
mentary rock with differing erodibilities creates the parallel
ridges and associated trellis drainage pattern of the VR. The
VR sites at Poverty Creek are underlain by Devonian shales,
sandstones, and siltstones of the Brallier and Chemung Forma-
tions (Virginia Division of Mineral Resources, 1993), and bed-
rock at the South Fork of Potts Creek catchment includes
Devonian Oriskany and Silurian Keefer and Rose Hill sand-
stones (Schultz et al., 1986). Soils consist of shallow, well-
drained stony and clay loam Inceptisols (Adams and Stephen-
son, 1983). Middle to Late Proterozoic biotite gneiss and am-
phibolite of the Coweeta Group and Tallulah Falls Formation
underlie thick saprolite at the BR catchments (Hatcher, 1988).
Dominant soils include sandy and gravelly loam Inceptisols
and Ultisols (Velbel, 1988). All of the study areas have
second-growth forests that range from northern hardwoods in
NE to oak–hickory associations in BR.

Methods

Field data collection

We mapped the wet stream network of each study catchment
seven times throughout 2015 and 2016 with a Bad Elf GNSS
Surveyor Global Positioning System (GPS) unit, as detailed in
Jensen et al. (2017). During each mapping, we walked along
the stream from the catchment outlet until we found the flow
origin of every tributary, marking disconnections in the wet net-
work between flowing reaches or non-flowing pools. We in-
cluded all surface water greater than 1m in length as part of
the wet network. The reported accuracy of the GPS unit is
1m, but measured accuracy varied from 3 to 10m depending
on weather conditions and tree cover. To compensate for the
lower accuracy, we used pin flags and field notes in addition
to the GPS points to compare the location of the wet stream
across mapping dates. The same individual also completed all
mapping with the same GPS unit.
Eight of the twelve study catchments have weirs that gauge

stream discharge at 5-min intervals. We performed salt dilution
gauging (Calkins and Dunne, 1970) to measure stream flow at
the remaining sites (NE25, VR25, VR35, and VR70) during each
mapping. Our goal was to map the wet network across a range
of flows between at least the 25 and 75% exceedance probabil-
ities of mean daily discharge, rather than major storms or
droughts. We only mapped during non-storm conditions or on
the recession limb of storm events at least several hours after
the hydrograph peak to minimize changes in discharge during
an individual survey. Precipitation data were available for all
sites, but some of the gauges were not in or immediately adja-
cent to the study catchments, which is especially problematic
for isolated summer thunderstorms. Antecedent precipitation
indices showed lower correlations with stream length than run-
off (discharge normalized by catchment area), so we limited
our wetness state variable to runoff as the more representative
measurement of moisture conditions.

Terrain analysis

Following the procedure in Jensen et al. (2017), we brought the
GPS points into ArcGIS (ArcMap version 10.3.1, ESRI 2015,
Redlands, CA) to digitize the wet stream network along lines
of high flow accumulation according to the multiple triangular
flow direction algorithm (Seibert and McGlynn, 2007) applied
to 3m DEMs. DEMs with resolutions between 1 and 5m tend
to create more accurate stream networks (Li and Wong, 2010)

and better predict channel head locations (Tarolli and Dalla
Fontana, 2009) than coarser resolutions. Similarly, Gillin
et al., 2015a) found that terrain metrics calculated from 3
and 5m DEMs are most comparable with field-derived
values for one of the NE catchments used in this study. We
completed all DEM processing and terrain analysis in ArcGIS
and the System for Automated Geoscientific Analyses soft-
ware (SAGA version 2.3.1). The 1/9 arc-second DEM for
AP, BR, and VR70 are from the 2003 West Virginia and North
Carolina National Elevation Datasets. LiDAR data collections
occurred during leaf-off and snow-free conditions at NE in
2012 for the White Mountain National Forest and at VR25
and VR35 in 2011 for the Virginia Geographic Information
Network. We re-sampled the bare earth DEMs classified from
the LiDAR data to 1m and then coarsened the DEMs to 3m
by mean cell aggregation. We used a low-pass (3 ×3) filter
and sink-filling algorithm (Wang and Liu, 2006) for hydrolog-
ical correction of all DEMs.

We moved GPS points located in low flow accumulation
pixels due to positional error to the nearest cell of compara-
tively high flow accumulation, although the maximum dis-
placement we allowed was 3 pixels (9m) in accordance with
the average GPS accuracy. Because we mapped each catch-
ment seven times, we were able to compare GPS points from
all of the mappings to delineate the most accurate network pos-
sible. We assigned points from each mapping date to the flow
lines of this ‘master’ network to ensure consistency as we deter-
mined changes in wet stream length. We consulted field notes
during this process to verify that point displacements between
mappings were the result of variability in the wet network
rather than GPS error.

We derived terrain metrics from the hydrologically-corrected
3m DEMs. Metrics included: upslope accumulated area, calcu-
lated from the multiple triangular flow direction algorithm
(Seibert and McGlynn, 2007); maximum slope (Travis et al.,
1975); topographic wetness index (Beven and Kirkby, 1979),
based on the multiple triangular flow direction and maximum
slope algorithms; downslope index (Hjerdt et al., 2004); stream
power index (Moore et al., 1991); profile, planform, tangential,
longitudinal, and cross-sectional curvature (Evans, 1979;
Wood, 1996; Wilson and Gallant, 2000); topographic position
index (Guisan et al., 1999); and local lateral contributing area,
calculated as the sum of the left- and right-side contributions
(Grabs et al., 2010). We used the DEM Surface Tools for ArcGIS
(version 2.1.375) (Jenness, 2013) to produce the curvature met-
rics. We created an additional raster grid for each metric by cal-
culating the mean of all pixel values in the upslope
accumulated area contributing to a given cell. Thus, we devel-
oped ‘local’ as well as ‘mean upslope’ rasters for all metrics ex-
cept for upslope accumulated area and local lateral
contributing area.

Logistic regression modeling

We used logistic regression to model the probability of each
catchment pixel being a ‘wet’ stream as a function of terrain
metrics and runoff. In logistic regression, the relationship be-
tween the probability (p) of a binary response variable (in this
case, the presence or absence of a wet stream at a pixel) and
model predictors (xi) can be expressed as

p̂ ¼ exp b0 þ b1x1 þ b2x2 þ …bnxnð Þ
= 1þ exp b0 þ b1x1 þ b2x2 þ …bnxnð Þð Þ; (1)

where p̂ is the regression estimate of logit (p), which is
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logit pð Þ ¼ log p= 1–pð Þð Þ; (2)

and b0 is the model intercept, bi (i = 1, 2, ..., n) are the regres-
sion coefficients, and xi (i = 1, 2, ..., n) are the independent
variables.
We transformed the delineated stream network from each

mapping into a raster denoting the presence (1) or absence
(0) of a wet stream. We utilized 100% of the wet stream cells
with a value of 1 and randomly sampled 10% of the non-
stream pixels with a value of 0 from across the entire catch-
ment for modeling. Preliminary models using varying propor-
tions of non-stream pixels showed a decrease in
classification accuracy with more sample points but no appar-
ent impact on the selection of model explanatory variables.
We limited the sample of non-stream pixels to 10% owing to
the comparatively low number of wet stream points and, addi-
tionally, because predictive accuracy was not the primary

goal. We split the sampled stream and non-stream pixels into
training (70%) and testing (30%) data for model building and
validation, respectively.

Wet stream length dynamics and the mobility of flow origins
reflect geologic attributes including lithology, structure, trans-
missivity, and depth to bedrock that vary at both local and re-
gional scales (Winter, 2007; Whiting and Godsey, 2016;
Jensen et al., 2017). We created a separate model for each phys-
iographic province in our study to examine how regional, rather
than site-specific, topography can help explain flow perma-
nence in headwaters. We extracted terrain metric values from
the raster grids at the sample points and assigned the same runoff
value as a constant representing overall catchmentwetness to all
points from a single mapping. We log-transformed variables
with non-normal distributions and performed all statistical anal-
ysis and modeling in R 3.2.1 (R Core Team, 2015). Variable se-
lection for each of the four final models was based on P-values

Table II. Model parameters. The P-value of all model parameters is << 0.001

Model McFadden’s pseudo R2 Parameters Coefficient Standard error t-statistic

NE 0.69 TWI (ln) 15.57 0.16 94.50
Flow 0.12 0.007 18.57

AP 0.79 TWI (ln) 8.11 0.22 37.61
TPI (meana) –4.75 0.15 –31.91
Cross-sectional Curv. –0.28 0.01 –19.39
Flow 0.13 0.02 7.13

VR 0.77 TWI (ln) 9.56 0.12 80.12
TPI (meana) –3.26 0.08 –42.18
Longitudinal Curv. 0.17 0.006 30.93
Flow 0.18 0.009 18.59

BR 0.76 TWI (ln) 7.69 0.10 73.95
TPI –1.75 0.04 –40.23
Profile (meana) Curv. 2.14 0.08 26.89
Flow 0.02 0.004 4.21

aVariable denoted as ‘mean’ refers to the mean value of upslope pixels as opposed to the local value.

Table III. Probability threshold values selected by the optimization procedure and associated accuracy statistics for high and low flows. Omission
and commission errors ≥ 0.20 in bold

Site Flow Probability threshold Classification accuracy Balanced accuracy Omission error Commission error

NE42 High 0.50 0.95 0.92 0.11 0.12
Low 0.57 0.98 0.96 0.06 0.12

NE25 High 0.50 0.90 0.85 0.24 0.20
Low 0.80 0.96 0.86 0.27 0.21

NE13 High 0.50 0.94 0.94 0.06 0.11
Low 0.63 0.95 0.90 0.17 0.09

AP37 High 0.50 0.98 0.95 0.10 0.09
Low 0.57 0.99 0.91 0.17 0.15

AP16 High 0.53 0.99 0.95 0.11 0.00
Low 0.65 0.99 0.96 0.08 0.21

AP14 High 0.53 0.97 0.88 0.22 0.09
Low 0.56 0.98 0.91 0.18 0.05

VR70 High 0.58 0.98 0.90 0.18 0.10
Low 0.62 0.99 0.90 0.20 0.09

VR35 High 0.56 0.96 0.90 0.19 0.04
Low 0.94 0.99 0.83 0.33 0.43

VR25 High 0.50 0.96 0.92 0.16 0.03
Low 0.80 0.99 0.96 0.07 0.14

BR40 High 0.50 0.97 0.93 0.12 0.09
Low 0.52 0.97 0.93 0.13 0.09

BR33 High 0.54 0.97 0.93 0.13 0.14
Low 0.70 0.97 0.91 0.16 0.16

BR12 High 0.50 0.95 0.89 0.20 0.10
Low 0.56 0.96 0.88 0.24 0.04
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and step-wise improvements in McFadden’s pseudo R2 values,
although we also sought to eliminate collinear predictors with
a Pearson’s correlation greater than 0.70 (Kuhn, 2008).We eval-
uated model performance with McFadden’s pseudo R2 values,
classification accuracy, and errors of omission and commission
of stream pixels. We repeated this process for each physio-
graphic province to produce four models.
Selection of any probability threshold is possible with logistic

regression to signify the presence of the response variable. We
created an accuracy optimization procedure to choose thresh-
old values for each catchment that produced the maximum
classification accuracy for the highest and lowest stream flows
of the testing dataset. We applied the models to the three study
catchments in each of the four provinces to examine the spatial
distribution of omission and commission errors for the selected
probability thresholds.

Results

Model parameters

The natural logarithm of the topographic wetness index (TWI)
was the most important parameter in all of the final models
(Table II). We tested single-variable models using TWI to

predict wet stream presence/absence, which resulted in
McFadden’s pseudo R2 values of 0.67–0.68. TWI reflects both
the upslope accumulated area and local slope at a pixel (Seibert
and McGlynn, 2007). High TWI values indicating large contrib-
uting areas or low slopes increased the likelihood of stream pres-
ence. The AP, VR, and BRmodels all included either the local or
mean upslope topographic position index (TPI), which in-
creased McFadden’s pseudo R2 values by an additional 0.06–
0.09 after the inclusion of TWI. TPI compares the elevation of
a cell with the mean elevation in a neighborhood defined by a
100m radius around the pixel: positive values correspond to
ridges, and negative values indicate valleys (Guisan et al.,
1999). TPI model coefficients were all negative. We also se-
lected curvature metrics for the AP, VR, and BR models, but
these parameters only increased McFadden’s pseudo R2 values
by 0.02–0.03. The AP model included cross-sectional curva-
ture, which is the same as ‘planform curvature’ in the ArcGIS
Spatial Analyst Toolbox (Zevenbergen and Thorne, 1987). Posi-
tive values of cross-sectional curvature correspond to convexi-
ties where water diverges, and negative values show
concavities where flow converges (Jenness, 2013). Longitudinal
curvature appeared in the VR model and is the same as ‘profile
curvature’ in ArcGIS (Zevenbergen and Thorne, 1987). The BR
model incorporatedmean upslope profile curvature. Both longi-
tudinal and profile curvature indicate whether water accelerates

Figure 2. Modeled stream networks for high (left) and low (center) flows in NE. Right columns show field-surveyed streams for the modeled flows.
Only probability values > 0.50 are shown. [Colour figure can be viewed at wileyonlinelibrary.com]
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or decelerates when flowing over a point, with positive values
showing deceleration at concavities and negative values
suggesting acceleration at convex parts of the landscape
(Jenness, 2013). Runoff also appeared in all four models yet
increased McFadden’s pseudo R2 values only slightly (< 0.02).
Owing to the large number of sample points, all of the final
model predictors were highly significant (P << 0.001) in the
models.

Model performance

McFadden’s pseudo R2 values were highest for AP (0.79) but
were similar for VR (0.77) and BR (0.76) (Table II). NE had the
lowest McFadden’s pseudo R2 value of 0.69. Classification ac-
curacy was high overall, ranging from 0.90–0.99 across the
study catchments (Table III). The optimum probability threshold
to maximize classification accuracy for each catchment varied
from 0.50–0.94, with higher threshold values corresponding to
low flows. Omission and commission errors did not display sys-
tematic trends but were greatest for NE25, VR35, and BR12 at
low flows.
The NE model was able to reproduce the complex pattern of

tributaries in the three Hubbard Brook catchments (Figure 2).
One of the more prominent errors was the presence of high
probability values for a wet stream along the western border
of NE25. We did not map a stream in the field at the western
edge of NE25, but we believe the catchment boundary delin-
eated from the DEM is slightly inaccurate, as the stream ap-
pears to flow into the neighboring catchment. Thus, a wet
stream may have actually been present at this location on some
of the mapping dates. Although we optimized the probability

threshold for each site, we found a slightly higher threshold
value of approximately 0.75 yielded a more visually accurate
stream network pattern at high and low flows (Figure 3), partic-
ularly for NE13 and NE42.

The AP model effectively portrayed the simple network pat-
tern of the Fernow catchments yet tended to overestimate the
presence of wet streams at higher elevations (Figures 4 and 5).
For AP16, the modeled network precisely matched the field
map for the high flow but did not reflect the top-down contrac-
tion in stream length that occurred during the low flow, even at
probability thresholds greater than 0.90. Similarly, we never
observed surface water in the southwest tributary of AP37 as
far upslope as the model indicated, and flow duration along
the upper reaches of the main stem was much lower than the
model predicted.

Model performance for the VR differed between VR70 at the
South Fork of Potts Creek and the two catchments draining to
Poverty Creek, VR25 and VR35. The VR model produced
realistic stream networks in VR25 and VR35 at high flows
but greatly overestimated wet stream length for the low flows
(Figures 6 and 7). Stream length changed considerably between
high and low flow conditions at these catchments, andwe found
that threshold values of 0.95–0.99were necessary for a closer vi-
sual match between the model and field map at low flows. Nev-
ertheless, the modeled network contraction patterns with
decreasing runoff and increasing threshold values were consis-
tent with field observations, with many of the same reaches dry-
ing first. Overestimation of stream length at low flows was less of
an issue for VR70, which displayed much less network expan-
sion and contraction.However, themodeled network continued
too far upslope for both flow conditions, so increasing the prob-
ability thresholds to 0.80–0.90 visually improved the

Figure 3. Omission and commission errors at NE42 (A), NE25 (B), and NE13 (C) at the highest and lowest mapped flows for probability thresholds of
0.50, 0.75, and 0.90. See Figure 2 for high and low runoff values. [Colour figure can be viewed at wileyonlinelibrary.com]
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delineation. The model also omitted a number of short, discon-
nected reaches that activated during high flows at VR70, al-
though the total missing stream length was relatively minor.
The BR model accurately delineated wet stream length along

the main channel stems in each Coweeta catchment but
overestimated the length of several small tributaries in BR33
and BR40 (Figures 8 and 9), which often corresponded to bed-
rock springs. As a result, probability thresholds of 0.75–0.90
yielded the most realistic stream networks. As was the case
for the other study areas, these threshold values were higher
than the threshold optimization procedure suggested (Table III
). The BR field maps showed almost negligible network expan-
sion and contraction between high and low flows, but the
model was not able to reproduce the more notable changes
in stream length that did occur. In BR12, the model did not
show contraction of the wet stream along the eastern tributary
that we observed in the field and, instead, erroneously indi-
cated drying further downstream.

Discussion

Terrain metrics

TWI is the most critical topographic metric for modeling wet
stream length in our Appalachian catchments (Table II). The

TWI calculation incorporates the upslope area and slope at a
pixel, which are generally among the best predictors of channel
head locations (James and Hunt, 2010; Julian et al., 2012;
Avcioglu et al., 2017) and most significant variables in stream
network models (Sun et al., 2011; Elmore et al., 2013; Russell
et al., 2015; González-Ferreras and Barquín, 2017). Substitut-
ing the upslope accumulated area (UAA) for TWI lowers model
accuracy only slightly. We calculate upslope area for UAA and
TWI according to the multiple triangular flow direction algo-
rithm (Seibert and McGlynn, 2007) and use 3m DEMs, so var-
iable importance and model performance may differ for other
flow direction algorithms or DEM resolutions.

The effect of TWI on the probability of stream presence dif-
fers most notably between NE and the other three study areas
(Table II). For a given TWI value, the log odds of a wet stream
in NE are 50–100% greater than for AP, VR, and BR. In other
words, a stream is more likely to be wet in NE for a given
TWI value. Likewise, a higher TWI owing to a larger area or
lower slope would be necessary in the other provinces to have
the same probability of stream presence as NE. TWI is the only
terrain metric in the NE model yet is able to predict the com-
plex arrangement of tributaries at the Hubbard Brook catch-
ments surprisingly well. A lack of stream incision into the
glacial till results in planar hillslopes and few defined valleys
(Figure 1), which complicate channel delineation both from
DEMs and aerial photographs as well as in the field. The

Figure 4. Modeled stream networks for high (left) and low (center) flows in AP. Right columns shows field-surveyed streams for the modeled flows.
Only probability values > 0.50 are shown. [Colour figure can be viewed at wileyonlinelibrary.com]
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success of the model suggests wet stream length at NE is mostly
a function of upslope area and, to a lesser extent, slope in the
unincised catchments.
TPI considerably improves model performance for AP, VR,

and BR. As a measure of the relative elevation of a pixel, TPI
distinguishes ridges and valleys and, accordingly, the degree
of stream incision. More deeply incised valleys have a lower
depth to bedrock, increasing the likelihood that channels lie
below the seasonally shifting saturated zone to provide stream
flow (Whiting and Godsey, 2016). Likewise, we observed in the
field that highly confined stream valleys tend to have a higher
flow duration than wide, aggraded valleys, which studies have
also noted elsewhere (Stanley et al., 1997). The lack of defined
stream valleys at Hubbard Brook (Figure 1) may explain why
neither the local nor mean upslope TPI appears in the final
NE model.
We are not certain why the AP and VR models incorporate

the mean upslope TPI parameter while the BR model includes
the local TPI metric. Elmore et al. (2013) determined that
slope and curvature variables averaged over the upslope con-
tributing area were always more significant than local values
in models of the geomorphic channel network for the Eastern
USA. Flow origins in the AP and VR provinces tend to occur at
upslope areas that are approximately an order of magnitude
larger than those in NE and BR (Jensen et al., 2017). However,
substitution of the local and mean TPI variables in each model
reduces performance only marginally. Thus, we do not be-
lieve the specification of a mean or local value is integral to
achieve reasonable representations of headwaters. We are
not aware of any studies that examine TPI for stream network
modeling, but Gillin et al., 2015b) did select TPI for a logistic
regression model of hydropedologic units in NE42. Our

results suggest this metric may be useful for future headwater
modeling studies.

Curvature metrics improve model performance only slightly
for AP, VR, and BR after the addition of TWI and TPI (Table II
). We tested a global model for all of the catchments using a
factor variable to differentiate the physiographic provinces;
TWI and TPI are the only two terrain metrics in the final model,
reinforcing the comparatively minor role of curvature. In addi-
tion, the different types of curvature are highly correlated with
each other and all generally indicate the degree of land surface
convergence or divergence, so the selection of cross-sectional
or profile versus longitudinal curvature in our models is not ex-
tremely meaningful. Even though curvature does not greatly in-
crease model accuracy, Russell et al. (2015) found that
curvature variables can help differentiate perennial and inter-
mittent streams. Longitudinal and cross-sectional curvature (of-
ten known as ‘profile’ and ‘planform’ curvature, respectively, in
ArcGIS) commonly correlate with the location of channel
heads (Tarolli and Dalla Fontana, 2009; Julian et al., 2012)
and flow origins (Whiting and Godsey, 2016) and are often of
secondary importance in stream network models following up-
slope area and slope (Sun et al., 2011; Elmore et al., 2013; Rus-
sell et al., 2015). However, TWI and TPI seem to largely
capture the topographic information that curvature metrics pro-
vide while producing higher model accuracy.

Characterizing network dynamics

Stream runoff is significant in all four models but provides only
small improvements in model accuracy. As a constant value for
each mapping rather than a metric that differs for every pixel,

Figure 5. Omission and commission errors at AP37 (A), AP16 (B), and AP14 (C) at the highest and lowest mapped flows for probability thresholds of
0.50, 0.75, and 0.90. See Figure 4 for high and low runoff values. [Colour figure can be viewed at wileyonlinelibrary.com]
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the purpose of runoff in the models is to represent different wet-
ness states of the catchment by increasing the probability of
stream presence for higher flow conditions. For this reason,
runoff has a greater model coefficient and t-statistic in the prov-
inces where stream length changes more with flow (Table II;
Figure 10). Jensen et al. (2017) explain stream length dynamics
in the study catchments in terms of the permeability and water
storage capacity of the underlying sediment and bedrock. Net-
work expansion and contraction is minimal at BR (Figure 10),
which is probably due to deep, permeable soils that can store
and transport perennial flow to streams (Hewlett and Hibbert,
1967; Hatcher Jr., 1988). Conversely, VR25 and VR35 at Pov-
erty Creek display extreme wet network variability, as the un-
derlying shale has lower permeability and, thus, produces less
base flow (Carlston, 1963) than sandstones and other more per-
meable geology. At a finer spatial scale, wet stream length and
flow duration tend to be lower amid transmissive boulder de-
posits and in wide, sediment-filled valleys, highlighting the ad-
ditional need for valley incision to the saturated zone for
greater flow permanence (Whiting and Godsey, 2016).
The minor contributions of runoff to the models suggest this

variable may not be useful for predicting network dynamics.
Because stream length is quite stable at Coweeta, we can easily
remove runoff from the BR model. For the other three prov-
inces, we created a separate model of the wet stream network

at high and low flows, excluding runoff as a potential explana-
tory variable, to determine if distinct topographic metrics corre-
late with stream length during wet and dry conditions. The final
parameters for the high and low flow models (Table IV) are
nearly the same as those in the original models (Table III). For
NE, UAA is the single best metric at low flow instead of TWI
(Table IV), although TWI and UAA are highly correlated and re-
sult in similar McFadden’s pseudo R2 values. The mean up-
slope downslope index (Hjerdt et al., 2004) replaces cross-
sectional curvature for the low flow AP model, but each of
these variables increases McFadden’s pseudo R2 values by just
0.03 after TWI and TPI. Longitudinal curvature is absent from
the low flow VR model but provides only a small contribution
to the high flow and original models. Overall, TWI and TPI re-
main the most important parameters at both flows. The primary
difference between the high and low flow models is the model
intercepts and coefficients, which serve to modify the probabil-
ity of wet stream presence. We can produce a similar result
with fewer models by simply varying the probability threshold
value of the original model outputs. For this reason, we prefer
the original modeling approach that retains runoff for the catch-
ments in our study.

The optimum probability threshold values we calculate for
each catchment are greater for low flows than high flows, since
increasing the threshold excludes more pixels from

Figure 6. Modeled stream networks for high (left) and low (center) flows in VR. Right columns shows field-surveyed streams for the modeled flows.
Only probability values > 0.50 are shown. [Colour figure can be viewed at wileyonlinelibrary.com]
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classification as a wet stream. Catchments with highly dynamic
networks, such as VR35, require a substantial change in thresh-
old values between high and low flows (Table III), indicating
the lack of model sensitivity to the runoff variable. Nearly iden-
tical probability thresholds are suitable for both flow conditions
at sites with more constant stream length, like AP14. We tried
incorporating interaction effects between runoff and the topo-
graphic metrics as well as the individual slopes of the log–log
power relationship between stream length and runoff
(Figure 10) as model parameters to help account for the incon-
sistency in threshold values and eliminate the need for thresh-
old optimization. None of these attempts corrected the issue.
In addition, further adjustment of the threshold is still necessary
for most of the catchments to create a modeled network that is
consistent with field observations. The optimized threshold
values are almost always too low. We attempted to remedy this
issue by doubling the number of non-stream pixels for model-
building and validation to 20%. However, increasing the pro-
portion of non-stream pixels heightens the imbalance with the
number of wet stream sample points and results in optimized
threshold values that are even further from the visually-selected
thresholds than when we only use 10%.
We initially intended to use stream runoff as a continuous

variable to delineate the wet network for a specific flow condi-
tion. While the models do not successfully predict wet stream
length for a precise runoff value, characterizing the wet and
dry extremes of network extent is possible by choosing the ap-
propriate lower (0.50–0.75) or higher (0.75–1.0) threshold
value, respectively, even if runoff data are not available. Any
prior knowledge of the magnitude of stream length dynamics,
which we can estimate from geologic characteristics or mea-
surements like the base flow index (Jensen et al., 2017), can

further inform the appropriate threshold for more realistic
model outputs.

Model strengths and shortcomings for stream
network delineation

The models are able to locate several disconnected wet
reaches that often either escape detection or appear as contin-
uous tributaries on maps. Coarse surficial deposits cover the
southeastern portion of NE42 and coincide with short, discon-
nected tributaries, which is distinct from the network pattern
in the remainder of the catchment. Terrain metrics do not nec-
essarily reflect the surficial geology, so overestimation of wet
stream length is common in this area. However, the NE model
accurately predicts a lower probability of wet stream pixels in
the vicinity of the boulder deposits of NE42 (Figures 2 and 3).
The BR model also indicates a disconnected reach in the north-
ern part of BR40 (Figures 8 and 9). This wet reach occurs in a
valley with sediment fill from an old landslide deposit. The
modeled location and length of the high probability pixels are
quite similar to field observations of the disconnected tributary.
The VR model does not identify all of the disconnected reaches
in VR70 but, surprisingly, is able to find two isolated wetlands
without a tributary inlet or outlet that persist during both high
and low flows (Figures 6 and 7): one wetland lies west of the
main stem, and the other is just above the junction of the two
primary tributaries.

Whereas somewet stream reaches andwetlands never have a
surfacewater connection to the catchment outlet across the flow
conditions observed in the field, discontinuous wet reaches also

Figure 7. Omission and commission errors at VR70 (A), VR35 (B), and VR25 (C) at the highest and lowest mapped flows for probability thresholds of
0.50, 0.75, and 0.90. See Figure 6 for high and low runoff values. [Colour figure can be viewed at wileyonlinelibrary.com]
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develop during channel drying. The modeled network contrac-
tion patterns evident by increasing the probability threshold
values show the formation of discontinuous reaches in addition
to more sequential top-down drying (Figures 2–9). Disconnec-
tion of streams into separate wet reaches is common during
dry periods (Godsey and Kirchner, 2014), but most maps and
stream network models cannot recreate the fine-scale spatial
variability in flowduration that actually exists in headwaters. Re-
searchers increasingly recognize the significance of isolated
wetlands (Cohen et al., 2016) and temporary or discontinuous
stream reaches (Stanley et al., 1997; Larned et al., 2010; Datry
et al., 2014) for ecological services including biodiversity, nutri-
ent cycling, and downstreamwater quality. Disconnected water
bodies frequently maintain a subsurface connection to peren-
nial streams through hyporheic exchange (Boulton et al., 1998)
and also serve as habitat refugia and storage sites for sediment,
organic matter, and contaminants moving through the catch-
ment (Larned et al., 2010). As a result, locating isolated wetlands
and disconnected wet reaches is a high priority yet also fre-
quently a challenge for scientists and policy-makers.
The models fail to adequately represent other aspects of the

stream network that correspond to discontinuities in the surfi-
cial geology or watershed evolution processes. The main east-
ern tributary in BR12 has a major disconnection at a valley fill
from a landslide deposit (Figures 8 and 9). A wide, sediment-
filled valley floor also aligns with the disconnection along the

main stem of AP37 (Figures 4 and 5). In both cases, the models
overestimate stream length in wider valley sections where flow
duration is lower. In VR70, channels with perennial flow origi-
nate at the base of boulder-filled hollows. Upslope of the ori-
gins, water emerges on top of the boulders for only short
distances at high flows before again infiltrating into the subsur-
face. The VR model does not identify most of these short
reaches and, additionally, extends the streams too far up the
catchment, as the model cannot account for the transmissive
boulder deposits with the available terrain metrics (Figures 6
and 7). Finally, the AP model dramatically overestimates stream
length and flow duration at higher elevations, especially for the
southwest tributary of AP37 (Figures 4 and 5). Field observa-
tions suggest that the tributaries in this catchment are
headwardly eroding into a relict upland in the same manner
as a hanging valley. Thus, there will probably be streams at
the predicted locations higher in the catchment in the future,
but, meanwhile, the model does not accurately portray current
conditions. In all cases, the overprediction of stream length oc-
curs in areas where the channel has not incised into a valley
fill, coarse boulder deposits, or a relict upland. Despite the lack
of incision, these locations all coincide with well-defined val-
leys that have strongly negative TPI values to increase the
modeled probability of wet stream presence. In contrast, loca-
tions that accurately show wet stream disconnections in
NE42, BR40, and portions of VR70 are not in highly confined

Figure 8. Modeled stream networks for high (left) and low (center) flows in BR. Right columns shows field-surveyed streams for the modeled flows.
Only probability values > 0.50 are shown. [Colour figure can be viewed at wileyonlinelibrary.com]
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Figure 9. Omission and commission errors at BR40 (A), BR33 (B), and BR12 (C) at the highest and lowest mapped flows for probability thresholds of
0.50, 0.75, and 0.90. See Figure 8 for high and low runoff values. Note north orientation. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 10. Stream length versus runoff in NE (A), AP (B), VR (C), and BR (D). Modified from Jensen et al. (2017).
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valleys or have clear topographic breaks to delimit the wet
reach. This finding again emphasizes the importance of valley
incision to the zone of saturation for flow permanence but also
indicates a need for better metrics of relative incision and ag-
gradation to improve future models.

Model application

Our study constitutes an exploratory analysis of the terrain var-
iables that correlate with the location of the wet stream network
in four Appalachian physiographic provinces. The overall
agreement between the modeled probability of wet stream
pixels and field maps indicates logistic regression is an effective
way to characterize headwaters across flow conditions. Similar
studies successfully apply logistic regression to delineate head-
water channels (Russell et al., 2015), and our results demon-
strate that this fairly simple approach is also suitable for
modeling network expansion, contraction, and disconnection
at a finer reach scale by varying the probability threshold
values of model outputs. Traditionally, physically mapping
wet stream length multiple times is the only method for measur-
ing wet network variability. A key improvement in our models
is the prediction of disconnected reaches along streams for
both wet and dry conditions, which provides a more realistic
map of flow permanence than assigning a single flow duration
classification to an entire tributary (Russell et al., 2015;
Williamson et al., 2015).
Our models rely on terrain metrics, which are easy to derive

from DEMs with programs like ArcGIS and SAGA. We can esti-
mate the high and low extremes of wet stream length by simply
altering the probability threshold of the logistic regression
model output. We also include stream runoff as a wetness state
variable in the models because of visual and statistical im-
provements in the predicted probability of stream pixels, partic-
ularly for NE, AP, and VR. More training data of stream
networks at different runoff conditions would undoubtedly in-
crease the contribution of this variable to the models. Other
wetness state variables such as an antecedent precipitation in-
dex would be an appropriate substitute if stream discharge
measurements are not possible. However, neither runoff nor

precipitation is essential to approximate the magnitude of
stream length dynamics.

The twelve catchments in this study represent a limited sam-
ple of headwaters, despite the extensive time and effort associ-
ated with field data collection. The climate, geology,
vegetation, and land use are consistent across the selected
catchments in each province. Thus, our models may not be ap-
plicable to all headwaters in a given physiographic region. In-
corporation of additional variables such as annual
precipitation, evapotranspiration, lithology, and land cover
would likely be necessary for a comprehensive stream extrac-
tion over larger areas.

Conclusion

Logistic regression is a suitable and straightforward method for
modeling wet stream length dynamics in Appalachian
headwaters. The most significant terrain metrics correlating
with the probability of stream presence at a pixel include the
topographic wetness index (TWI) followed by the topographic
position index (TPI). In effect, catchment locations with larger
upslope areas, lower slopes, and more valley incision have a
higher flow duration. TPI is not a common parameter for stream
network modeling, but our results show that this variable can
greatly improve channel delineations. The contributions of cur-
vature and runoff to the models are comparatively minor for the
selected study areas.

The four models have high overall accuracy and predict high
and low probability values of wet stream pixels that match the
network patterns we observed in the field. In general, greater
threshold values (> 0.75) correspond to dry conditions, and
lower values (0.50–0.75) represent high flows. Catchments
with highly variable lengths require more adjustment of the
probability threshold. The models are able to distinguish
several disconnected stream reaches and wetlands but do not
always portray the correct stream location and length in areas
with less channel incision amid boulder deposits, wide valley
segments, or along headwardly eroding tributaries. Future
modeling efforts should further investigate these sources of
error to improve the reliability of network predictions.

Table IV. High and low flow model parameters for NE, AP, and VR. The P-value of all model parameters is << 0.001

Province Model McFadden’s pseudo R2 Parameters Coefficient t-statistic

NE High 0.68 Intercept –34.97 –39.08
TWI (ln) 15.74 38.89

Low 0.71 Intercept –35.57 –30.32
UAA (ln) 1.71 31.25

AP High 0.81 Intercept –19.68 –17.41
TWI (ln) 7.97 14.90
TPI (meana) –4.80 –13.47
Cross-sectional Curv. –0.37 –9.67

Low 0.79 Intercept –33.12 –15.69
TWI (ln) 12.11 16.77
TPI (meana) –4.05 –7.72
Downslope index (meana) 16.90 7.04

VR High 0.79 Intercept –24.79 –33.62
TWI (ln) 10.97 31.99
TPI (meana) –2.71 –15.65
Longitudinal Curv. 0.24 18.46

Low 0.71 Intercept –22.39 –24.89
TWI (ln) 9.12 24.00
TPI (meana) –3.47 –12.88

aVariable denoted as’mean’ refers to the mean value of upslope pixels as opposed to the local value.
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Accurate maps of headwaters are rare yet increasingly
essential for ecological modeling and the enforcement of
water policy for effective watershed conservation. Because
many headwater streams have temporary flow, data describing
not only the length but the associated flow duration of
tributaries, disconnected reaches, and wetlands are critical for
informing the research and management of river systems. Our
logistic regression models approximate the wet stream network
of catchments at high and low flows rather than provide a single
prediction of static channel length. The modeling methodology
is relatively simple, employing basic terrain metrics, which per-
mits the application of this approach in other regions to improve
the characterization of temporary headwaters.
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