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The need for predictions of flow time-series persists at ungauged catchments, motivating the research
goals of our study. By means of the Sacramento model, this paper explores the use of parameter transfer
within homogeneous regions of similar climate and flow characteristics and makes comparisons with
predictions from a priori parameters. We assessed the performance using the Nash-Sutcliffe (NS), bias,
mean monthly hydrograph and flow duration curve (FDC). The study was conducted on a large dataset
of 73 catchments within the eastern US. Two approaches to the parameter transferability were developed
and evaluated; (i) the within homogeneous region parameter transfer using one donor catchment specific
to each region, (ii) the parameter transfer disregarding the geographical limits of homogeneous regions,
where one donor catchment was common to all regions. Comparisons between both parameter transfers
enabled to assess the gain in performance from the parameter regionalization and its respective con-
straints and limitations. The parameter transfer within homogeneous regions outperformed the a priori
parameters and led to a decrease in bias and increase in efficiency reaching a median NS of 0.77 and a NS
of 0.85 at individual catchments. The use of FDC revealed the effect of bias on the inaccuracy of prediction
from parameter transfer. In one specific region, of mountainous and forested catchments, the prediction
accuracy of the parameter transfer was less satisfactory and equivalent to a priori parameters. In this
region, the parameter transfer from the outsider catchment provided the best performance; less-
biased with smaller uncertainty in medium flow percentiles (40%–60%). The large disparity of energy con-
ditions explained the lack of performance from parameter transfer in this region. Besides, the subsurface
stormflow is predominant and there is a likelihood of lateral preferential flow, which according to its
specific properties further explained the reduced efficiency. Testing the parameter transferability using
criteria of similar climate and flow characteristics at ungauged catchments and comparisons with predic-
tions from a priori parameters are a novelty. The ultimate limitations of both approaches are recognized
and recommendations are made for future research.

� 2018 Elsevier B.V. All rights reserved.
1. Introduction

Estimates of stream flow are a prerequisite for solving a number
of engineering and environmental problems (i.e., water quality and
supply, flood control, and stream habitat assessment (Kokkonen
et al., 2003). The accuracy of flow prediction in ungauged basins
(PUB) is a central issue in hydrological modeling (Arsenault and
Brissette, 2014; Ao et al., 2006; Sivapalan et al., 2003). When no
flow records of sufficient length are available at the site of interest,
regionalization techniques may be applied to derive such estimates
(Kokkonen et al., 2003). Over the past decade, different studies
have developed techniques for PUB, primarily via flow regionaliza-
tion and model parameterization (Hrachowitz et al., 2013; Gan and
Burges, 2006; Ren et al., 2016). Model parameterization in
ungauged basins can be achieved using two primary approaches:
parameter regionalization and a priori parameters determined
from catchment properties (Hrachowitz et al., 2013). Despite the
plethora of studies devoted to this topic, there is still no consensus
regarding the most efficient approach for model parameterization
in ungauged basins (Hrachowitz et al., 2013; Parajka et al., 2013;
Razavi and Couillibaly, 2013).

Regionalization for PUB involves the following steps: (i) identi-
fication of homogeneous regions where several criteria of homo-
geneity can be used and (ii) data transfer (observed flow data or
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calibrated parameters) between gauged and ungauged catchments
of the same homogenous region. In parameter regionalization, the
rainfall-runoff model is calibrated for all the study catchments
with observed flows. Then, using a regionalization method, the
parameters are transferred from the donor gauged catchments to
the recipient ungauged catchments within the same region. To
examine the potential predictive performance at ungauged catch-
ments, the simulated flows from parameter transfer are compared
with observed flows of recipient gauged catchments that play the
role of ungauged catchments (i.e., Hundecha and Bárdossy, 2004;
Jennings et al., 1994; Kokkonen et al., 2003; Norbiato et al., 2007).

The three most common methods used for parameter regional-
ization are the regression-based approach, spatial proximity, and
physical similarity (i.e., Merz and Blöschl, 2004; Parajka et al.,
2005; Sefton and Howarth, 1998; Young, 2006). The regression-
based approach correlates the calibrated model parameters with
physical properties of gauged catchments. The correlation is used
to determine the model parameters in ungauged catchments
(Merz and Blöschl, 2004). The spatial proximity approach consists
of transferring parameters from neighboring catchments to the
ungauged catchment, the rationale being that catchments close
to one other should have similar hydrologic behavior (i.e., Oudin
et al., 2008; Parajka et al., 2007). In physical similarity approach,
the catchments with similar physical descriptors exhibit similar
hydrologic behaviors (i.e., McIntyre et al., 2005). A common issue
among the three regionalization approaches is less-than-
satisfactory efficiency (i.e., Arsenault and Brissette, 2014) and a
strong dependence on the complexity of the terrain and scale at
which the relations are derived (Bock et al., 2015). The model
parameter definitions are by nature ambiguous and difficult to
determine from a small number of descriptors (i.e., physical and
climatic characteristics) (Zhang et al., 2008). The lowest efficiency
is obtained from the regression-based approach. The high correla-
tion between model parameters and catchment descriptors does
not guarantee efficient predictions (Kokkonen et al., 2003; Oudin
et al., 2010a; Sefton and Howarth, 1998). Studies of spatial proxim-
ity and physical similarity have yielded no evidence of most effi-
cient method (i.e., Oudin et al., 2008; Arsenault and Brissette,
2014). The spatial proximity has significant uncertainty due to a
lack of representativeness of catchment data, rainfall as well as
issues of identifiability of model parameters (Skøien and Blöschl,
2007). More measures other than distances between catchments
are needed to refine the predictions. In physical similarity, the
homogeneity of physical descriptors does not necessarily translate
into representativeness of model parameters and flow response
(Zhang et al., 2008).

The most important component of parameter regionalization—
critical to obtaining satisfactory efficiency—is the identification of
the geographic extent to which there is homogeneity in hydrocli-
mate characteristics and therefore similarity in hydrologic
response (Bock et al., 2015). Only a few recent studies have tested
parameter transferability within homogeneous regions of similar
hydroclimate characteristics. Using this approach, all catchments
that are geographically located in the same homogeneous region
received the same parameter set (i.e., Kim and Kaluarachchi,
2008; Bock et al., 2015). Likewise, for decades—in flood regional-
ization—flow data of gauged catchments determined the regional
flood frequency distribution to predict floods at ungauged catch-
ments of the same region (i.e., Farquharson et al., 1992; Mimikou
and Gordios, 1989; Portela and Dias, 2005; Zrinji and Burn, 1994).

It is worth mentioning that one of the explanatory variables of
hydroclimate similarity is the spatial proximity (Sawicz et al.,
2011) due to the first-order effects of climate and topography on
hydrologic response (Smakhtin, 2001; Ali et al., 2012). Therefore,
similarity in hydroclimate characteristics combines to some extent
criteria of spatial proximity and physical similarity but with more
robust measures of similarity in hydrologic response. In Kim and
Kaluarachchi (2008), each sub-basins of a large catchment
(176,000 km2) was the spatial extent of similarity in hydroclimate
characteristics and the region to conduct parameter transfer. Bock
et al. (2015) used flow data of gauged catchments to analyze model
parameter sensitivity (PS) and geographically identify regions of
similar PS that is indicative of similarity in model runoff processes.
All catchments of the same region received the same parameter
set. The approach yielded satisfactory efficiency of the mean
monthly flow predictions (Bock et al., 2015). Additional research
is needed to evaluate predictions of daily flow time series and pro-
vide alternatives to PS while meeting criteria of hydroclimate
homogeneity in parameter regionalization.

The lack of consensus regarding the most efficient approach
among the common parameter regionalization methods and the
need for more in-depth investigation of parameter transfer within
homogenous regions —of similar hydroclimate characteristics—
prompted the research goals of this study. We investigate the
parameter transferability of Sacramento model (SAC-SMA) in the
eastern United States (US) using the geographically contiguous
hydroclimatic regions determined by Sawicz et al. (2011). The
homogeneous regions have the uniqueness of being identified
based on criteria of similarity in climate and flow characteristics
which adds to the novelty of our research in testing parameter
transferability. Previous studies that tested parameter transferabil-
ity of SAC-SMA used either criteria of spatial proximity in few
catchments from US (Koren et al., 2003) or no specific criteria in
few distant catchments (Gan and Burges, 2006).

Our primary objective was to quantify the gain in performance
attained by the transfer of calibrated parameters from gauged
catchments within homogeneous regions (TRANS_IN) relative to
1) model parameterized with a priori parameters derived from soil
properties (APRIORI), and 2) model parameterized with transferred
parameters from a single best performing catchment in the study
area (TRANS_OUT).

We hypothesize that similarity in hydroclimate conditions will
improve the efficiency of parameter transferability within homo-
geneous regions (TRANS_IN) relative to APRIORI and TRANS_OUT.
TRANS_OUT is not meant to represent a regionalization scheme
for PUB but instead aids to measure the gain in performance and
reveal limitations of TRANS_IN. The comparison between TRAN-
S_IN and APRIORI will identify the catchments’ conditions where
predictions from a priori parameters are better (worse) than pre-
dictions from the regionalization approach. We are unaware of
other studies that make similar comparisons. Our goal is to provide
insights into the usage of the parameter transfer within homoge-
neous regions and the a priori parameters for PUB in the U.S and
elsewhere.
2. Study area and dataset

A total of 73 catchments from the Eastern US were used in this
study. The catchments range in size from 67 km2 to 8052 km2 (20%
of the catchments have sizes above 4000 km2). The climate in the
study region is mainly humid (Coopersmith et al., 2012). Perennial
snow cover is absent for most catchments and does not exceed 3%
of the surface area for individual catchments (Berghuijs et al.,
2014). Time series data of daily streamflow, precipitation, and
potential evapotranspiration (PET) for all catchments were pro-
vided by MOPEX project (Duan et al., 2006).

The data are freely available and were retrieved from the fol-
lowing website: www.nws.noaa.gov/oh/mopex/mo_datasets.htm.

The flows within this dataset are based on observed data col-
lected by the United States Geological Survey (USGS). Precipitation
is determined by means of weighted averaging using rain gage
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measurements and PRISM data (Schaake et al., 2006). The mean
areal precipitation estimates result in limited errors (Schaake
et al., 2006). The mean monthly precipitation has limited fluctua-
tion through seasons (Coopersmith et al., 2012; Sawicz et al.,
2011), whereas storm characteristics—in particular storm inten-
sity—have systematic seasonal variation (Hershfield, 1961). Poten-
tial evapotranspiration (PET) was estimated on the basis of the
NOAA Evaporation Atlas. The NOAA Atlas maps were derived by
analysis of evaporation pan data (Schaake et al., 2006). The modi-
fied Hamon algorithm helped in calculations of the daily PET under
the MOPEX project (Dingman, 2002; Sawicz et al., 2011). The
MOPEX catchments are minimally impacted by the human
influence.
3. The homogeneous regions in the study area and their specific
characteristics

Over the last decade, PUB studies have worked to identify
appropriate schemes for homogeneous regions (Hrachowitz et al.,
2013). According to Wagener et al. (2007), the homogeneous
regions should be physically meaningful and provide a means to
assess the dominant controls on the streamflow patterns
(McDonnell and Woods, 2004). We used the homogeneous regions
identified by Sawicz et al. (2011) that have the ultimate goal of
facilitating the predictions at ungauged catchments (Fig. 1a). The
Fig. 1. (a) regions in the eastern US, the catchments highlighted in squares are the donor c
of aridity index (AI).
homogeneous regions are geographically contiguous and have
been identified using six characteristics: the streamflow elasticity
to precipitation, snow day ratio (SDR, the number of days per year
where the precipitation is falling as snow), the baseflow index, run-
off ratio, slope of the flow duration curve (FDC), and the slope of
the hydrograph rising limb. The streamflow elasticity to precipita-
tion and the climate were the most influential in the regionaliza-
tion followed by the runoff ratio and the slope of the flow
duration curve (Sawicz et al., 2011). The regionalization using the
six characteristics employed the method of partitioning algorithm
by Kennard et al. (2010). As mentioned in the introduction section,
the novelty in Sawicz et al. (2011) is not in the characteristics
themselves but in their combination to determine the homoge-
neous regions and, therefore, quantify the hydrologic similarity
between the catchments. We maintain the same regions notations
as in Sawicz et al. (2011): C1, C2, C3, C5 (Fig. 1(a)).

The SDR is generally low across the study area and increases
with the increasing latitude (R2 = 0.81, p-value < 0.001) (Fig. 1
(b)). The largest median value is 25% obtained in C2 (Fig. 1(b)). In
C3, the median value is 22%. In C1, it drops to 12% followed by
2% in C5 (Fig. 1(b)). The storms have longer duration in C1, C2,
and C3 than in the region of C5 (Chouaib et al., 2018). The aridity
index (AI) is the mean annual Potential Evapotranspiration (PET)
by the mean annual precipitation (MAP) (Sawicz et al., 2011),
describing the relative energy and water limitations on evapotran-
spiration of the catchments in each region (Fig. 1(c)).
atchments in each region (b) whiskerplots of snow day ratio (SDR), (c) whisker plots
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The catchments in C2 and C3 are more energy limited (low PET)
than the catchments in C1 and C5 (large PET) (Fig. 1(c)). The pre-
cipitation seasonality index (PSI) is nearly zero in all regions
(Table 1). The forest cover proportions (FR) are large (Table 1).
The smallest proportions of FR are in C5 where the median is
46% (Table 1). The median of agricultural lands is the largest in
C5, but not exceeding 23.1% (Table 1). The proportions of open
water and wetlands are small in all the regions (Table 1).

4. Methods

4.1. Overview

Our overall methodology included the following steps detailed
below and summarized in the flowchart of Fig. 2:

Step 1: Performed model simulations for all catchments using a
priori parameters (APRIORI), calculated fit statistics for the two
periods we used for calibration and validation of SAC-SMA model.

Step 2: Calibrated the SAC-SMA model to optimize model per-
formance for each catchment

Step 3: identified calibrated catchment with best performance
in each region to be used as donor catchments for a parameter
transfer scheme (TRANS_IN).

Step 4: performed model simulations using parameter transfer
scheme TRANS_IN, calculated fit statistics during calibration and
validation period

Step 5: performed model simulations using parameters from the
single best performing catchment for all catchments irrespective of
regions (TRANS_OUT), calculated fit statistics during calibration
and validation period

Step 6: compared model performance for the parameter transfer
scheme TRANS_IN to both APRIORI and TRANS_OUT simulations,
interpret SAC-SMA parameters transferability with respect to
catchment characteristics.

4.2. The SAC_SMA model

The SAC-SMA model has been applied worldwide, particularly
in the different hydroclimate regimes of the United States (Koren
et al., 2003). This model of thirteen parameters (all cited in the
Appendix with their respective physical meaning) allows for
detailed flow simulations dealing with runoff components, i.e.,
the direct runoff, surface runoff, interflow, and baseflow
(Werkhoven et al., 2008). The SAC-SMA conceptual model has a
two-soil-layer structure (Werkhoven et al., 2008). Each layer is
made of tension and free water storages that interact to simulate
the soil moisture and the runoff components (Koren et al., 2000,
2003). The tension water storages simulate the evapotranspiration
(ET). The daily average PET from MOPEX data in addition to the
Table 1
Region’s main descriptors.

Region Statistics Mean elevation slope Urban areas For
(m) (%) (%) (%)

Min 76.7 2.0 1.9 39.
C1 Max 1211.9 34.0 18.7 97.

Median 547.8 14.3 6.6 66.
Min 16.2 0.3 0.0 28.

C2 Max 769.1 19.8 11.6 95.
Median 424.3 10.2 4.0 74.
Min 274.3 6.0 2.6 45.

C3 Max 997.8 20.9 12.9 91.
Median 655.8 17.9 5.5 82.
Min 53.1 0.6 5.0 35.

C5 Max 269.6 4.8 15.8 55.
Median 217.7 3.4 9.0 46.
daily precipitation are the inputs necessary for the flow
simulations.

4.3. Model simulation with a priori parameters

The a priori parameters are determined from physical and
empirical equations where the variables are mostly soil-derived
(Koren et al., 2003). The soil-derived variables used in the physical
and empirical equations of the a priori parameters are determined
from the soil map of the State Soil Geographic Database (STATSGO)
of 1�1 km grid. The soil map of this fine resolution was con-
structed via interpolations of the data obtained by soil sampling.
In some regions, the soil sampling is done over large areas (once
in 100 to 200 km2) (Koren et al., 2003). The STATSGO provides at
each grid estimates of hwlt (the water content at wilting point), hs
(the water content at saturation), hfld (the water content at field
capacity), and Ks (the hydraulic conductivity at saturation). These
variables determines the a priori values of the parameters simulat-
ing the runoff processes in the upper layer (subsurface flow) and
the lower layer of SAC-SMA (baseflow) (Duan et al., 2001; Koren
et al., 2003). The a priori parameters are available in MOPEX
est Agriculture Open water Wetland MAP PSI
(%) (%) (%) (mm)

2 0.3 0.00 0.00 982.1 0.026
0 46.0 1.42 11.64 2072.0 0.45
8 19.8 0.27 0.07 1201.8 0.065
6 0.0 0.01 0.00 998.1 0.018
2 59.0 2.69 23.19 1520.2 0.127
0 10.8 0.41 1.20 1145.2 0.076
4 3.5 0.13 0.00 983.6 0.072
0 38.0 0.97 1.11 1385.5 0.117
9 9.4 0.53 0.07 1158.9 0.083
4 17.4 0.30 3.19 1206.0 0.032
7 31.3 1.35 19.66 1366.7 0.088
0 23.1 0.62 5.65 1284.6 0.066
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dataset and are designed to serve as an estimation technique for
ungauged catchments (Koren et al., 2003; Young, 2006). We eval-
uate the performance of the predictions from a priori parameters
(APRIORI) using Nash–Sutcliffe (NS) coefficient (Nash and
Sutcliffe, 1970), percent bias (PBIAS), mean monthly hydrograph
(MMH), and the flow duration curve (FDC). We compare APRIORI
to TRANS_IN. This comparison is fair as both approaches are
designed to make PUB.

4.4. Model calibration

We calibrated the thirteen SAC-SMA model parameters using
the Shuffle Complex algorithm (SCE-UA) with 10,000 iterations
(Sorooshian et al., 1993). This algorithm is extensively used for
SAC-SMA calibration to achieve different research goals, such as
studying model parameter transferability (i.e., Gan and Burges,
2006) and building a large database for the continental United
States (i.e., Newman et al., 2015). Similar to Gan and Burges
(2006) and Koren et al. (2003), we constrained the calibration
to the a priori value of each parameter that is available in MOPEX.
This approach is termed ’constrained calibration strategy’ (Gan
and Burges, 2006; Koren et al., 2003) and it helps to maintain
physical consistency and to reduce equifinality. We set ±35% as
the range of deviations allowed from the a priori parameters. This
range is larger than the range used in Koren et al. (2003) (i.e.,
±25%). We set this interval to allow for more variability around
the default parameters and in the parameters space which is used
by the SCE-UA algorithm to find the global optimum. In this study
the sample of catchments have limited effect of snow therefore
we did not need to use the snow module of the SAC-SMA model.
We calibrated SAC-SMA for each catchment over 15 years (Jan-
uary 1948–December 1963). Subsequently, we tested the model
performance over an independent validation period of 36 years
(January 1964–December 1999). The calibration adjusted model
parameters to best match the daily simulated flows to the daily
observed flows using an objective function that minimized the
RMSE (Root Mean Square Error). We assessed the model perfor-
mance using the NS coefficient and the PBIAS in mean flow
(Moriasi et al., 2007).

4.5. Parameter transfer within homogeneous regions (TRANS_IN)

We investigated and evaluated a parameter regionalization
scheme (TRANS_IN) to transfer parameter values from gauged to
ungauged catchments within homogeneous regions for predictions
of daily flow time series using SAC-SMA model.

In TRANS_IN, we designated one single donor catchment. After
conducting the SAC-SMA model calibration, we determined the
catchment in each region with the highest NS coefficient at calibra-
tion where the validation NS was quite stable and did not go below
85% of the calibration NS (i.e., Arsenault and Brissette, 2014). In
Fig. 1(a), the donor catchment of each region is highlighted with
a square. We transferred the parameter set of the designated donor
catchment to any of the catchments located in the same region of
homogeneous climate and flow characteristics (recipient catch-
ments). Any ungauged catchment located in the same region uses
the same parameter set to predict the flow data (Bock et al., 2015).
Past studies demonstrated that using the parameter set of the
catchment with the highest NS helped to attain better efficiency
from the parameter transfer than transferring the median parame-
ter set of multiple donor catchments (i.e., Kim and Kaluarachchi,
2008; Masih et al., 2010;Oudin et al., 2008). Evaluations of the pre-
dictive performance from TRANS_IN use the recipient catchments
assuming they are ungauged. At individual catchments, the perfor-
mance evaluation assesses the NS, PBIAS, predictions of the flow
duration curve (FDC) and the mean monthly hydrograph (MMH).
Besides, we assess the median percent error of several flow per-
centiles of the FDC (high and low flow percentiles) for a more in-
depth evaluation.

4.6. Parameter transfer irrespective of the homogeneous regions
(TRANS_OUT)

TRANS_OUT takes into account all of the heterogeneities in the
eastern United States (i.e., catchment energy conditions, landscape
properties, predominant runoff generation mechanism, storm
characteristics). TRANS_OUT is not a regionalization scheme for
PUB, instead it is used to assess the gain in efficiency from TRAN-
S_IN. Our assessment of the gain in performance from the region-
alization through comparisons of TRANS_IN with TRANS_OUT used
the same performance measures we noted above (NS, PBIAS, MMH,
and FDC). In TRANS_OUT, one donor catchment was used to
parameterize all catchments for all the regions. The donor catch-
ment had the highest NS among all 73 catchments.

Given that TRANS_IN employs the catchment with best NS in
each of the four regions, thus the single best catchment across
all regions is one of the four designated catchments for TRAN-
S_IN. This catchment coincides with the donor catchment of
TRANS_IN in C1.Therefore, TRANS_OUT is not applicable for C1.
TRANS_OUT is a parameter transfer that includes all types of
heterogeneities, therefore, comparisons of TRANS_IN with
TRANS_OUT also reveal the extent at which the transferred
parameters in TRANS_IN are representative of the catchments’
conditions. Particularly when TRANS_IN and TRANS_OUT have
comparable efficiency. This comparison, therefore, indicates the
limitations of the parameter transferability within the homoge-
neous regions (TRANS_IN).

4.7. Interpretation of SAC-SMA parameters transferability

We interpret quantitatively the performance from the parame-
ter transfer TRANS_IN and TRANS_OUT in order to determine the
representativeness of transferred parameters to catchments’
conditions in each region. First, we use the catchment descriptors
(climate, soil properties, and elevation) and their measures of
variation/inter-quantile variation to explain the satisfactory (lack
of) efficiency of TRANS_IN in comparison with TRANS_OUT in each
region. The catchment descriptors we employ are the AI, the mean
elevation, and the soil hydrologic properties (HGC (low infiltration
rates), HGB (medium infiltration rates), HGA (very large infiltration
rates, see Wood and Blackburn (1984)). Second, we analyze the
correlation of these descriptors with the latitude (soil hydrologic
properties) and the mean elevation (AI) in order to further under-
stand the geographical extent of the variation, and therefore
deduce the effect on the parameter transferability. Furthermore,
we complement our interpretations of the parameter transferabil-
ity with analysis of the predominant runoff generation mechanism
in each catchment, using the Topographic Index (TI) distribution.
The prevalent runoff generation mechanism is indicative of the
runoff processes. This information is supplementary to explain
the representativeness of the transferred parameters in each region
from the perspective of runoff processes. In the following, we
explain our approach to calculate the TI distribution at catchment
site.

TI represents the propensity of a point within a catchment to
generate saturation excess overland flow (Beven and Kirkby,
1979) due to a topographic control on surface and subsurface flows
(Rice and Hornberger, 1998). TI was first defined by Beven and
Kirkby (1979) as follows:

TI ¼ ln
a

tanb

� �
ð1Þ
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where: TI is the topographic index of a point/pixel within a water-
shed;

a is the specific upslope area per unit contour length;
b is the local topographic slope angle acting at the point.

In this study, TI was calculated at the pixel level using a DEM of
30-m resolution and algorithms necessary for the determination of
specific upslope area ‘‘a” and the local slope angle b (Rousseau
et al., 2005; Hentati et al., 2010). The TI calculation uses the prop-
erties of the stream network, namely, the flow directions and the
flow accumulation which both help to identify the riparian zone
(see Hentati et al., 2010). The frequency of TI distribution was then
determined for each catchment after classification of TI pixel val-
ues. The differences in the TI frequency distribution at the catch-
ment scale illustrates the wide differences in topographic
properties between study catchments and, consequently, the effect
of topography on the flow response. According to Beven and Kirkby
(1979) and Beven andWood (1983), large values of TI in the tails of
the distribution indicate the likelihood of runoff being generated
by saturation excess overland flow, whereas smaller values in the
tails hint to predominant subsurface processes in the runoff gener-
ation. The flow response depends also on the soil infiltration prop-
erties (Price, 2011; Ameli et al., 2015). Therefore, our analyses of
the runoff generation mechanism using TI serve to reveal the pre-
dominant mechanism that is likely to take place as a direct
response to topography while we acknowledge the effect of other
factors (i.e., soil infiltration rate and permeability) on the flow
response. We use the spatial pattern of the soil hydrologic proper-
ties as indicative of the soil infiltration rates and permeability
(Wood and Blackburn, 1984).
Table 3
Average NS and PBIAS statistics of the different simulations across regions in calibration a

Cluster Period APRIORI
NS

C1 Calibration 0.691 (0.075)
C1 Validation 0.681 (0.088)
C2 Calibration 0.604 (0.060)
C2 Validation 0.617 (0.081)
C3 Calibration 0.623 (0.065)
C3 Validation 0.590 (0.133)
C5 Calibration 0.749 (0.074)
C5 Validation 0.707 (0.108)
PBIAS (%)

C1 Calibration 0.0245 (5.458)
C1 Validation �0.550 (4.841)
C2 Calibration �10.168 (5.549)
C2 Validation �9.319 (7.226)
C3 Calibration �4.213 (6.246)
C3 Validation �3.835 (6.243)
C5 Calibration �5.761 (9.076)
C5 Validation 2.078 (11.009)

*() numbers between parentheses refer to the standard deviation of the NS values acros

Table 2
Parameters’ values of the donor catchments in each region.

Catchment ID Region UZTWM UZFWM UZK PCTIM ADIMP ZPERC

03,443,000 C1 61.3925 34.7632 0.3578 0.0918 0.3043 87.89
11,270,000 C2 42.7346 25.1386 0.3367 0.0750 0.3994 72.38
03,159,500 C3 76.0213 24.1819 0.3146 0.0857 0.3023 118.9
02,347,500 C5 22.3412 36.4631 0.8884 0.0801 0.3044 50.67

UZTWM: Upper zone tension water maximum storage, mm; UZFWM: Upper zone free
PCTIM: Percent permanent impervious area,%; ADIMP: Percent area contributing as imp
dimensionless; REXP: Percolation equation exponent, dimensionless; PFREE: Percent of
water maximum storage, mm; LZFPM: Lower zone free water primary maximum storage
Lower zone primary withdrawal rate, d�1; LZSK: Lower zone supplementary withdrawa
5. Results and discussion

5.1. Performance of parameter transferability and a priori parameters

We represent the calibrated parameters’ values of the donor
catchment in each region in Table 2 (see Appendix). We used these
calibrated parameters to conduct TRANS_IN in each region.

TRANS_IN outperformed the prediction from TRANS_OUT for all
of the homogeneous regions except in C3. The improvements are
mainly a higher median NS and/or less-biased predictions with
lower variation (see the values of NS and PBIAS with their respec-
tive variation listed in parentheses in Table 3). On the other hand,
TRANS_IN outperformed the APRIORI with a particularly higher
efficiency and/or less-biased predictions except for C3 (Table 3).
Below, we present the performance results for C1 and C5 followed
by C2 and C3; the former two regions exhibited the highest perfor-
mance in TRANS_IN.

In C1, TRANS_IN outperformed the APRIORI and led to predic-
tions with higher median efficiency and limited bias (small median
PBIAS in Table 3). The MMH and the FDC of a typical catchment
exhibited a good fit of TRANS_IN and APRIORI with the observed
flow (Fig. 3(a)). However, the median percent error of the FDC at
several percentiles exhibited larger errors for APRIORI, particularly
for the low and large flow percentiles (Fig. 4(a)).

In C5, TRANS_IN outperformed TRANS_OUT. The gain in perfor-
mance due to TRANS_IN is mainly higher NS and less-biased pre-
dictions (Table 3). The MMH from the typical catchment did not
exhibit a difference in performance between TRANS_IN and
TRANS_OUT and the observed MMH (Fig. 3(b)). However, the FDC
from TRANS_IN at the typical catchment had a better fit than the
nd validation periods.

TRANS_IN TRANS_OUT

0.711 (0.079) N/A
0.710 (0.067) N/A
0.604 (0.056) 0.622 (0.056)
0.588 (0.049) 0.604 (0.064)
0.625 (0.058) 0.646 (0.070)
0.631 (0.068) 0.645 (0.063)
0.762 (0.060) 0.757 (0.059)
0.771 (0.066) 0.705 (0.034)

0.483 (4.255) N/A
0.711 (0.079) N/A
0.780 (0.032) �5.044 (5.934)
�9.867 (6.318) �7.123 (7.051)
�4.416 (6.178) 0.557 (4.663)
�11.688 (9.519) �3.665 (4.177)
�1.966 (7.646) �8.706 (9.727)
�3.458 (6.866) �4.800 (4.272)

s catchments in each cluster

REXP LZTWM LZFPM LZFSM LZSK LZPK PFREE

53 1.4921 170.9203 29.2026 140.0720 0.1469 0.0145 0.1300
11 2.1382 352.2244 20.0474 158.3974 0.1141 0.0235 0.0606
506 2.1983 125.4961 36.9895 71.9652 0.0597 0.0055 0.2061
79 2.0854 137.5428 41.0259 223.0901 0.1613 0.0203 0.1327

water maximum storage, mm; UZK: Upper zone free water withdrawal rate, d�1;
ervious when saturated,%; ZPERC: Maximum percolation rate under dry conditions,
percolation going directly to lower zone free water,%; LZTWM: Lower zone tension
, mm; LZFSM: Lower zone free water supplementary maximum storage, mm; LZPK:
l rate, d�1



Fig. 3. (a) meanmonthly hydrograph (MMH) and FDC of a typical catchment from C1 with NS 0.80, 0.74 at APRIORI, and TRANS_IN, respectively, (b) MMH and FDC in a typical
catchment from C5 with NS 0.79, 0.78, 0.73 at APRIORI, TRANS_IN, and TRANS_OUT, respectively, (c) MMH and FDC in a typical catchment from C2 with NS 0.55, 0.6, 0.55 at
APRIORI, TRANS_IN, and TRANS_OUT,respectively, (d) MMH and FDC in a typical catchment from C3 with NS 0.7, 0.72,0.71 at APRIORI, TRANS_IN, and TRANS_OUT,
respectively.
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FDC from TRANS_OUT (Fig. 3(b)). The median percent errors of the
FDC in TRANS_OUT were larger for all of the flow percentiles com-
pared with TRANS_IN (particularly until the 75th percentile).
The APRIORI remained less efficient and more biased (see the
large values of PBIAS with larger variation listed in Table 3). The
MMH predicted by APRIORI in a typical catchment underestimates
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Fig. 4. The median percent error of the FDC at several flow percentiles (10%, 25%, 50%, 75%, and 90%) in each region.
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the large flows compared with the observed MMH and the one pre-
dicted from TRANS_IN (Fig. 3(b)). The predicted FDC from APRIORI
in the same typical catchment deviates at the upper and lower tails
from the observed FDC and from the FDC predicted using TRAN-
S_IN (Fig. 3(b)). The median percent errors of the FDC are larger
than those obtained from TRANS_IN in most of the percentiles
(Fig. 4(b)).

In C2 and C3, the predictions from TRANS_IN were either of lim-
ited bias compared with those of TRANS_OUT (C2) or were outper-
formed by those of TRANS_OUT (C3). Below, we present the
performance of parameter transferability in both regions that we
compare with APRIORI.

In C2, located in the northeastern US, the improvement of
TRANS_IN compared with TRANS_OUT (see the less-biased
predictions listed in Table 2) was not visible from the typical
MMH (Fig. 3(c)) contrarily in the typical FDC (the FDC from
TRANS_OUT deviated from the observed FDC at the upper and
the lower tails (Fig. 3(c)).

The limited bias of TRANS_IN led to smaller median percent
errors of the FDC than TRANS_OUT (Fig. 4(c)). APRIORI was less
efficient and more biased than TRANS_IN but slightly more effi-
cient than TRANS_OUT (Table 3). These findings are clear in the
predictions of FDCs and values of the median percent errors
(Fig. 3(c) and 4(c), respectively). We noted more errors in the
FDC predictions with APRIORI than with TRANS_IN. These results
highlight that a priori parameters are less representative of the
catchment conditions in C2 than the transferred parameters by
TRANS_IN.

In C3, contrarily to previous regions, TRANS_OUT outperformed
TRANS_IN and APRIORI (higher median NS and lower PBIAS of
smaller variation during the calibration and validation periods;
Table 3). TRANS_IN and APRIORI had similar performance in C3
(Table 3). The differences in the efficiency were not visible based
on the typical MMH and the typical FDC. All predicted FDCs devi-
ated from observed FDCs at the lower tail (Fig. 3(d)). However,
the median percent errors of the FDC revealed the differences in
efficiency between TRANS_IN, TRANS_OUT and APRIORI. The larger
efficiency of TRAN_OUT yielded better predictions than TRANS_IN
and APRIORI, mainly, medium flows of the FDC (particularly
between 30% and 70% of the exceedance probability) and was com-
parable to TRANS_IN and APRIORI at low and high flow percentiles
(Fig. 4(d)).

5.2. Evaluation, interpretation and discussion of parameter
transferability and a priori parameters

Below, we interpret and discuss the performance results for C1
and C5 followed by C2 and C3.

The good performance of TRANS_IN in C1 indicates that the
transferred parameters are representative of the catchments



Fig. 5. The mean catchment elevation in each region.
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conditions. In this region, most of the catchments are at low eleva-
tion, and a few are located in Appalachian Mountains (Fig. 1(a) and
4). We found that AI was statistically correlated with the mean ele-
vation (R2 = 0.33, p-value < 0.0001). This relation is mainly
explained by the PET decrease with elevation as found in Swift
et al. (1988). The change in AI with elevation was not large accord-
ing to the small inter-quantile range and the median value (Fig. 1
(c)). In C1, the catchments have similar energy conditions and
are mostly water limited. The energy conditions are important
Fig. 6. (a) spatial pattern of HGB soil proportions; (b) spatial patt
for flow predictions as PET is one of the inputs in SAC-SMA model.
Parameters’ transfer between catchments of similar energy condi-
tions has a large effect on TRANS_IN efficiency. We note that most
of soils in C1 are well-drained (mainly HGB with some proportions
of HGC (Figs. 6 and 7(b) and (c)). A saturation excess overland flow
dominates in majority of catchments (Fig. 8). The subsurface storm
flow is prevalent in few catchments at high elevations. All of which
helps to explain the satisfactory prediction from TRANS_IN in C1.
In conditions of predominant saturation excess overland flow,
the large infiltration rates lead to an increase in the groundwater
level which enhances the groundwater contribution, mainly the
surface flow from the saturated areas and base flow. The saturated
surface flow and base flow are both determined by the groundwa-
ter level (Huang et al., 2016). In the few catchments where subsur-
face storm flow is dominant and soils are well-drained, the
groundwater contribution is also important as a result of recharge
in the vadose zone. According to isotope hydrology, in steep terrain
with conductive soils, the new infiltrating water pushes the old
subsurface runoff to induce stream flow in the channel (i.e.,
Buttle, 1994). This understanding demonstrates that groundwater
contribution is important in catchments of C1 and is consistent
with the base flow index (BFI) being large in this region (Sawicz
et al., 2011). The similarity in the groundwater effect between
catchments further explains the efficiency from TRANS_IN and
supports the claim that transferred parameters are representative
of catchment conditions in C1.

Considering the smaller efficiency of APRIORI, we suggest that
the soil-derived values of the a priori parameters are less represen-
tative of the catchments’ conditions in C1 than the regionalization
approach.
ern of HGC soil proportions across the eastern United States.



Fig. 7. (a) spatial pattern of HGA soil proportions; (b) whisker plots of HGC soil proportions across the regions; (c) whisker plots of HGB soil proportions across the regions;
(d) whisker plots of HGA soil proportions across the regions.
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The catchments in C5 are all located at low elevations with the
exception of one catchment of higher elevation (see the outlier in
Fig. 5 and refer to the Digital Elevation Model shown in Fig. 1(a)).
Provided that AI is correlated to mean elevations (p-value
< 0.0001), there is homogeneity in the energy conditions where
all C5 catchments are water limited with a very small inter-
quantile range of AI (Fig. 1(c)). Only one catchment is energy lim-
ited (see the outlier in Fig. 1(c)). Saturated excess overland flow is
prevalent in C5 catchments of well-drained soils (HGB soil propor-
tions are dominant compared with HGC except in one catchment:
Figs. 6 and 6(a), (b)). Likewise the catchments in C1, these charac-
teristics of runoff processes and soil enhance the groundwater con-
tribution and are consistent with BFI being the largest (larger than
in C1) and the flow being the most mitigated (the smallest slope of
the FDC), as stated in Sawicz et al. (2011). The catchments’ condi-
tions and predominant runoff generation mechanism explained
the large efficiency of TRANS_IN not affected by the presence of
one outlier (visible in Figs. 1(c) and 7(c)). Transferring parameters
from an outsider catchment (TRANS_OUT) (the catchment belong
to C1) leads to poor efficiency in the predictions due to differences
between C1 and C5, although the donor catchment in TRANS_OUT
is the closest to C5 (Fig. 1(a)). The catchments in C5 have (i) the
shortest duration of storms, (ii) the most stringent water-limited
conditions (Fig. 1(c)) (iii), the lowest elevations (Fig. 5), and (iv)
the smallest HGC proportions (Fig. 7(c)). In conditions of the pre-
dominant saturation excess, these attributes generate flows with
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characteristics different from those of C1. It has been shown that
climate factors interact with the runoff generation mechanism
and influence the runoff response where, for instance, the semi-
arid conditions fosters the dominance of infiltration-excess surface
runoff (Huang et al., 2016).

In C2, the less-biased predictions from TRANS_IN and the lack of
efficiency of TRANS_OUT are pertinent and reveals the extent to
which the catchments are hydrologically similar and the
transferred parameter by TRANS_IN are representative of
catchments’ conditions.

The catchments’ properties in C2 and their differences from C1
explain the gain in performance associated with TRANS_IN com-
pared with TRANS_OUT. In C2, most of the catchments are energy
limited (except two outliers) with a small range of variation com-
pared with C1 (Fig. 1(c)). Hence, C2 have homogeneous energy
conditions with lower median AI than in C1. There is a very small
range of variation in the value of snow day ratio (SDR) in C2 (Fig. 1
(b)), which further illustrates the homogeneity in climate and its
effect on runoff response and subsequently on TRANS_IN
efficiency. The SDR, although it is small in C2 (median 25%), is
influential on the runoff response (Singh and xu, 1997; Ye et al.,
2012). In this region of the northeast, the soils are mostly poorly
drained (the HGC proportions are the largest, Figs. 6(a) and 7(c)).
The runoff generation mechanism in C2 is mainly dominated by
saturation excess (Fig. 8). Very few catchments belong to the mid-
dle category of the TI (Fig. 8) where saturation excess and the sub-
surface storm flow are equivalent in their effect on the flow
response (Beven and Kirkby, 1979; Beven and Wood, 1983). There-
fore, the interaction of the homogeneous climate, soil, and energy
characteristics with the runoff generation mechanism (primarily
saturation excess) fosters the hydrologic similarity between catch-
ments and explains the efficient performance of TRANS_IN. An
example of interaction between climate, landscape properties
and runoff generation mechanism is presented in Bronstert et al.
(2002). The differences between C1 and C2 lead to differences in
the flow response (the catchments in C2 have steeper slope of
the FDCs than those in C1; see Sawicz et al. (2011)), and the lack
of efficiency of TRANS_OUT further demonstrates that parameters
of one donor catchment with best predictions are representative of
catchments’ conditions in C2.

In C3, the poor efficiency of TRANS_IN compared with TRANS_-
OUT indicates some level of heterogeneity and explains the lower
performance of the parameter regionalization (TRANS_IN). In C3,
although the catchments are energy limited (low PET), the AI is
characterized by large variations and a large inter-quantile range,
suggesting that the catchments have heterogeneous energy condi-
tions (Fig. 1(c)). There are catchments that are more energy limited
(low PET) and others that are more water limited (high PET). The
PET is one of the inputs into the SAC-SMA model.

Hence, the transfer of parameters that are calibrated in different
conditions of energy and water does not help to attain high effi-
ciency. All catchments in C3 are forested (Table 1) and mountain-
ous with higher elevations than other regions (Figs. 1(a) and 5).
There is also large variation in the mean elevation among
catchments (Fig. 5). The soils are poorly drained (Fig. 6) with the
lowest proportions of HGB (Fig. 7(b)) and among the highest pro-
portions of HGC (Fig. 7(c)). According to the TI analysis, subsurface
storm flow dominates in C3 (Fig. 8). The disparity in the mean ele-
vation likely leads to differences in the response provided that the
hydraulic gradient is proportional to the topographic gradient in
mountainous catchments (Butt et al., 2001). Moreover, in similar
conditions of runoff generation mechanism and within forested
mountainous catchments there is a likelihood of preferential flow
(McDonnell et al., 2007; Weiler and McDonnell, 2007). The domi-
nant subsurface storm flow and the non-uniformity of the soil
porosity with depth are among the factors that result in preferen-
tial flow. The non-uniformity in the soil porosity is related to the
macropores resulting from the decayed/living roots and from
the biological activity that fosters preferential pathways in the
subsurface zone (Bonell, 1993). In all of the forested mountainous
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catchments dominated by subsurface storm flow from other
regions (C1 and C2), lateral preferential flow is likely. However,
likelihood of such flow is even higher in C3 because (i) the physiog-
raphy is more complex (i.e., it has the steepest topography, the
highest elevation, the lowest proportion of HGB) and (ii) the HGA
soils (characterized by very large infiltration rates) have the largest
proportions with the largest inter-quantile range (Figs. 6 and 7(d)).
Consequently, non-uniformity in the porosity and the preferential
pathways is more probable in C3, which results in a more pro-
nounced effect of preferential flow, and further explains the low
performance from TRANS_IN.

Current physically based and conceptual models—including
SAC-SMA—often ignore the effect of preferential flow (Weiler and
McDonnell, 2007). Therefore, we recognize its effect as a source
of uncertainty in other predictions from C3 (APRIORI, TRANS_OUT).
In ideal conditions where the preferential flow is simulated by the
model structure, the parameter transfer within C3 (TRANS_IN) will
not lead to high performance because (i) of the same reasons noted
above related to the disparity in the catchment conditions, and (ii)
the nature of preferential flow being specific to characteristics of
each catchment (the density of preferential pathways changes as
a result of soil texture/porosity, the root zone density, and the den-
sity of decayed/living roots) (Brammer and McDonnell, 1996;
Bronstert, 1999; McDonnell et al., 2007; Weiler and McDonnell,
2007). Additional research is necessary to properly simulate lateral
preferential flow and investigate techniques to measure the differ-
ences/similarities in the effects of this peculiar flow between
catchments in the same region.

The relatively better performance of TRANS_OUT in C3 (only for
medium flow percentiles) might refer to the outsider donor catch-
ment (located in C1) being spatially close to catchments in C3
where dominant runoff generation mechanisms are the same
(the subsurface stormflow dominates the donor catchment of
TRANS_OUT and the catchments in C3, Figs. 1 and 8).

The results from TRANS_OUT and the likelihood of preferential
flow indicate limitations of the parameter regionalization and sug-
gest the need for other measures of similarity to relocate the catch-
ments in C3. We propose adding other characteristics in the
regionalization to assess the effect of preferential flow that can
be complemented by physically based measures of soil character-
istics (i.e., porosity, permeability) and other measures related to
PET (i.e., AI) in order to reduce the heterogeneity in energy condi-
tions. Improving the efficiency from the parameter regionalization
in regions of very complex landscape properties is a research venue
that requires in-depth investigations.

In the eastern United States, the spatial pattern of soils led us to
notice that HGC proportions are correlated with the latitude. This
relation is statistically significant (R2 = 0.47, r = �0.68, p-value
< 0.001). The latitude explains 47% of the HGC variation in the east-
ern United States. It is difficult to conjecture the reasons for this
tight correlation, but the geology structure that interacts with
the topography and climate agents (i.e., storm characteristics)
may be the potential factors. The climate and soil hydrologic prop-
erties (HGC proportions) are correlated with latitude in eastern US
and both contribute to the flow response (Wagener et al., 2007).
They can be used to identify the homogeneous regions. However,
the performance from the parameter transfer would probably not
be as efficient as the parameter regionalization approach investi-
gated in the current study. The climate and the physical descriptors
do not capture the effect of interaction between all factors con-
tributing to the flow response (i.e., climate, soil texture, runoff gen-
eration mechanism, groundwater, porosity, preferential pathways)
(Troch et al., 2013).

Note that a previous regional study by Oudin et al. (2010b)
demonstrated that only 60% of the hydrologically similar catch-
ments are physically similar. The overlap was statistically signifi-
cant. In 40% of the catchments classified based on physical
similarity, the parameters are not transferable. This finding sup-
ports our claim of using catchments’ characteristics that capture
the interaction between all factors contributing to the flow
response in the regionalization scheme. We conjecture that the
more the effect of interaction is captured, the more efficient are
the predictions from the parameter transfer.

Our study demonstrates that when MMHs do not exhibit differ-
ences between several predictions, the FDCs have diverse shapes
according to analyses of the median percent error in each simula-
tion. Consequently, two main facts emerge concerning FDC use: (i)
it reveals the bias effect on flow simulation inaccuracy and (ii) it is
advantageous for a more reliable parameter transfer assessment,
which is urgently needed for accurate PUB. Several past PUB stud-
ies have regarded FDC as a fundamental daily stream flow statistic
(Archfield et al., 2013). For example, Kapangaziwiri et al. (2009,
2012) analyzed FDCs to assess predictions from parameter region-
alization. Masih et al. (2010) delineated regions of homogenous
hydrologic behavior based on similarity of the FDC. Farmer et al.
(2014) used the FDC of gauged basins to predict flow percentiles
in ungauged basins using nonlinear spatial interpolations. We
therefore suggest using the FDC to better assess PUB in combina-
tion with the efficiency measures of NS and PBIAS.

Our assessments using FDC suggest giving new paradigms in
the evaluation of model prediction a try. The use of summary met-
rics involving measures of the FDC (i.e., slope of the FDC, rising
limb density, declining limb density) in Sadegh et al. (2015) and
Vrugt and Sadegh (2013) showed great promises for prediction
evaluations. It ensured that simulated response depicts accurately
the observed flow behaviors. This finding is consistent with our
results; FDC being more efficient in prediction evaluation than
MMH and classic residual-based metrics. The problem resides in
the convoluted error residuals of the observed and the simulated
time-series. According to Sadegh et al. (2015), the summary met-
rics have the advantage to be relatively insensitive to forcing data
errors, which is particularly desirable in the context of non-
stationarity. The summary metrics, therefore, avoid proclaiming
non-stationarity for the wrong reasons (errors on the rainfall data)
(Sadegh et al., 2015).

5.2.1. Which approach to use for PUB, the a priori parameters or the
parameter regionalization?

In all the regions, the comparisons of the efficiency from param-
eter transfer with APRIORI highlighted the uncertainty in using the
a priori parameters to make PUB compared to a parameter region-
alization approach. The lowest performance (low median NS and
high PBIAS) from APRIORI was in C2 and C3 (Table 3).

APRIORI was equivalent to TRANS_IN in C3 where TRANS_IN
was the least efficient across the regions. This finding does not
allow to recommend the use of a priori parameters for PUB.
Slightly better predictions from APRIORI occurred in the catch-
ments from C1 and C5 (Table 3) but never exceeded TRANS_IN.
This finding suggests that a priori parameters in C2 and C3 have
among the highest uncertainty and are less representative of the
catchments’ conditions. The complex landscape properties of C3
and C2 (i.e., the steepest topography with the finest soil texture)
suggests that the poor performance of APRIORI is related to the lar-
ger uncertainty in soil-data interpolations from STATSGO. This
uncertainty may relate to the lack of soil sampling in several
regions with complex terrain (Koren et al., 2003). More research
is required to further analyze the uncertainty in the SAC-SMA a pri-
ori parameters and their effect on flow predictions. Our findings
suggests that it is better to use a parameter regionalization
approach, similar to what we present in this study, for PUB. Future
research would consider comparing predictions from a priori
parameters with predictions from other regionalization
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approaches (i.e., regression, spatial proximity, similarity in physi-
cal properties) to further evaluate the use of SAC-SMA a priori
parameters in predictions at ungauged catchments.
5.3. Comparisons with previous studies

Comparisons of the efficiency results with findings from other
studies demonstrate that none of the catchments had predictions
as poor and as biased as those reported by Gan and Burges
(2006). These authors used the same model to investigate the
parameter transferability over geographically distant MOPEX
catchments. These differences demonstrate the benefit of using
hydrologically ‘‘similar” catchments for the parameter transfer.
Our results outperform predictions from the spatial proximity,
which provided better predictions than the physical similarity in
a study by Oudin et al. (2008). The median NS attained 0.77 in
our study, but it did not exceed 0.7 for spatial proximity and
0.69 for physical similarity in Oudin et al. (2008). In Arsenault
and Brissette, (2014) the efficiency of the physical similarity did
not exceed 0.75 at individual catchments. This efficiency is lower
than the value of 0.85, the maximum we obtained in this study
at individual catchments.

Despite the limitations, the effect of interaction which is cap-
tured by the climate and flow characteristics used in the regional-
ization, explain the better performance we obtained compared
with separate use of spatial proximity and physical similarity
criteria.

Note that Oudin et al. (2008) considered the spatial proximity
and physical similarity as complementary and that the average of
flow simulation from both approaches can be used to improve
the prediction efficiency. Given the satisfactory performance we
obtained in this study and the fact that homogeneous regions
implicitly combine aspects of spatial proximity and physical simi-
larity, the proposition of Oudin et al. (2008) suggesting to combine
predictions from two regionalization methods may represent a
worth-testing approach to investigate in future studies. This so-
called ‘‘multiregionalization scheme” requires identification of a
priori regionalization approaches to obtain the average of flow
simulation leading to the best performance after combination
(Oudin et al., 2008).

Our prediction performance was consistent with other studies
transferring the parameters between hydrologically similar catch-
ments. Bock et al. (2015) obtained a median NS of 0.76 from the
parameter transfer within regions of similar parameter sensitivity.
The performance in individual catchments in our study exceeded
the maximum value of 0.78 reported by Masih et al. (2010) who
used the criterion of similarity in the FDC for parameter
regionalization.
6. Conclusions

This paper evaluated the performance from the parameter
transfer within homogeneous regions of similar climate and flow
characteristics. Subsequently, it compared the performance from
the parameter regionalization to the prediction efficiency from
the soil-derived a priori parameters that are designed to make pre-
dictions at ungauged catchments. The study was conducted in the
eastern US using 73 catchments. We employed the SAC-SMA
model and the geographically contiguous regions determined by
Sawicz et al. (2011) using climate and flow characteristics.

Our results showed that parameter transfer within homoge-
neous regions reduced the bias and increased the predictions effi-
ciency (it reaches a median NS of 0.77 and a NS of 0.85 at individual
catchments). The use of the FDC was advantageous in revealing the
effect of bias on the flow simulation inaccuracy. The satisfactory
efficiency from the transferred parameters within the homoge-
neous regions was fostered by the similarity in the effect of inter-
action between climate, physiographic characteristics and
predominant runoff generation mechanism. The use of the flow
characteristics in the regionalization helped to capture the similar-
ity in the effect of interaction.

The transferred parameters within homogeneous regions out-
weighed in performance the soil derived a priori parameters.
Therefore, it is better to use a regionalization approach to make
predictions at ungauged catchments.

In one region of very complex landscape properties (i.e.,
forested mountainous catchments, steepest topography, higher
fraction of the poorly drained soils) and heterogeneous energy con-
ditions, the predictions from the a priori parameters had equiva-
lent efficiency to those from transferred parameters within this
region. Both had poor performance. The use of the transferred
parameters from an outsider donor catchment slightly improved
the predictions (i.e., more accurate predictions of the medium flow
percentiles). This finding underlined the limitations of the param-
eter regionalization that affected the efficiency from the parameter
transfer. The limitations of the approach are in part caused by dif-
ferences in the energy conditions between the catchments of this
specific region and the likelihood of lateral preferential flow that
fostered the heterogeneity between the catchments in this region.

From this perspective, there is a room to improve the parameter
regionalization within similar conditions of the catchments, where
we propose to add other measures of similarity in the regionaliza-
tion. Examples the aridity index, and measures of the effect of pref-
erential flow that can be supported by specific measures of soil
characteristics (i.e., porosity, permeability).

Expanding our study to larger datasets will have the potential to
provide further insights on parameter regionalization using simi-
larity in climate and flow characteristics. More limitations of the
parameter regionalization are related to the implications of climate
variability and change on the homogeneity in each region and con-
sequently on parameter transferability. This limitation remains
unexplored and it is recommended in future research related to
parameter regionalization.
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