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Abstract

Background: Knowledge of the different kinds of tree communities that currently exist can provide a baseline for
assessing the ecological attributes of forests and monitoring future changes. Forest inventory data can facilitate the
development of this baseline knowledge across broad extents, but they first must be classified into forest community
types. Here, we compared three alternative classifications across the United States using data from over 117,000 U.S.
Department of Agriculture Forest Service Forest Inventory and Analysis (FIA) plots.

Methods: Each plot had three forest community type labels: (1) “FIA” types were assigned by the FIA
program using a supervised method; (2) “USNVC” types were assigned via a key based on the U.S. National
Vegetation Classification; (3) “empirical” types resulted from unsupervised clustering of tree species
information. We assessed the degree to which analog classes occurred among classifications, compared
indicator species values, and used random forest models to determine how well the classifications could be
predicted using environmental variables.

Results: The classifications generated groups of classes that had broadly similar distributions, but often there
was no one-to-one analog across the classifications. The longleaf pine forest community type stood out as
the exception: it was the only class with strong analogs across all classifications. Analogs were most lacking
for forest community types with species that occurred across a range of geographic and environmental
conditions, such as loblolly pine types. Indicator species metrics were generally high for the USNVC, suggesting that
USNVC classes are floristically well-defined. The empirical classification was best predicted by environmental variables.
The most important predictors differed slightly but were broadly similar across all classifications, and included slope,
amount of forest in the surrounding landscape, average minimum temperature, and other climate variables.

Conclusions: The classifications have similarities and differences that reflect their differing approaches and
objectives. They are most consistent for forest community types that occur in a relatively narrow range of
environmental conditions, and differ most for types with wide-ranging tree species. Environmental variables at
a variety of scales were important for predicting all classifications, though strongest for the empirical and FIA,
suggesting that each is useful for studying how forest communities respond to of multi-scale environmental
processes, including global change drivers.
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Background
The identity and composition of tree species in a forest
community can affect the ecological functions and eco-
system services that forests provide. For example, in
many temperate forest communities in the eastern
United States (U.S.), recent decreases in the abundance
of oak species have been associated with impacts on bio-
diversity, wildlife habitat, and water quantity (Fralish
2004; Nowacki and Abrams 2008; Hanberry 2013; Hiers
et al. 2014; Caldwell et al. 2016). Because changes in tree
species composition can affect forest functions in these
ways, characterizing species composition of existing for-
est communities is important for understanding the
functions of those communities (Tierney et al. 2009;
Thompson et al. 2013). And, as forests change in re-
sponse to climate and land use, characterization and
classification of their species assemblages can aid in un-
derstanding reference conditions, monitoring changes in
species composition over time, and detecting early
warning signs of vulnerability to those global changes
(Tierney et al. 2009). While much of climate change
impact and vulnerability research emphasizes the re-
sponses of individual species, focusing on communi-
ties allows incorporation of the relative occurrence of
species–that is, the dominance (or conversely, the
evenness) of species (Hildebrand et al. 2008; Levine et
al. 2017). The relative occurrence of species in a for-
est ecosystem can influence species interactions, and
is also likely to be influenced by environmental
changes (Kardol et al. 2010; Le Roux et al. 2014). For
example, in a recent study in the middle and eastern
U.S., knowing which tree species were dominant
within forest community types and quantifying the
potential threats to those species were critical for de-
termining the vulnerability of forest communities to
climate change (Brandt et al. 2017). Because global
change drivers are expected to affect the distribution
of species from local to broad extents, characterizing
species-based forest community types at those broad
extents will be especially critical for monitoring and
projecting the effects of global change on forest
communities.
An increasing number of data sources are becoming

available for understanding, characterizing and classifying
forest communities across broad extents. Field-observed
vegetation data (plot data), which contain information on
species occurrence, abundance, and structure, are a par-
ticularly important source of information for characteriz-
ing community composition (Franklin et al. 2017). One
source of vegetation plot data is national forest inventor-
ies, which provide forest community information on a sys-
tematic sampling grid at relatively fine grains (average plot
sizes of 0.04 ha globally, Liang et al. 2016) and relatively
large extents, often across regions or countries. All of

these plot data are becoming more widely accessible at
broad extents and can thus be used for regional, national,
and even global studies (Dengler et al. 2011; Peet et al.
2012; Liang et al. 2016). With the increased availability of
species-based forest inventory plot data comes the oppor-
tunity to explore various methods for classifying these
data into species-based community types. Understanding
the relative merits of those methods will be critical for
informing potential users of those classifications.
As with any classification problem, techniques for

classifying forest inventory plot data into forest commu-
nities can range from supervised to unsupervised. In a
purely supervised classification approach, each plot is la-
beled with a pre-determined forest community type
based on the characteristics observed at the location.
Supervised approaches are often done using a decision
rule or expert knowledge. In contrast, in a purely un-
supervised, empirical, or “data-driven” classification,
inventory data are partitioned into community type clas-
ses based on the relative similarity of their plot charac-
teristics without regard to any published authority
(Costanza et al. 2017). Because no classification of forest
community types will be suitable for all research ques-
tions, it is important to understand the strengths and
weaknesses of each. However, comparisons of alternative
forest community classifications, especially among su-
pervised and unsupervised approaches across broad
extents, have rarely been done (but see Tichý et al. 2014
for comparisons using local data).
Here, we compared three species-based classifications

of forest community types using forest inventory data
across the United States (Table 1). The three classifica-
tions range from supervised to unsupervised. Inventory
plot data came from the Forest Inventory and Analysis
(FIA) database, which is produced by the U.S. Depart-
ment of Agriculture (USDA) Forest Service. The FIA
program applies a nationally-consistent sampling design,
with one permanent plot established for every 2428 ha
of land (Bechtold and Patterson 2005). Data collected by
field crews include the diameter and species of every tree
in each plot. More detail about plot design and data col-
lection can be found in the Methods section. The three
classifications of FIA plots we compared were: (1) FIA
forest type groups (hereafter, “FIA” classes) (2) forest
macrogroups from the U.S. National Vegetation Classifi-
cation (“USNVC”) (3) empirically-derived types (“empir-
ical”). Each of these classifications is based, at least in
part, on species composition within each plot. The FIA
classes are based on the cover of dominant species (Eyre
1980), and are assigned to the classes using a supervised
key developed by FIA staff. The USNVC classes are
based on the composition of all species, plus environ-
mental and disturbance data, and were developed using
a combination of local vegetation data and expert
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opinion (Franklin et al. 2015; USNVC 2016). The
USNVC classes were applied to FIA plots using a super-
vised key developed by FIA and NatureServe staff
(Menard et al. 2017). The empirical classes are the result
of an unsupervised cluster analysis of all tree species in
FIA plots (Costanza et al. 2017).
Because the methods used in these approaches dif-

fer, the resulting classifications will differ, and we
examine some of the differences here. Understanding
how these approaches lead to differences or similar-
ities in the resulting classifications will be critical for
those who wish to use these classifications to examine
forest-related questions. In addition, each of these
classifications have been used already to study recent
and potential future changes to forest communities
(e.g., Iverson and Prasad 2001; Palmquist et al. 2014;
Costanza et al. 2017) and each has the potential to
support additional research on forest change. While
an assessment of the performance of these classifica-
tions in models of forest change was beyond the
scope of this paper, we here examine how well the
classifications corresponded with local and broad-
scale environmental variables. As climate and environ-
mental conditions change, an approach that produces
classes with high fidelity to climate and environmen-
tal conditions will likely be useful in detecting future
forest community changes.
We used a database of FIA plots that systematically

cover the conterminous United States. Each plot was la-
beled with the three classifications to ask the following
questions:

� When the classifications are compared pairwise,
which classes in each classification have high or low
fidelity to each other, both in terms of the plots
assigned to each and in terms of average species
composition?

� Which classifications are best characterized by
indicator and dominant species?

� Which classifications are predicted well by
environmental variables, and which environmental
variables are important for predicting them?

The results will provide information to potential users
of these specific classifications, and will point to broader
insights into the differences, similarities, and best uses of
forest community type classifications that result from
different approaches and developed for different objec-
tives. Those insights will be critical as the global avail-
ability of large forest and vegetation data sets increases.

Methods
Forest inventory data
Forest plot observations from across the conterminous
U.S. were extracted from the FIA database (FIADB
version 6.1; O’Connell et al. 2016). The FIA program
uses a nationally-consistent, sample-based statistical
design to quantify forest conditions across the U.S., and
is the primary source for information about the status
and trends of U.S. forest resources (Smith 2002). The
FIA program samples all forest and other land uses, with
one permanent plot established for every 2428 ha of land
(Bechtold and Patterson 2005). FIA plots consist of four

Table 1 The main attributes of the classifications used here. See text for further details and explanation

Name Classification Primary uses Origin Primary criteria # classes
included here
(conterminous U.S., eastern U.S.)

Supervised /
unsupervised

Extent
(for this project)a

Empirical Empirical
classification

Assessment
and projection
of tree species
assemblage
change over
time based on
FIA data

Recent:
published in
2017
(Costanza et al. 2017)

All native tree
species,
excluding the
most rare

29, 17 Unsupervised Conterminous
U.S.

FIA FIA forest
type groups

Forest
inventory and
assessment
based on FIA
data

Forest types
developed in the
1980s (Eyre 1980)

Emphasis on
dominant tree
species

28, 17 Supervised Conterminous
U.S.

USNVC USNVC
Macrogroups

Vegetation
inventory,
monitoring,
assessment,
mapping,
conservation
planning

Iterative: version 2.0
published in 2016
(usnvc.org); tree key
recently applied to
FIA plots
(Menard et al. 2017)

All plant
species, plus
environmental
conditions and
disturbance; a
tree-based key
was used to as
sign FIA plots to
USNVC classes.

N/A, 25 A
combination
of supervised
and
unsupervised

Eastern U.S.

aExtent reflects the extent of the classifications we used in this paper; FIA and USNVC classes exist for the entire U.S. and its territories
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7.2 m fixed radius subplots (0.067 ha or 67 m2 each),
with three subplots spaced 36.6 m apart in a triangular
arrangement and one subplot in the center (O'Connell
et al. 2016). Data collected for forested plots by field
crews include the diameter and species of every tree
stem in each plot. To protect sensitive plot information,
especially on privately owned lands, the publicly avail-
able FIA database contains plot location information
that has been altered slightly from the true location. We
used actual plot locations to extract environmental vari-
ables at plot locations (described below), but show
altered locations in Fig. 1. To ensure that we included
the full set of plots for each state in the conterminous
U.S., we selected the set of plots for each state that was
used by FIA to produce a recent evaluation of forest
conditions. For most states, the data represented evalua-
tions from 2013, but for some states, evaluations were
from 2012, and the evaluation for one state (Tennessee)
was from 2009.
Because FIA plots have fixed points and layout, they

can straddle, for example, multiple forest types, and to
track those differences, multiple “conditions” can be
identified within a plot. Each condition within a plot
represents all or a portion of one or more subplots, and
can have a different forest type and forest type group
assigned to it (O'Connell et al. 2016). Therefore, to
ensure that our sample units were each labeled with only
a single forest type group and ensure our sample units
represent a relatively homogenous tree species assem-
blage, we used the conditions within plots as our unit
for classification. The FIA database contains information
on each condition and the proportion of the plot it rep-
resents. For each plot, we used the single condition that
made up the greatest proportion of the plot. In the case
of ties, we picked one condition at random. We refer to
these conditions as “plots” throughout this paper. We
excluded plots labeled as being of planted origin. We

also excluded plots labeled with FIA forest type groups
“Exotic Hardwoods” or “Exotic Softwoods” because the
empirical classification was based on native U.S. species
only. We also excluded plots labeled as “Nonstocked”
because those typically have few, if any, trees and we are
specifically interested here in tree species composition.
For assigning plots to empirical classes, calculating

species composition similarity, and analyzing indicator
and dominant species, we needed information on species
composition within each plot. For each plot, we assem-
bled data on relative importance value by species for
each plot we included. A species’ relative importance
value is the average of its relative abundance and relative
basal area compared to other species in the plot. Trees
greater than 2.54 cm (1 in.) diameter at breast height
were used to calculate importance value. The most rare
species (those occurring on less than 250 plots) were
excluded to avoid biasing the analysis toward extremely
rare species (McCune and Grace 2002), and nonnative
species were excluded because those species may
respond to different environmental drivers than native
species. We used the same data set of relative import-
ance by tree species for the comparisons among classifi-
cations as well as indicator and dominant species
analysis described below (see Costanza et al. 2017 for a
list of all common and scientific names of tree species
used here).

The three classifications and their assignment to FIA plots
The FIA class assignment for each plot came directly
from the FIA database. Personnel from the USDA Forest
Service assign forest types and forest type groups to its
FIA plots using a decision-tree approach based on the
relative stocking values of tree species in the plot, which
are primarily a function of basal area (Arner et al. 2003).
The combination of related species that comprises the
highest stocking values is used to assign most of the for-
est types, and related forest types are aggregated into
forest type groups. The FIA forest types are based on a
number of sources, including a published set of types
and groups that emphasize the cover of the dominant
species and are largely derived from a classification by
Eyre (1980). Thus, the FIA classification is a supervised
approach, and the FIA groupings are static and well-
recognized. The FIA forest types and forest type groups
are widely used in maps of forest resources, ecosystem
services, pest impacts and risk, and to inform initial con-
ditions in forest landscape dynamics modeling studies
(Ruefenacht et al. 2008; DeSantis et al. 2013; Duveneck
et al. 2015; Healey et al. 2016).
The USNVC is a federal vegetation classification

standard (FGDC 2008) that was developed independ-
ently of the FIA program, and applies to all vegetation.
In the USNVC, forest types are classified at multiple

Fig. 1 Plots included in the eastern U.S. (locations shown in light
gray) and outside the eastern U.S. (dark gray). Plots are spaced at
approximately one per 2428 ha of forest land, but due to the scale
of the map, in some areas, individual plots cannot be distinguished
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levels using both tree and non-tree species, growth
forms and ecology (the EcoVeg approach of Faber-
Langendoen et al. 2014). Types have been recognized
based on a combination of local to regional empirical
data, literature, and expert judgement (Franklin et al.
2015; USNVC 2016). USNVC types have largely been
formally described and published (USNVC 2016; http://
www.usnvc.org), but the classification is dynamic and
open to peer-reviewed changes. The classification has
used been to understand the distribution of vegetation
types locally to nationally (Hoagland 2000; Matthews et
al. 2011; Belote et al. 2017), and by land management
agencies for conservation planning (Franklin et al. 2015).
Although the USNVC standard is national, the classifica-
tion is based on vegetation plot data from a variety of
sources, along with ancillary environmental characteris-
tics such as soil wetness and disturbance information
(Franklin et al. 2015).
Recently, a supervised decision tree, or key, was devel-

oped to assign FIA plots to one level of the hierarchy,
the macrogroup level, in the eastern U.S. (Menard et al.
2017). The macrogroup is a mid-scale unit (5th level,
approximately at the scale of FIA forest type groups)
and is based on sets of diagnostic and dominant plant
species and growth forms that reflect biogeographic dif-
ferences in composition and sub-continental to regional
differences in ecological factors (FGDC 2008). The
macrogroup classes were developed based on ancillary
local data and expert opinion for all vegetation types,
not just forests, but the supervised key applies them to
tree data in the FIA database. Expansion of the key to
the entire country has been proposed but not yet imple-
mented. Because the bulk of FIA data only contain tree
species data and limited ecological data, the key is ne-
cessarily restricted to those data, though the ecoregion
within which each plot is located is also used as a proxy
for non-tree species and ecological factors. The USNVC
classes were assigned to FIA plots based on the relative
importance value information for each species described
above, including trees greater than 2.54 cm (1 in.) diam-
eter at breast height within the plot. Although the key
assigns FIA plots to both “cultural” (plantations and
other planted stands) and “natural” (non-planted) types,
only plots falling into one of the natural macrogroups
were included here.
The third classification of FIA plots was a recently

developed set of empirically-derived forest community
types (Costanza et al. 2017). The empirical classifica-
tion used an unsupervised hierarchical method to
cluster tree species composition information within
FIA inventory plots across the conterminous U.S.
(Costanza et al. 2017). The clusters were based on
the relative importance value for species in each plot,
using the same set of species described above and

trees greater than 2.54 cm (1 in.) diameter at breast
height (Costanza et al. 2017).
Thus, unlike the FIA classes, which rely most strongly

on one, two or three dominant species, the empirical clas-
ses are defined based on the composition of a larger group
of species in a plot. This classification was developed to
facilitate the study of forest dynamics over time in re-
sponse to global change scenarios (Costanza et al. 2017).
The empirical classification is hierarchical, and any

level of the hierarchy with any number of clusters can
be chosen to fit the objectives of a given study. We used
the level with 29 clusters spanning the conterminous
U.S. because that was one level that we previously iden-
tified as optimal based on standard diagnostic metrics
for hierarchical clusters (Costanza et al. 2017). From our
previous work, we had a set of cluster “seeds” that
had been assigned to one of the 29 empirical clusters
(Costanza et al. 2017). We used the relative import-
ance values from those seeds as the training set in k-
nearest neighbor classification algorithm to assign the
current set of FIA plots to those 29 clusters. In other
words, we assigned each FIA plot in the current
study to one of the 29 clusters based on the similarity
of its relative importance values to those in the data
set that was used to develop the empirical clusters.
The FIA and empirical classifications apply to all FIA

plots in the conterminous U.S.; however, the key for
USNVC macrogroups has only been developed for FIA
plots in the eastern U.S. Therefore, we assigned all three
of the alternative forest community type labels for each
plot in the eastern U.S., and two labels for plots outside
the eastern U.S. (Fig. 1). A set of 70,425 forested plots in
the eastern U.S. and a total of 117,813 forested plots
spanning the conterminous U.S. were used.

Correspondence among classifications
We compared the classifications to determine the degree
of correspondence among classes. We completed four
total two-way comparisons: three in the eastern U.S.,
among the USNVC, the FIA, and the empirical classifi-
cations, and one across the entire U.S., between the FIA
and empirical classifications. In each case, we deter-
mined the relative similarities among classes in the pair-
wise comparison, both in terms of the frequency
distributions of plots in the classes and in terms of the
average species composition of classes. We first con-
structed two-way cross-tabulated contingency tables
showing the frequency distributions of plots in the clas-
sifications, and input those tables into correspondence
analysis. Correspondence analysis is similar to principal
components analysis but is used for analyzing tables of
count data (Greenacre 2013). It provides a graphical rep-
resentation of the relationship between two categorical
variables via an examination of how classes load onto
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important correspondence axes. Specifically, it can point
out the classes that are most strongly associated with
one another.
For each class in each classification, we also calculated

the average species composition in terms of relative spe-
cies importance values across all FIA plots that were
assigned to the class; that is, we identified the centroid
of each class in multivariate species space. Importantly,
although each classification scheme used slightly dif-
ferent information from the FIA database to label
plots (for example, the FIA classes used relative
stocking, etc.), the same relative importance value by
species as described above was used to compare the
classes here. For classes in each classification, the
centroids of relative importance values were used to
construct matrices of pairwise similarities between
classes, using 1 - Bray-Curtis dissimilarity. We exam-
ined those similarities and visualized them using heat
maps. For all pairwise comparisons, we omitted clas-
ses from each classification that had fewer than ten
plots in them to simplify comparisons because initial
tests of correspondence analysis indicated that those
small classes had disproportionately large effects on
the results.

Indicator and dominant species
Because the classification techniques differed in the
extents to which they relied on dominant or characteris-
tic tree species, we examined how well each classifica-
tion could be characterized by indicator and dominant
species. We conducted indicator species analysis and
calculated species dominance values for all classes
(Dufrene and Legendre 1997; Frieswyk et al. 2007). We
used the same set of tree species as described above,
with nonnative and the most rare species removed. Indi-
cator species analysis finds both dominant and non-
dominant species that have high specificity and fidelity
to a given class using a permutation test to assign an
indicator value and associated p-value to those species
(Dufrene and Legendre 1997) and any set of alternative
classifications can be compared based on those metrics
(Dufrene and Legendre 1997). Classifications ranked
highly by indicator species analysis will have at least one
significant indicator species associated with each class,
higher total numbers of indicator species overall, larger
sums of all significant indicator values, and lower p-
values on average. We used those metrics in our com-
parison of the classifications here. We standardized all
indicator species metrics that were based on sums or
counts by dividing by the number of classes in each
classification.
We also calculated a species dominance index (SDI)

for every species in each class, following Frieswyk et al.
(2007). Dominant species are those that comprise a large

proportion of the species assemblage in a plot, and thus
the dominant species in a species assemblage are often
responsible for much of the assemblages’ ecological
functioning and ecosystem services (Frieswyk et al. 2007;
Hildebrand et al. 2008; Le Roux et al. 2014). The SDI
ranges from 0 to 1, with 1 being a perfectly dominant
species within a given class. A species with a high SDI
value for a given class will tend to: (1) have high canopy
cover on average across all plots within the class, (2)
occur with few or no other species in plots within the
class, and/or (3) only occur in a small number of plots
within the class but tend to have high cover where it oc-
curs (Frieswyk et al. 2007). The SDI is typically based on
canopy cover, but here we use relative importance values
(described above) in place of cover. We averaged the
SDI values for the top most dominant species in every
class within the classifications to determine which classi-
fications tended to produce classes with more dominant
species.

Predicting the classifications using environmental
variables
We used the nonparametric random forest algorithm
(Breiman 2001; Cutler et al. 2007) to determine how well
each classification scheme could be predicted using en-
vironmental variables alone, and to examine the most
important environmental predictors for each classifica-
tion scheme. Each of the classification schemes was used
as the response variable in a separate random forest
model. The random forest algorithm fits many classifica-
tion trees to a data set using a subset of predictors and a
bootstrap sample of the data, then combines the results
(Prasad et al. 2006; Cutler et al. 2007). In the random
forest algorithm, the data not used to construct each
classification tree, called the out-of-bag observations, are
used to determine the error rate of each tree. Variable
importance is based on the difference between each
tree’s error rate and a permutation of the tree without
the given variable (Cutler et al. 2007, 2012).
As predictor variables for random forest models, we

compiled spatial data on local and landscape soil charac-
teristics, recent historical climate, landscape, and topog-
raphy from ancillary sources (see Additional file 1 for a
list of all variables used). We overlaid FIA plots on these
spatial data layers to extract the values for plot locations.
We focused on variables that have been shown to be im-
portant in other recent studies of tree distributions, vul-
nerability, and climate change (e.g., Iverson et al. 2008;
Rogers et al. 2017). Soil variables were taken from the
10-m resolution Gridded Soil Survey Geographic Data-
base (gSSURGO; Soil Survey Staff 2017a), where avail-
able. We used variables for the dominant component in
the topmost horizon in gSSURGO data. For a few coun-
ties in the eastern U.S. and several places in the western
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U.S., gSSURGO spatial data were not available, and we
substituted data from the polygon-based State Survey
Geographic Dataset (STATSGO2; Soil Survey Staff
2017b). We also included landscape Productivity Index
and Drainage Index as measures of landscape-scale soil
properties of each site (Schaetzl et al. 2009, 2012). We
used average recent historical climate (1979–2015) data
from the Multivariate Adapted Constructed Analogs
(MACA) v2 METDATA data set (Abatzoglou 2013) to
derive 19 bioclimatic variables (Hijmans et al. 2005), as
well as annual averages of potential evapotranspiration
and solar radiation. We also used the MACA data to cal-
culate growing degree days (Sork et al. 2010), and annual
summed moisture index (Koch and Coulston 2015). A
set of seven topographic variables were derived from the
30-m resolution National Elevation Dataset (Gesch et al.
2002). Three landscape condition metrics were also used
as predictors. One was ecological landscape condition,
which assesses the level of human stressors surrounding
a plot (Hak and Comer 2017). The other two were forest
area density metrics, which measure the area and conta-
gion of forests in a 65.6-ha window surrounding each
FIA plot based on the 2011 National Land Cover Data-
base (Riitters and Wickham 2012; Homer et al. 2015).
Because of the large number of trees grown, the ran-

dom forest algorithm is not as sensitive as other algo-
rithms to overfitting (Breiman 2001; Evans et al. 2011).
However, to minimize the number of highly-correlated
predictors and aid in interpretation of model results, we
reduced slightly the number of variables within each set
of predictors (climate, landscape, landscape soil, local
soil, and topographic), using Pearson correlation statis-
tics and principal component analysis. We included vari-
ables that were not highly correlated with others in the
same set (absolute value of Pearson statistic >0.7), and
which loaded highest on the principal components
(those that together accounted for a cumulative variance
of 75%). The result was a set of 22 variables that were
input into random forest models (Table 2).
We ran random forest models for the FIA and empir-

ical classifications across the U.S., as well as all three
classifications in the east. We set the number of trees in
each random forest model to 2000 and used all other de-
faults in the randomForest package in R (Liaw and
Wiener 2002). We also used the default output from
randomForest which assigns a predicted class to every
data point based on the majority of votes across all trees
in the forest. The random forest algorithm aims to
minimize the overall error rate across all classes; thus,
we report the average out-of-bag error rates. We also re-
port Cohen’s Kappa statistic of interrater reliability here
for each classification (Cohen 1960).
All data manipulation and analysis was done using R

3.4.0 (R Core Team 2017) and the following contributed

packages: ca (Nenadic and Greenacre 2007), class (Venables
and Ripley 2002), factoextra (Kassambara and Mundt
2017), irr (Gamer et al. 2012), labdsv (Roberts 2016),
randomForest (Liaw and Wiener 2002), RColorBrewer
(Neuwirth 2014), raster (Hijmans 2016), and tidyverse
(Wickham 2017), and vegan (Oksanen et al. 2016).

Results
For the empirical classification, 17 of the 29 classes
occurred in the set of eastern U.S. FIA plots. For the
FIA classification, 17 of 28 classes occurred in the east-
ern U.S. The eastern plots contained 25 USNVC macro-
groups. See Additional file 2 for lists of all classes.

Correspondence among classifications
We completed four two-way comparisons of plot fre-
quencies and species composition: three in the eastern
U.S. and one nationwide. We only included classes with
greater than ten plots for this portion of the analysis,
which resulted in eliminating 11 plots from the national

Table 2 Variables used as predictors in random forest models

Category Variable Description

Climate Bio2 Mean diurnal range (Mean of monthly
(max temp - min temp))

Bio6 Minimum temperature of coldest month

Bio8 Mean temperature of wettest quarter

Bio15 Precipitation seasonality
(coefficient of variation)

Bio16 Precipitation of wettest quarter

Bio18 Precipitation of warmest quarter

Landscape Landsc. cond. Landscape condition

Prop. forest Forest area density

Landscape soil DI Soil drainage index

PI Soil productivity index

Local soil Bedrock
depth

Depth to bedrock (cm

Pct. clay Percent clay (< 0.002 mm size)

Pct. org. Matt. Organic matter content (% by weight)

Pct. sand Percent sand (0.05–2.0 mm size)

Pct. silt Percent silt (0.02–0.05 mm size)

pH Soil pH

Sieve 10 Percent soil passing sieve No. 10
(coarse)

Topographic East Easting: sin(aspect)

Elevation Elevation

North Northing: cos(aspect)

Slope Slope

TPI Topographic Position Index

See Additional file 1 for a list of all variables considered as well as data
sources for all
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data set and 21 plots from the eastern U.S. data set. In
each of the four comparisons, some classes had relatively
good analogs in terms of species composition and cross-
tabulated frequencies of plots and some did not. Here,
we point out some of the classes with high and low cor-
respondence in each case using three summary methods:
biplots from the first three dimensions of each corres-
pondence analysis (Figs. 2 and 3), heat maps of species
similarity (Fig. 4), and the full contingency tables of
cross-tabulated plot frequencies (Additional file 3).
The comparison between the empirical and USNVC

classifications in the eastern U.S. shows some broad
similarities, but few one-to-one analogs in terms of plot
frequencies. Biplots from correspondence analysis indi-
cate a few cases in which one empirical class was

associated with several USNVC classes (Fig. 2a). For ex-
ample, the balsam fir-quaking aspen empirical class was
associated with five USNVC classes. In this case, all the
1082 plots in the North American Boreal Conifer Poor
Swamp USNVC class were classified in the balsam fir-
quaking aspen empirical class, but that empirical class
also included plots in several other USNVC classes
(Additional file 3). These differences likely occurred be-
cause the same tree species exist in both upland and
wetland boreal and sub-boreal forests. The slash pine-
longleaf pine empirical class was associated with the
Pond-Cypress Basin Swamp and Longleaf Pine Wood-
land USNVC classes in terms of plot frequencies, again
crossing upland and wetland USNVC classes. The lob-
lolly pine-sweetgum empirical class was associated with

a

b

Fig. 2 Biplots from dimensions 1 and 2 (left) and 2 and 3 (right) from correspondence analysis: (a) Empirical (black) and USNVC classes (gray); (b) FIA
(black) and USNVC classes (gray). Only the classes that loaded the highest on these dimensions are plotted in each case. Row standardization was used
in these plots, and numbers in parentheses indicate the percentages of inertia explained by each dimension. Class names have been abbreviated to fit
in some cases, and the full names of all classes can be found in Additional file 2
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the Southern & South-Central Oak-Pine Forest &
Woodland, the Southeastern North American Ruderal
Flooded & Swamp Forest, and the Southern Mesic
Mixed Broadleaf Forest USNVC classes, thus crossing,
upland, wetland and ruderal forest classes. In terms of
average species composition, the highest similarity
among pairs of classes in the empirical and USNVC
classifications was between the slash pine-longleaf pine
empirical class and the Longleaf Pine Woodland USNVC
class (Fig. 4a). Despite having low correspondence in
terms of plot frequencies, the loblolly pine-sweetgum
empirical and Southern Mesic Mixed Broadleaf Forest
USNVC classes were relatively similar in species com-
position (Fig. 4a). The sugar maple-red maple empirical
class had a relatively high average similarity and was

associated in terms of plot frequencies with two USNVC
classes: the Appalachian-Interior-Northeastern Mesic
Forest and the Appalachian-Northeastern Oak-Hardwood-
Pine Forest & Woodland (Figs. 2a and 4a). Several empir-
ical and USNVC classes had low similarities in species
composition to all classes in the other classification. Those
included the honey mesquite-Pinchot juniper and
chokecherry-Pacific dogwood empirical classes, and the
North American Boreal Conifer Poor Swamp USNVC
class, likely because those empirical classes were largely
determined by western species. Interestingly, in contrast to
the high correspondence in terms of plot frequencies, the
similarity in species composition between the balsam fir-
quaking aspen empirical and the North American Boreal
Conifer Poor Swamp USNVC class was low.

a

b

Fig. 3 Biplots from dimensions 1 and 2 (left) and 2 and 3 (right) from correspondence analysis: (a) Empirical (black) and FIA classes (gray) in the
eastern U.S.; (b) Empirical (black) and FIA classes (gray) across the U.S. Only the classes that loaded the highest on these dimensions are plotted in
each case. Row standardization was used in these plots, and numbers in parentheses indicate the percentages of inertia explained by each dimension.
Class names have been abbreviated to fit in some cases, and the full names of all classes can be found in Additional file 2
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The comparison between the FIA and USNVC classifi-
cations in the eastern U.S. also shows some broad simi-
larities, but few one-to-one analogs in terms of plot
frequencies. Biplots from correspondence analysis show
a few cases in which classes from the two classifications
were associated on a one-to-many or many-to-many
basis (Fig. 2b). The oak/pine and oak/hickory FIA classes
were associated with two USNVC classes: the Southern
& South-Central Oak-Pine Forest & Woodland, and the
Appalachian-Northeastern Oak-Hardwood-Pine Forest
& Woodland. Here the USNVC separates two classes
based on overall floristic and biogeographic differences,
whereas the two FIA classes emphasize the mixed
conifer-deciduous versus pure deciduous overstories.
The aspen/birch and spruce/fir FIA classes were also
both associated with two USNVC classes: the
Laurentian-Acadian-North Atlantic Coastal Flooded &

Swamp Forest, and the Laurentian-Acadian Mesic
Hardwood-Conifer Forest, thus crossing upland and
wetland USNVC classes, but distinguishing deciduous
from conifer. There were two other strong associa-
tions between one FIA class and three USNVC clas-
ses. The only one-to-one association in terms of plot
frequencies was between the longleaf/slash pine FIA
class and the Longleaf Pine Woodland USNVC class
(Fig. 2b, Additional file 3). Average species similarities
among classes showed the highest pairwise similarity
was between the Longleaf/slash pine FIA class and
the Longleaf Pine Woodland USNVC class (Fig. 4b).
The Maple/beech/birch FIA class had relatively high
similarity on average with two USNVC classes:
Laurentian-Acadian Mesic Hardwood-Conifer Forest,
and Appalachian-Interior-Northeastern Mesic Forest.
Other high average similarities in species composition

a b

c d

Fig. 4 Heat maps showing similarity in average species composition from each pairwise comparison of classifications: (a) empirical and USNVC
classes; (b) FIA and USNVC classes; (c) FIA and empirical classes in the eastern U.S.; (d) FIA and empirical classes across the U.S. Similarities range
from 0 (low) to 1 (high), with darker blues representing higher values. In each case, classes are ordered by their codes in Additional file 2
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occurred between the Southern Coastal Plain Flood-
plain Forest USNVC and Oak/gum/cypress FIA
classes, and between the Laurentian-Acadian Pine-
Hardwood Forest & Woodland USNVC and White/
red/jack pine FIA classes. Two FIA classes had low
similarities with all USNVC classes, namely the Pin-
yon/juniper and woodland hardwoods classes. These
classes were largely based on western tree species.
Other FIA classes had moderate similarity with several
USNVC classes. For example, the loblolly/shortleaf pine
group was moderately similar in species composition to
four USNVC classes including Southern Mesic Mixed
Broadleaf Forest. All the USNVC classes were at least
moderately similar to a minimum of one FIA class.
In the eastern U.S., the comparison between the em-

pirical and FIA classifications shows both broad similar-
ity and one-to-one analogs for some classes. The honey
mesquite-Pinchot juniper empirical class was associated
with the woodland hardwoods FIA class, indicating that
those two classes were good analogs in terms of plot fre-
quencies (Fig. 3a, Additional file 3). The balsam fir-
quaking aspen empirical class was associated with three
FIA classes – the spruce/fir, aspen/birch and white/red/
jack pine – suggesting that the empirical class is more
heterogeneous than the FIA class. The slash pine-
longleaf pine empirical class was associated with the
longleaf/slash pine FIA class. When comparing the FIA
and empirical classes in the eastern U.S. in terms of spe-
cies composition, similar analogs stand out. Three pairs
of classes had the highest similarities: (1) the balsam fir-
quaking aspen empirical and aspen/birch FIA classes; (2)
the slash pine-longleaf pine empirical and longleaf/slash
pine FIA classes; and (3) the honey mesquite-Pinchot
juniper empirical and woodland hardwoods FIA classes
(Fig. 4c). Six empirical classes and five FIA classes in the
eastern U.S. had low similarity in species composition
on average with all classes in the other classification.
Examples of those classes are the black willow and cedar
elm empirical classes, and the other eastern softwoods
and other hardwoods FIA classes. The largest empirical
classes in terms of numbers of plots had relatively high

similarities in species composition with more than one
FIA class. For example, the loblolly pine-sweetgum em-
pirical class was most similar in species composition to
the oak/pine FIA class, but it also had relatively high
similarities with other FIA classes, including the loblolly/
shortleaf pine and oak/gum/cypress FIA groups.
When the empirical and FIA classifications were com-

pared for FIA plots across the U.S., there were necessar-
ily some similarities to the eastern U.S. comparison
because eastern U.S. plots were included in the full set
of U.S. plots. However, there were also several important
differences, and we focus on those differences here.
There were only two sets of classes that were associated
with one another in terms of the first three dimensions
of correspondence analysis, and all included classes that
did not occur in the east (Fig. 3b). The Utah juniper-two
needle pinyon and alligator juniper-Arizona white oak
empirical classes were associated with the pinyon/juni-
per FIA class, and three empirical groups containing
western oak species were associated with the western
oak FIA class. In terms of average species composition,
there were many pairs of classes with low to moderate
similarity, and only a few cases of relatively high similar-
ity (Fig. 4d). The highest similarities overall were those
described above for the eastern U.S., but the Utah
juniper-two needle pinyon empirical class also had high
similarity in average species composition to the pinyon/
juniper FIA group.

Indicator and dominant species
When considering the FIA and empirical classifica-
tions across the U.S., optimal values of metrics from
indicator species analysis were split between the two
(Table 3). Both had at least one significant indicator
species for every class, leaving zero classes without an
indicator species. The FIA classification had lower
average p-values and more significant indicator spe-
cies overall, while the empirical classification had a
higher sum of all indicator values. When considering
just the inventory plots in the eastern U.S., the
USNVC classification had the best values of three of

Table 3 Results from indicator species analysis, species dominance, and random forest models for all classifications

Region Classification Indicator species metrics Species dominance Random forest
metrics

Sum of
indicator vals.a

Avg. of p-
values

Num. significant
indicator vals.a

Prop. classes without
significant indicator vals.

Mean of largest SDI
(std. dev.)

Kappa Avg. out-of-
bag error

U.S. FIA 1.01 0.01 6.00 0 0.47 (0.17) 0.59 35.74%

Empirical 1.21 0.05 3.76 0 0.61 (0.21) 0.74 22.80%

East USNVC 0.60 0.07 3.32 0 0.36 (0.16) 0.55 40.25%

FIA 0.87 0.08 3.24 0.12 0.42 (0.17) 0.48 38.55%

Empirical 0.88 0.19 1.35 0.24 0.59 (0.24) 0.64 24.90%
aThe sum of indicator values and the number of significant indicator values reported here have been standardized by the number of classes in each
classificationBold indicates the best value for each metric in each region
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the four indicator species metrics, whereas for the
fourth (the sum of indicator values) the empirical and
FIA classifications had the best value. The species
dominance analysis shows that on average, the species
with the highest SDI values per class were found in
the empirical classifications in the U.S. as well as in
the east. However, the standard deviations of SDI in-
dicate large overlap among the distributions across all
classifications.

Predicting the classifications using environmental
variables
The average out-of-bag error rates and Kappa statistics
for all classifications show that the set of environmental
variables included here best predicted the empirical clas-
sification, either when considering plots across the con-
terminous U.S. or the subset of eastern U.S. plots
(Table 3; full confusion matrices are in Additional file 5).
The empirical classification across the U.S. had the low-
est error rate and highest Kappa value, and the empirical
classification applied to eastern plots had the second
lowest and highest values, respectively. Metrics for the
FIA classes across the U.S. were third best overall, but
metrics for the USNVC were better than those of the
FIA classes for eastern plots.
A somewhat similar set of variables tended to be

among the most important for predicting all classifica-
tions (Fig. 5). The mean temperature of the coldest
month, slope, and the proportion of forest in the land-
scape were the top three most important for predicting
the empirical and FIA classifications, whether for all
plots or just eastern plots (Fig. 5a-b, d-e). Mean
temperature of the coldest month, precipitation of the
warmest quarter, and precipitation seasonality were the
most important variables in predicting the USNVC clas-
sification (Fig. 5c). Soil and other climate variables
tended to be next most important in all cases. Landscape
soil variables and aspect-related topographic variables
tended to be least important for predicting all classifica-
tions. For the empirical and FIA classifications, the order
of variable importance changed slightly when consider-
ing all plots versus eastern U.S. plots, but the most and
least important variables stayed relatively constant.

Discussion
No classification of forest community types will be suit-
able for all research questions. To shed light on the best
uses of alternative classifications, we compared three
species-based forest type classifications, ranging from
supervised to unsupervised, using a national set of forest
inventory data. Across the classifications, some notable
patterns emerged from the comparisons of plot frequen-
cies and species similarity. Those patterns can be inter-
preted in view of the classification methods and

objectives for which each classification has been
developed.
Despite the different methods and objectives for each

classification, the high correspondence among the longleaf
pine classes in each provided one notable case of align-
ment among the classifications. All the classifications in-
cluded one longleaf pine class (the slash pine-longleaf
pine class in the empirical classification, longleaf/slash
pine in FIA, and Longleaf Pine Woodland in USNVC).
Pairwise comparisons showed that many plots were classi-
fied into these classes, as well as high similarities in aver-
age species composition for those classes. In addition, the
indicator species of these classes were nearly the same,
with longleaf pine, slash pine, and turkey oak as indicators
in all cases, and two other species as indicators of the em-
pirical class (Additional file 4). This correspondence is
likely because of the relatively low tree diversity and geo-
graphically restricted range of longleaf pine trees, coupled
with the distinct nature of longleaf pine communities.
Longleaf pine forest communities are currently restricted
to places in the southeastern U.S. that have been fre-
quently burned (Frost 2006). Longleaf pine trees tend to
be dominant in those communities, along with slash pines
toward the southern part of the community’s range (Burns
and Honkala, 1990). Longleaf trees themselves are rarely
found in other forest communities either as dominant
species or co-occurring with other tree species. Thus, the
three classifications, despite their different methods, were
each able to identify longleaf pine forest community types.
In contrast, there were many instances in which forest

classes that did not correspond well across classifica-
tions. As an important example, there was less corres-
pondence than we would have expected among loblolly
pine classes. Loblolly pine forests are one of the most
ubiquitous in the southeastern U.S. Therefore, examin-
ing the differences among classifications in the ways
those forests are will be important for informing poten-
tial uses of the classifications in the region. Loblolly pine
trees currently occur across a wide range of environ-
mental and human disturbance conditions, from mesic
bottomland sites to drier upland sites across the coastal
plain and Piedmont regions of the southeastern U.S.,
and in forests established on abandoned agricultural
fields (Burns and Honkala, 1990). This likely explains
why the loblolly pine-sweetgum empirical class was
highly associated in terms of plot frequencies with three
USNVC classes that have a range of disturbance histor-
ies and geographic affinities, including the Southeastern
North American Ruderal Forest USNVC class, which
had loblolly pine as an indicator species (Additional
file 4). In contrast, the empirical and FIA classifications
each do include a class with loblolly pine in the name.
While the two classes corresponded relatively well in
terms of plot frequencies (Additional file 3), and
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moderately well in terms of species composition, the
loblolly pine-sweetgum empirical class was most similar
in species composition to the oak/pine FIA class. In
terms of indicator species, the empirical loblolly
pine-sweetgum class had ten significant indicator
species, including loblolly pine, while the FIA class had
six (Additional file 4). Therefore, our results suggest that
the empirical class is more inclusive than the FIA class.
Because it is based on dominant species, the FIA class is
likely capturing places where loblolly pines are dominant
or co-dominant, while the empirical class also includes
places where loblolly occurs with other species.
Similarly, in other cases, a one-to-many correspond-

ence among classes signifies a broader concept in one
classification scheme than in others. For example, in the

eastern U.S., the balsam fir-quaking aspen empirical
class was highly associated in terms of plot frequencies
with three FIA classes and four USNVC classes, indicat-
ing that the empirical classification included a broader
definition of that forest type than the other two. Outside
the eastern U.S., the western oak FIA class was highly
associated with four empirical classes that all included
oak species, underscoring the fact that the FIA class in-
cluded forest types with any number of oak species.
Results from random forest models highlight the de-

gree to which each classification overall corresponds to
the selected environmental conditions. Kappa statistics
and error rates show that the empirical classification,
whether across the U.S. or in the eastern portion of the
country, was best predicted by environmental variables.

a b c

d e

Fig. 5 Variable importance plots for each random forest model: (a) FIA classes in the eastern U.S.; (b) empirical classes in the eastern U.S.; (c) USNVC
classes; (d) FIA classes across the U.S.; (e) empirical classes across the U.S. See Table 2 for a description of each variable
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Because the empirical classification did not explicitly
incorporate environmental conditions, and because the
USNVC classification is based in part on environmental
conditions and ecological settings, it is somewhat sur-
prising that prediction of the empirical classification was
best. However, there are at least two potential explana-
tions for this. First, the USNVC macrogroups are based
on tree, non-tree, ecological and biogeographic charac-
teristics, and disturbance history (FGDC 2008). The set
of environmental variables used here may not address all
those factors equally well. For example, several
USNVC classes are defined largely by their wetland
status (e.g. swamp forest classes) or disturbance status
(e.g. ruderal forest types). Thus, variables related to
wetlands and land-use history are likely most import-
ant for predicting those forest types. The landscape
condition variable (Hak and Comer 2017) provides
the best indicator of land-use effects but it was only
moderately important in the USNVC random forest
model. Indeed, the misclassification rates of many of
the ruderal and wetland classes in the USNVC model
are high (Additional file 5), supporting the idea that
those classes are not well predicted by the model.
A second reason for the relatively strong performance

of the random forest model for predicting the empirical
classification is the fact that the empirical classification
was developed based on similarities among plots in
recent forest inventory data (Costanza et al. 2017). Con-
versely, the FIA classes are largely based on a well-
recognized set of forest types (Eyre 1980) that were
developed a few decades ago but they may not
adequately represent all of the forest communities that
currently exist in the database. Considering this, it is not
surprising that recent environmental data would predict
the empirical classes better than the FIA classes.
In addition, the random forest model results point to

the multiple scales at which the environment influences
forest communities. In each of the models, climate and
topographic variables were all among the top five most
important variables, and soil and landscape variables
were among the top five in most cases. All of those vari-
ables affect the ecological processes that influence spe-
cies composition in ecological communities at a variety
of scales, from climate at the broadest extents to soil
variables locally (Shmida and Wilson 1985; McGill
2010). Random forest results overall suggest that the
classifications can be used to examine forest
community-environment relationships across a range of
scales. However, for the USNVC classification, in con-
trast with the other classifications, the top three most
important variables for predicting the USNVC were all
regional climate variables, and specifically, the mean
temperature of the coldest month, the precipitation of
the warmest quarter, and precipitation seasonality were

the most important. This suggests that relatively broad
climate drivers may be relatively more important for
driving the distributions of the USNVC macrogroups
than the other classifications. While we lacked data on
some fine-scale drivers like microclimate and hydrologic
processes for the full set of plots used here, further work
could examine how those types of drivers differ among
these classifications using a smaller subset of plots for
which those data are available. However, the relationships
between all of the classifications and environmental
variables at a range of scales suggests that these classifica-
tions could be useful for informing research related to the
emerging field of macrosystems ecology, which focuses on
understanding ecological processes and patterns at broad
extents, while emphasizing hierarchies and multiple scales
(Heffernan et al. 2014; Rose et al. 2016).
When taken together, the results here highlight the

similarities and differences among these classifications
and provide critical information to potential users.
The empirical classification highlights assemblages of
tree species, including dominant species, and corre-
sponds well with broad environmental conditions.
Therefore, when the aim is to relate forest commu-
nity types across broad extents to climate or environ-
mental characteristics, the empirical classification may
be best. Indeed, the empirical classification was spe-
cifically developed for studies related to global change
across the U.S. (Costanza et al. 2017). Because it is
data driven, the empirical classification can both clas-
sify forest plots into types independently over time
periods, and compare the response of those types to
changing environmental conditions over those same
time periods. In the FIA classification, classes are
characterized well by indicator species, especially
when viewed across the entire U.S. However, in terms
of indicator species metrics and random forest met-
rics, both the empirical and FIA classifications saw re-
duced performance when just plots in the eastern U.S.
were considered, suggesting that they may not be as ef-
fective in accounting for the full diversity of tree species
patterns when subset to smaller regions. In addition, both
the empirical and FIA classifications included some large,
broad assemblages that did not have analogs in the other
classifications. Lower levels of the empirical classification
hierarchy as well as FIA forest types (not type groups)
may show higher correspondence. A comparison of the
two, along with a lower level of the USNVC hierarchy,
would shed light on whether and how those finer species
assemblages match.
The USNVC was represented better by indicator spe-

cies than the other two classifications when considering
eastern plots only. This suggests that the strength of this
classification is in identifying distinct assemblages of
species in the eastern U.S. The USNVC classes were not
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as well predicted as the empirical classification by the
environmental predictors used here. However, this is
likely because the multi-factor approach used by the
USNVC based on species composition, disturbance his-
tory, and ecological settings does not correspond to a
single set of drivers across the region. Users of the
USNVC classification who want to relate macrogroups
to environmental variables could explore environmental
predictors for subsets of the classes, or identify alterna-
tive predictors, such as those that do capture land-use
and disturbance history, and wetland conditions.
As the availability of large plot databases and the com-

puting power required to work with them increases, fu-
ture work should compare alternative classifications of
these data sets. For example, the Global Forest Biodiver-
sity Initiative (GFBI, http://www.gfbinitiative.org) has
synthesized data from nearly 800,000 permanent forest
vegetation plots in 44 countries for analysis of forest
community ecological function and structure (Liang
et al. 2016). Classifying this global plot data set into
species-based forest community types set could illumin-
ate the worldwide geographic patterns of forest commu-
nities and their environmental drivers, and could be
useful for global change studies. Indeed, development of
global species-based vegetation classification hierarchies
based on the same principles and design as the USNVC
are in progress (Faber-Langendoen et al. 2014), and could
be applied to global forest plot data. Comparison with one
or more unsupervised classifications of forest community
types would shed light on whether the differences among
classification approaches seen in this paper apply globally,
and better inform users about the most appropriate forest
community type classifications for global analysis.
A full assessment of the utility of these classifications

for studies of global change drivers and forest communi-
ties was beyond the scope of this study. However, as for-
est ecosystems respond to global change drivers like
climate change, some species may decline while others
may expand their ranges (Iverson et al. 2008; Zhu et al.
2014; Fei et al. 2017). One key issue to be addressed in
classification is how to handle expected changes to the
forest classes that comprise a forest community classifi-
cation. This is particularly important if the goal is to use
the classifications to monitor forest change and detect
new forest community types. Throughout this paper, we
have contrasted unsupervised and supervised classifica-
tions as a starting point for how to address forest classi-
fication for large forest inventory data sets. In that
regard, the semi-supervised classification method pro-
posed by Tichý et al. (2014) has high potential for allow-
ing classes to be compared and adjusted based on
changes in forest conditions over time. In this method, a
classification first formally creates a set of existing clas-
ses in a supervised or unsupervised mode and

simultaneously identifies new units among unassigned
sites in an unsupervised mode. This semi-supervised
method has potential for adding classes to any of the
classifications presented here. We note that the USNVC
is open to redefining or proposing new forest types over
time, through a dynamic peer review process (FGDC
2008). In addition, the empirical classification will be
used as the basis for modeling change in future forest
conditions under global change scenarios for the USDA
Forest Service’s 2020 Resources Planning Act Assess-
ment (https://www.fs.fed.us/research/rpa/). Therefore,
developing methods to accommodate changes in forest
community types within these classifications will be crit-
ical for ensuring their utility in global change studies.

Conclusion
Understanding the differences and similarities among alter-
native approaches to classifying forest community types
across broad extents is important, especially in the face of
global change drivers. The three classifications we exam-
ined here show the strongest similarity for forest types that
are relatively restricted in range and vary little in tree spe-
cies composition. But the classifications differ in other
cases, such as for wide-ranging, general forest types. Those
general patterns point to the differences among classifica-
tions in terms of their approach and objectives. The empir-
ical classification was predicted best by environmental
variables, and, along with the FIA classification, was highly
related to a set of environmental variables measured at a
range of scales. Coarse-grain climate variables were the
most important for predicting the USNVC classification,
but other variables related to the local environment were
moderately important for that classification. Therefore,
these classifications will all have utility for studies of multi-
scale environmental correlates of forest communities, in-
cluding under global change scenarios.
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