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Annual Monitoring of US Timber Production:  
Rationale and�Design
John W.�Coulston, James A.�Westfall, David N.�Wear, Christopher B.�Edgar, Steven P.�Prisley,  
Thomas B.�Treiman, Robert C.�Abt, and W. Brad�Smith

Understanding roundwood production in the United States at fine spatial and temporal scales is needed to support a range of analyses for decision making. Currently, estimates 
of county-level roundwood production are available at various time intervals for different regions of the country and for different products. Here we present our reasoning for 
moving to an annual timber products monitoring program and further present a comparison of sample designs to facilitate an annual program without increased effort. We 
found that both probability proportional to size and stratified simple random sampling designs were viable options, but the stratified simple random sampling design provided 
more flexibility. This flexibility was deemed important to target emerging markets and to enable sampling with certainty of specific firms. Our results lay the foundations for 
moving to an annual timber products output monitoring design in support of market, sustainability, and policy analyses as well as projections.
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Wood product markets a�ect forest sector jobs (Hodges 
et al. 2012, Woodall et al. 2012, Sorenson et al. 2016), 
shape the composition and structure of future for-

ests (Wear et al. 2016), and are strong drivers of investments in 
forest management (FAO 2009). Monitoring timber products 
output (TPO) is key to understanding the current utilization of 
raw material (industrial roundwood; see Table 1 for background) 
to support these markets. In the United States, TPO monitoring 
has been a constituent program within the USDA Forest Service, 
Forest Inventory and Analysis program (FIA) since 1948. �e goal 
of this e�ort is to estimate the amount of roundwood removed by 
product at the county and state level along with the cross-regional 
movement of industrial roundwood (Bentley and Johnson 2011). 
Estimates from the TPO program have provided the essential 
foundation for US timber market analyses and projections (e.g., 
Adams and Haynes 1996, Buongiorno 1996, McCarl et al. 2000, 
Abt et  al. 2009, Ince et  al. 2011), sustainability analyses (e.g., 

Wear and Greis 2002, USDA Forest Service 2012, Wear and Greis 
2013, Shi�ey and Moser 2016), policy analysis (Boyd and Hyde 
1989, Haynes 2003, Wear and Coulston 2015), and local wood 
basket analysis of potential market expansion. �e usefulness of 
any timber market analysis, forest sustainability assessment, and 
ultimately any policy analysis in the forest sector is constrained by 
the quality and precision of these essential data.

�e objective of this article is to describe a new approach to TPO 
data collection and estimation that is e�cient in supporting timber 
market and forest assessment work. �ere are several alternative 
sample-based and remote sensing-based approaches that capture 
some information related to timber product removals from forests 
but would be inadequate for obtaining information on industrial 
roundwood by product. For example, remote sensing approaches 
or FIA inventory approaches can be used to estimate the area of 
harvesting (Coulston et al. 2015, Moisen et al. 2016) but not the 
output of speci�c products. Remote sensing can provide more 
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timber product. �ese are domain estimates, and the use of the � 
estimator allows for a rather simple extension for estimating do-
main totals. �e calculation of inclusion probabilities for SI, STSI, 
and PPS, as discussed in the subsequent paragraphs, allows us to 
present a single estimator. Under the � estimator, the estimate of 
the population total Y , is:
   

Y
s

 = ∑ yk
kπ

where s is the sample of k=l=1 to n mills, yk is the observed value 
for mill receipts from mill k, and �k is the �rst-order inclusion 
probability for mill k. �e estimated variance of Y  is:
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∆kl =∆kl/�kl where �kl are the 
second-order inclusion probabilities for mills k and l and ∆kl= �kl 
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Under the SI, STSI, and PPS designs, each element in the popu-
lation can be given a probability of inclusion in the sample. �e 
three sample selection approaches (SI, STSI, PPS) use di�erent 
methods to determine the inclusion probability. �e simplest ex-
ample is the SI approach, where �k= n/N, where N is the popu-
lation size. �e second-order inclusion probability under SI is 
�kl=n(n-1)/N(N-1). Under our implementation both the STSI and 
PPS approaches required a MOS (x) for each element in N. For 
STSI, x is used to form H = 1,…,h strata, which are to be sampled 
at a speci�ed nh. A  further description of strata construction for 
two STSI designs is provided in the subsequent paragraphs, but 
for each stratum h, �hk= nh/Nh and �hkl=nh(nh-1)/Nh(Nh-1), which 
leads to an SI sample within strata. For PPS, x is used to calculate 
inclusion probabilities proportional to x and the sample is drawn 

using an elimination method developed by Tille (1996). With PPS, 
one calculates �k proportional to x by (1) calculating n∙xk/∑x for 
each of the N elements in the population, and (2) for any �k >1 the 
value �k is set to one. Steps (1) and (2) are repeated based on the 
remaining elements (�k<1) until all values of �k are in [>0,1]. �e 
elimination procedure is an N-n step process where one element 
is removed at each step until the desired sample size is obtained 
(Table 4 illustrates the inclusion probabilities based on an MOS 
for a small example). We point the interested reader to Tille (1996) 
for further details on this method, including the calculation of 
second-order inclusion probabilities. Our implementation of this 
method was performed using the R (R Core Team, 2015) Sampling 
package (Tille and Matei 2015).

For the work presented here, the MOS was modeled mill receipts 
(x). �is measure was developed using simple linear regression based 
on the number of employees at each mill to predict receipts. �is 
model was constructed for the sole purpose of constructing strata 
based on volumes rather than number of employees. �e e�ciency 
of the STSI and PPS designs is based on the correlation between 
the x and the variables for which estimates are needed. �e correl-
ation between x and actual mill receipts was �~0.85 based on the 
2011 TPO data (Figure 2), which was approximately the same as 
the correlation between the number of employees and mill receipts.

Two di�erent strati�cation approaches were examined. �e 
�rst approach (STSI) was based on creating many approximately 
equal-sized strata of MOS. �e second approach (STSIDH) followed 
Brown and Oderwald (2012), where the cumulative square-root 
frequency method (Dalenius and Hodges 1959) was used to de�ne 
strata boundaries based on the MOS and Neyman allocation was 
used to allocate the sample.

Strata for STSI were developed by �rst creating a sam-
pled-with-certainty strata and then by creating approximately equal 
strata sizes in terms of cumulative modeled mill receipts (x) by 
product. �is strati�cation approach approximates a PPS approach. 
Each mill with x> 10 million cubic feet per year was in its own 
stratum (Nh=nh=1) and therefore was sampled with certainty (141 
mills). We denote the sample size of this portion of the sample as 
nc. �e number of remaining elements in the sample are the nu and 
n=nc+nu. For the remaining mills, we developed the strata based on 

Figure�1. The percent of regional roundwood consumption of primary mills in the 12-state study area of the southeastern United States.

D
ow

nloaded from
 https://academ

ic.oup.com
/forestscience/article-abstract/64/5/533/5033855 by U

 S D
ept of Agriculture user on 25 June 2019



Forest Science • October 2018 537

the x and primary product. To construct the strata for each primary 
product: (i) place x in descending order  =  dx. (ii) Calculate the 
target strata size as t=2∙∑x/nu. (iii) Cumulate dx until the size >=t. 
�is denotes the boundary of the �rst stratum. Starting at the next 
element in dx after the stratum boundary, repeat (iii) to identify the 
next stratum boundary and repeat until the end of dx is reached. 
Two elements are then randomly selected without replacement 
from each stratum. Table 4 illustrates STSI stratum boundaries and 
the inclusion probabilities based on an MOS for a small example 
when no certainty strata are used.

�e STSIDH approach was a three-step process to (1) determine 
number of strata to use, (2) determine strata boundaries, and (3) 
allocate the sample. We created a single sampled-with-certainty 
stratum for the 141 mills with x>10 million cubic feet of mill 
receipts per year. As suggested by Brown and Oderwald (2012), we 
used hierarchical clustering to identify the number of clusters for 
the remaining mills. �is technique relies on the similarity among 
items (mills) to form relatively homogeneous groups. We used the 
Ward’s (1963) clustering algorithm to form the clusters based on 
the number of employees and consumption of each mill. Both the 
number of employees and mill consumption were standardized to 
a mean of zero with unit variance for this analysis. We used the 
cubic clustering criterion (CCC) (Sarle 1983) and the pseudo t2 
(Duda and Hart 1973) to determine the number of clusters (H). 
We calculated the bin size (b) as the min(H∙15, u), where u is the 
number of unique values of x as suggested by Rivest and Baillargeon 
(2017). �e frequency in each bin was then found and the square 
root of the frequency (√f) was calculated. Next, the cumulative 
sum of √f was calculated. �e approximate strata break points were 

calculated as sb= ∑√f / H. Final stratum boundaries are found by 
selecting the bins where the cumulative frequency is closest to 1∙sb, 
2∙sb,,,(H-1)∙sb. �e sample size for each stratum was then calculated 
via Neyman allocation, where nh=n(NhSh)/[∑(NhSh)], where Sh is 
the standard deviation of the x within strata h. Table 4 illustrates 
STSIDH stratum boundaries and the inclusion probabilities based 
on an MOS for a small example.

Monte Carlo Analysis
We performed a Monte Carlo analysis to quantify the empir-

ical MSE, empirical bias, and the empirical variance of the esti-
mate under three sampling intensities. �is approach allowed us 
to approximate the true error of domain estimates arising from 
each sampling design at three di�erent sampling intensities. We 
tested sampling intensities of 15%, 25%, and 50%. We selected 
these sampling intensities because they would allow for an annual 
sampling e�ort without increasing the surveyor’s e�ort, as de�ned 
by the average number of mills contacted per year, under a 6–7-
year, 4–5-year, and 2-year periodic survey, respectively. For each 
sampling intensity and sample design, the Monte Carlo analyses 
proceeded as follows: (1) Draw a sample of size n from the popula-
tion. (2) Construct domain estimates (i.e., estimate the total prod-
uct output and total by product for each individual county and 
each individual state). (3) Repeat (1) and (2) R=5000 times. In this 
manner, there was a distribution of 5000 point estimates for each 
timber product (e.g., pulpwood, sawlogs, poles, and total product) 
for each of the 971 counties and 12 states in the study area.

�e empirical MSE for each sample design (PPS, SI, STSI, 
STSIDH) for each domain was

  MSE
Y Y
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where Yd was the true total for the domain of interest. �e 
empirical bias was
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Table� 3. Summary statistics of population mill receipts, state  
production, and county production.

Variable Min. 1st Qu. Median Mean 3rd Qu. Max.

(million cubic feet)

Mill receipts 0.00 0.16 0.64 4.93 2.15 105.50
County production 0.00 1.14 3.91 6.82 10.01 57.14
State production 72.02 365.20 559.60 551.70 667.70 1,218.00

Table�4. Example inclusion probabilities and sample selection for the SI, PPS, STSI, and STSIDH designs for a sample of n=6 from a popu-
lation of N=16. The stratum boundaries for the STSI and STSIDH are denoted by the gray and white shadings. Under the STSI design, each 
stratum is approximately 27 units of MOS. The STSIDH design was implemented with H=2 strata and bin size of 6, and the sample was 
allocated via Neyman allocation. The selected samples are denoted by the bold font under each design.

PPS STSI STSIDH SI

Measure of Size Inclusion Probability Stratum Inclusion Probability Stratum Inclusion Probability Inclusion Probability

10 0.73 1 0.67 1 0.40 0.38
9 0.66 1 0.67 1 0.40 0.38
9 0.66 1 0.67 1 0.40 0.38
8 0.59 2 0.40 1 0.40 0.38
7 0.51 2 0.40 1 0.40 0.38
5 0.37 2 0.40 2 0.36 0.38
5 0.37 2 0.40 2 0.36 0.38
4 0.29 2 0.40 2 0.36 0.38
4 0.29 3 0.25 2 0.36 0.38
3 0.22 3 0.25 2 0.36 0.38
3 0.22 3 0.25 2 0.36 0.38
3 0.22 3 0.25 2 0.36 0.38
3 0.22 3 0.25 2 0.36 0.38
3 0.22 3 0.25 2 0.36 0.38
3 0.22 3 0.25 2 0.36 0.38
3 0.22 3 0.25 2 0.36 0.38
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�e typical design-based approaches for non-response require an 
assumption regarding the distribution of the non-response and/or 
modeling the probability of response based on auxiliary informa-
tion in order to recalibrate sampling weights. For example, under 
the STSIDH design, if the practitioner ignores the non-response (i.e., 
just accepts the decrease in n), then by default the non-response 
is assumed to occur at random within stratum (i.e., the mean of 
the observed sample equals the mean of the unobserved sample). 
�is assumption, depending on the mechanism driving the non-re-
sponse, may or may not be tenable. Future e�orts should focus on 
developing a formal non-response plan and testing the applicability 
of various approaches for non-response.

Discussion
Our results suggest that PPS, STSIDH, and STSI sample designs 

provided viable alternatives to conducting a complete census in 
order to achieve annual TPO monitoring. While the results in 
terms of RMSE and bias were similar for the approaches, their via-
bility in a production monitoring system di�er. �e STSI design 
is more �exible and is less complicated when compared to the PPS 
and STSIDH designs. For example, the STSI approach easily allows 
for di�erent characteristics among states, di�erent approaches for 
emerging markets, and modi�cation of strata under non-response. 
�is may include the construction of speci�c stratum so that 
assumptions of missing at random are tenable. On the other hand, 
PPS designs require adjusting inclusion probabilities under non-re-
sponse and are less purposive in terms of sampling with certainty. 
�e STSIDH design o�ers some of the �exibility that the STSI 
design does but is more cumbersome and less intuitive to imple-
ment, particularly with respect to the cluster analysis to determine 
the number of strata. Because the STSI, STSIDH, and PPS designs 
had relatively similar performance overall, but the STSI design is 
simpler and more �exible operationally, we recommend the STSI 
design for nationwide testing to support annual TPO monitoring.

In this research, we have presented the precision of the tested 
designs and sampling fractions in terms of RMSE for total pro-
duction at the state and county levels as well as for select timber 
products. Clearly the precision of estimates di�ers with respect to 
the domain being estimated. �e precision guidelines for the FIA 
program are documented in USDA Forest Service (1970). �ese 
guidelines suggest that the precision of estimates of annual timber 
cut should be as close as practicable to 5% sampling error per 1 bil-
lion cubic feet of annual timber cut in the east and 10% sampling 
error per 1 billion cubic feet of annual timber cut in the west. Our 
results suggest that these precision requirements could be easily met 
based on the sample designs tested. For example, the STSI design 
under the 0.5 sampling fraction produced estimates for sawlogs in 
South Carolina with a 1.5% sampling error given an observed total 
of 172 million cubic feet. In South Carolina, the sampling error 
rose to 11.8% for the STSI design under a 0.25 sampling fraction. 
However, based on the model provided by Bechtold and Patterson 
(2005), the 11.8% sample error per 172 million cubic translates to 
approximately 1.5% sampling error per billion cubic feet. �is sug-
gests that in the study area the required precision can be obtained 
with less than a 0.5 sampling fraction.

Alternative estimators for small domains should be tested. 
�ere are sources of ancillary data that may increase the precision 
of TPO domain estimates. For example, there are modeled data 
based on remotely sensed information that may predict the area of 

stand-clearing events by county (Moisen et al. 2016). However, a 
closer examination is warranted to understand confusion between 
harvesting and development (Coulston et al. 2014). �ere are also 
substantial e�orts aimed at predicting harvest probabilities for each 
FIA inventory plot based on observed timber market information, 
mean annual increment, and other information that restricts har-
vest on some sites (USDA Forest Service 2012). Hypothetically, 
these predictions can be used to understand likelihood of harvest or 
the supply of volume that would likely be harvested under observed 
market prices. In either case, the predictions may be used to help 
increase the precision of domain estimates based on alternative esti-
mators. �ese include small area estimation techniques (Rao 2015), 
model-assisted estimators, ratio estimators (Brown and Oderwald 
2012), and synthetic estimators (Särndal et al. 1992).

�e FIA program has experience with shifting from a periodic 
design to an annual design. From the 1930s through the 1990s, 
the FIA program conducted periodic timberland surveys at the 
state level. �e frequency of these surveys was also variable among 
regions. However, through a set of recommendations provided by 
the �rst and second blue ribbon panels (AFPA 1998), the FIA pro-
gram shifted to an annual design and extended from a timberland 
emphasis to a forestland focus across all ownerships. �e e�ort to 
annualize the TPO survey is a similar situation. �rough a number 
of partner and stakeholder meetings, which included representa-
tives from the US government, state governments, non-govern-
mental organizations, forest industry, and academia, the shift from 
a periodic TPO e�ort to an annual TPO e�ort was recommended. 
�e work presented here represents the �rst steps in adopting these 
recommendations.

Future research is needed. We have noted the need for additional 
research on measures of size, alternative estimators, and non-re-
sponse. In addition to these items, some components of the TPO 
program were not tested as part of this research. �is includes esti-
mates of mill residues and byproducts. Also, the forest sector is dif-
ferent in di�erent parts of the country. �e proposed sample design 
should be tested in those regions to ensure that precision guidelines 
can be met. When considering national application of the sampling 
design, a single base-level sampling intensity should be developed. 
However, �exibility at the state level should also be maintained so 
that individual states may choose to intensify their sample. �ese 
key research items should be addressed as part of shifting toward an 
annual sample-based timber products monitoring program.

�e combination of an e�cient sample design and e�cient data 
collection protocols (e.g., electronic, automated data transfers) 
presents the opportunity to deliver timely annual timber product 
removals data. Edgar et al. (2015) demonstrated that these types of 
data can be collected and published within one year. A more e�-
cient TPO e�ort o�ers several advantages. Timely annual timber 
product removal information allows users to place these removals 
within the context of economic conditions, market prices, and pro-
duction of forest products. Timber product demand is also linked. 
For example, market shifts in demand for structural lumber in�u-
ence sawmill consumption of sawlogs and hence residue availability. 
Reductions in sawmill residues such as sawdust and shavings a�ect 
the availability of those residues for pellet production, which can 
lead to substituting roundwood for residue in order to meet pel-
let demand. Temporally dense estimates of timber product output 
can capture these emerging roundwood demand shifts. Likewise, a 
�exible statistical design such as the strati�ed approach described in 
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this paper allows for the practitioner to purposively include strata 
for emerging products. Further, spatially explicit estimates of actual 
timber product removals when combined with inventory data and 
land use change information allow for the exploration of the e�ects 
of land use change on roundwood availability. An annual TPO 
e�ort will increase knowledge of the forest sector and enhance our 
capability for both strategic and tactical analyses to not only under-
stand markets and forest sector employment, but also understand 
the opportunities for forest management and how these factors will 
shape future forests.

Conclusions/Recommendations
Current annual estimates of timber products output are needed 

to inform both public and private sector decision making and anal-
yses including market, sustainability, and policy analyses across a 
range of spatial scales. Under the current TPO program, only pulp-
mills are canvassed annually and remaining mills are canvassed at 
a variable frequency. While the current TPO program aims to be 
a complete census, there is non-response, which means the cur-
rent approach is a de facto sample. Shifting the TPO program to 
an annual design will provide more timely and consistent infor-
mation across spatial scales. Employing an e�cient sample design 
o�ers the opportunity for this shift with little increase in data col-
lection e�ort and further allows for statistical inference. We found 
that a strati�ed simple random sample o�ers a �exible approach to 
annual TPO monitoring that can be easily implemented. Further 
e�ciencies can be realized by working with key industry partners 
on automated data transfer approaches, which will allow increased 
e�ort on smaller mills, which typically drive non-response rates. We 
recommend that the TPO program continue this line of research to 
shift to an annual sample design in order to provide needed up-to-
date information consistently across the United States.
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