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Abstract
The objective of this paper is to present a relatively simplified model to predict daily water table (WT) by solving ordinary
differential equation dWT (t)/dt = F (α1, α2, α3, WT0(t), RF (t), PET (t)), with α1, α2, α3, WT0 as parameters, and RF (rainfall)
and PET (potential evapotranspiration), respectively, as inputs. The model was calibrated and validated with WTon four poorly
to moderately drained soils (Lenoir, Rains, Lynchburg, and Goldsboro) on a forested wetland. Calibration results were in good
agreement with the measured WT for all soils, except the Goldsboro with deeper WT. r2 (coefficient of determination) and NSE
(Nash-Sutcliffe Efficiency) statistics both ranged from 0.81 for the Lenoir to 0.89 and 0.87, respectively, for the Lynchburg.
Average absolute daily deviation (AADD) varied from 10.8 cm for Lenoir to 16.7 cm for Rains. The performance was somewhat
poorer, during relatively dry periods with deeper WT, yielding r2 and NSE as low as 0.55 and 0.29, respectively, for Lenoir, and
large AADD for Lynchburg. Discrepancies were associated withWToverprediction for deeper depths. The newmodel is capable
of describing theWT for poorly drained high water table soils, with a potential for assessing effects of land management, wetland
hydrology, and climate changes.

Keywords Forestedwetlands .Recharge .Evapotranspiration .Soil permeability .Rootingdepth .Ordinarydifferential equations

Introduction

Rapid rise and drawdown of water table (WT) with rainfall
and evapotranspiration (ET) is common in southeastern for-
ested wetland watersheds (Trousdell and Hoover 1955; Young
Jr and Klaiwitter 1968;Williams 1978; Riekerk 1986; Amatya
et al. 1996; Amatya and Skaggs 2011). This is primarily due to
poorly drained clayey subsurface layers of the soils which
restrict internal drainage, resulting in a shallow WT on

seasonal or more frequent basis (Williams and Amatya
2016; Callahan et al. 2012: Skaggs et al. 2011a). Because of
these physical features, headwater catchments in the lower
coastal plain often contain wetlands with shallow water table,
often creating management challenges across the region.
Modest changes in the position of the WT can lead to
either groundwater flooding and concomitant management
challenges for forest services, or ecosystem stresses relat-
ed to dry conditions in wetlands during times of below-
normal precipitation or due to groundwater withdrawal
(Callahan et al. 2017), including alteration of wetland hy-
drologic conditions (Skaggs et al. 1994).

WT is a key component in eco-hydro-biogeochemical pro-
cesses (Dai et al. 2013, 2011; Burt et al. 2002). Magnitude,
timing, frequency, and duration of hydrologic processes like
drainage, runoff, ET, floods, and droughts all are directly or
indirectly affected by the position of WT (Cooper et al. 2006).
WT is also a wetland hydrologic indicator (Skaggs et al.
1994). It also affects carbon and nutrient cycling, biological
habitat, and groundwater dependent ecosystems (Dai et al.
2013). WT and the knowledge on its fluctuation is often
used for wetland hydrology restoration. Recently, Callahan
et al. (2017) discussed role of groundwater/WT as a driver
on forested conditions of the Southeastern US coastal plain.
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The authors outlined factors needing attention for further re-
search likemaximum ponding depth and/or the average length
of the seasonal flooding and effects of restoration with native
vegetation like longleaf pine (P. palustris) in savanna habitats
on WT dynamics and the water balance. Understanding these
factors related with WT can be even more critical due to the
recent projections of warming climate with a potential to de-
creased WT depth and extreme precipitation with a potential
of flooding in the Southeastern U.S. (Dai et al. 2010a; Marion
et al. 2013; Zhu et al. 2017), leading to direct or indirect
impacts on ecosystem services.

Predicting WT is often a complex process that depends
upon climate, soils, vegetation, geology, topography and mor-
phology of the site of interest. At the same time anthropogenic
disturbance like land use change, land and water management
practices including ditching and plugging can substantially
alter the WT dynamics (Zhang and Schilling 2006; Callahan
et al. 2012, 2017; Amatya et al. 2006; Sun et al. 1998).

Hydrologic models are often used to predict WT dynamics
on various ecosystems for both undisturbed reference as well
as disturbed systems. For example, Hammer and Cadlec
(1986) developed a spatially distributed hydrologic model,
primarily for natural or constructed wetlands, to predict spatial
surface runoff and WT position in response to gradient and
vegetation flow resistance with precipitation, ET, streamflow,
and groundwater recharge/discharge as driving factors. There
are some other hydrologic models that can describe the daily
WT dynamics together with other water balance components
for low-gradient coastal landscapes (Skaggs 1978; Sun et al.
1998; Mansell et al. 2000; Liu et al. 2005). Among them
DRAINMOD for parallel drained systems (Skaggs 1978;
Skaggs et al. 2012) and spatially distributed MIKESHE
(DHI 2005; Lu et al. 2009; Dai et al. 2011) are two widely
usedmodels that predictWT by including the surface and sub-
surface water interactions in the vadose zone. Recently Liu
and Kumar (2016) successfully validated a process-based
PIHMmodel (Qu and Duffy 2007) with 15-year of daily water
table data on a 325 km2 watershed containing multiple forest-
ed wetlands and further used a Bayesian regression model to
evaluate the extent to which wet periods can be simulated
using the precipitation and PETalone and to infer their relative
roles. The authors found that 60–90% of the variations in wet
periods start date and duration could be captured using regres-
sions based on seasonal precipitation and potential evapo-
transpiration (PET) alone in most wetlands. However, these
models are parameter intensive and require a substantial
amount of time for learning, parameterization etc. often
limiting their use by land managers and planners for their
operational works. For example, using virtual ditch depth
and spacing, He et al. (2002) were able to simulate daily
WT depths within 20 cm depth, on average, of the measured
data only after intensive calibration of soil parameters like
saturated hydraulic conductivity and others, impervious layer

and root depths for various soils without ditches in North
Carolina coastal plain. There are few other empirical methods
available in the literature to estimate the daily WT depths
(Healy and Cook 2002; Zampella et al. 2001) using the refer-
ence sites including a 1-parameter exponential decay model
for days without rain (Callahan et al. 2012). For a coastal
aquifer system of Venice lagoon, Taormina et al. (2012)
showed that forward artificial neural network (ANN) method
can provide accurate reproductions of WT depths. However,
that method used only a short term data for a single location.

In this study we assumed that a relatively simpler water
table (WT) predictionmodel may be developed for this coastal
region where mean annual rainfall is higher than the mean
PET, potentially with excess soil moisture (Skaggs et al.
1994; Amatya and Skaggs 2011; Dai et al. 2013). The princi-
pal hypothesis was that the water table position in this region
is primarily influenced by rainfall, ET (or PET), and site char-
acteristics like sub-surface soil texture, and vegetation (Sun et
al. 2002; Skaggs et al. 2011a, b; Williams et al. 2016), data
almost all of which can be acquired and/or estimated with
some minimal efforts.

Therefore, the main objective of this study is to develop a
relatively simpler numerical model to compute daily WTwith
only four parameters attempting to characterize soil hydrolog-
ic properties and vegetation root depths and using long-term
daily rainfall and PET data for the location of interest. The
model is validated with WT data on four moderately well
drained to poorly drained soil types on a forested watershed
in coastal South Carolina. Such type of model is essential to
examine whether hydrology, one of the three characteristics of
wetlands besides soils and vegetation- singly or combined
considered diagnostic, is fulfilled based on the predominant
presence and dynamics of water either at or above the surface
or within the rootzone for a given site (Maltby and Acreman
2011). As federal jurisdiction over Bisolated^wetland con-
tinues to be a subject of debate, it is critical that more reliable
yet simpler tools to assess the wetland hydrology be devel-
oped and tested. Wetland hydrology exists on a site if, during
the growing season, the water table is normally within 30 cm
of the surface for a continuous critical duration (Skaggs et al.
2011b). If well validated, the 4-parameter model using easily
available daily rainfall and PET data developed here can be a
reliable and easy to use tool for evaluating wetland hydrology.

Methods

Site Description

The study site, Turkey Creek watershed (WS 78) at USDA
Forest Service Santee Experimental Forest (SEF), is a 3rd
order stream draining an approximate area of 5240 ha
(Amatya et al. 2013) at a gauging station (http://waterdata.

Wetlands

Author's personal copy

http://waterdata.usgs.gov/sc/nwis/uv?site_no=02172035


usgs.gov/sc/nwis/uv?site_no=02172035) reestablished
(Fig. 1) to facilitate a large-scale eco-hydrological monitor-
ing and modeling program (Amatya and Trettin 2007). The
site (33o 08’N and 79o 47’W) is the headwaters of East
Cooper River, a major tributary of the Cooper River, which
drains to the CharlestonHarbor in South Carolina. The topo-
graphic elevation of the watershed varies from approximate-
ly 2 m at the outlet to 14 m above mean sea level (a.m.s.l.)
(Amatya et al. 2015).WS 78 is typical of other watersheds in
the south Atlantic coastal plain where rapid urban develop-
ment is taking place.

The watershed is dominated by poorly drained soils of
Wahee (clayey, mixed, thermic Aeric Ochraquults) and
Lenoir (clayey, mixed, thermic Aeric Paleaquults) series
(SCS 1980). The watershed also contains small areas of some-
what poorly and moderately well-drained sandy and loamy
soils such as Goldsboro and Lynchburg. Detailed description
of soil types found at the study watershed are given elsewhere
(Morrison 2016; Amatya et al. 2015).

Land use within the watershed is comprised of 87%
forest (loblolly pine (Pinus taeda L.) and long leaf pine
(Pinus palustris)), 9% wetlands and water, and about 4%
agricultural lands, roads and open areas (Morrison 2016).
The current forests on the watershed are a mixture of
remnant large trees and natural regeneration since it was
heavily impacted by Hurricane Hugo in September, 1989
(Hook et al. 1991). Current management practices on the
majority of the watershed include forestry, biomass re-
moval for reducing fire hazards, prescribed fire and thin-
ning for restoration of native longleaf pine and habitat
management for red-cockaded woodpeckers (Picoides
borealis), an endangered species. The watershed is also
used for recreational purposes such as hunting, fishing
etc.. Some other details of watershed characteristics in-
cluding hydrogeology and water resources are found in
Amatya et al. (2015).

Hydro-Meteorological Measurements

Rainfall

There are two automatic tipping bucket rain gauges in the
study watershed and a third one on Lotti Road just east of
the watershed. One gauge (TC) connected to a Campbell
Scientific CR10X weather station is in the middle of the
watershed and another gauge (USGS) is at the stream
gauging station (Fig. 1). Data from each of the automatic
rain gauge were verified and calibrated using an adjacent
manual rain gauge. Breakpoint event rainfall data were
processed to obtain daily totals for each of the gauges.
Rainfall data from only the TC gauge for 2006 to 2015
were used in this study, with the USGS and Lotti gauges
as back up for comparison and filling data gaps as needed.

Only one gauge was used in the study assuming a uniform
distribution as an earlier study (La Torre 2008) found no
significant differences in spatial variability of seasonal
rainfall when compared among eight gauges for the his-
toric period of 1965 to 1973.

Weather Parameters/PET

A Campbell Scientific CR10X weather station located in the
middle of the study site (Fig. 1) has been measuring precipi-
tation, air temperature, relative humidity, wind speed and di-
rection, and solar radiation on a half-hourly basis since late
2005 (Amatya and Trettin 2007) that was integrated to daily
average to estimate daily potential evapotranspiration (PET)
using the Penman-Monteith (P-M) (Monteith 1965) method
for a standard grass reference for the 2006–2015 period.
Details of analyzing the weather data and calculation of the
PET are given by Amatya and Harrison (2016).

Water Table

Groundwater table dynamics were measured using both
shallow (up to 3 m depth) and deep piezometers (up to
20 m depth) into the top of the Santee Limestone
(Callahan et al. 2012, 2017). The shallow groundwater
on the watershed is continuously monitored on an hourly
basis using Global Water’s WL-16 dataloggers installed in
wells made of 3.8 cm diameter PVC pipe slotted a mini-
mum of 1.5 m below ground surface. Altogether four such
wells were installed in July 2006 on the study site
representing four major dominant soils Rains, Lynchburg,
Goldsboro, and Lenoir, which were all on the left (south)
bank of the watershed (Fig. 1). Photos showing these four
wells with corresponding ground and vegetation back-
ground are presented in Fig. 2. Groundwater level data
were measured as the depth below the ground surface at
the well location. Daily averaged WT data from hourly
WT depth records for the four shallow wells on Rains,
Lenoir, Goldsboro, and Lynchburg soils for the July 2006
to December 2015 period were used for the model devel-
opment and validation described in the followings sec-
tions. Soil hydrologic characteristics of these four Ultisol
order soils are given below in Table 1 along with their
coordinates and elevations.

During the study period some operational management ac-
tivity such as prescribed burning had occurred in and around
the areas where these groundwater wells are located. Those
dates were approximately around March 16–18, 2010, March
16–17, 2012, and April 23, 2014 near Goldsboro, Rains, and
Lenoir well soils. Similarly, burning was prescribed on
Lynchburg soil in the Springs of 2009 and 2012. Details of
all other hydro-meteorologic monitoring and analysis and wa-
tershed characteristics and management for the study
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watershed are reported elsewhere (Amatya et al. 2009, 2015;
Amatya and Jha 2011; Morrison 2016; La Torre et al. 2011).

Model Development

We herein developed a vertical 1-D numerical model to pre-
dict WT in a soil profile as a function of time, t, based primar-
ily on the rainfall (RF) and potential evapotranspiration (PET)
data. Vertical seepage of water from and into the soil profile
with an impervious bottom layer was assumed negligible at
this coastal site based on widely used such an assumption
(Skaggs 1978; Chescheir et al. 1994; Amatya and Skaggs
2001; Mansell et al. 2000; Lu et al. 2009; Dai et al. 2010a,
b; Tian et al. 2012; Williams et al. 2016). Lateral drainage
around the soil profile of interest was also assumed negligible
as was also done by Mansell et al. (2000) for a relatively flat
coastal pine forest without any drainage ditches.

Our approach assumes that WT (t) is a deterministic func-
tion of RF (t) and PET (t), and its dynamics is governed by the

solution of an ordinary differential equation (ODE) for change
in WT described by

d
dt

WT tð Þ ¼ F tð Þ; ð1Þ

where, F (t) is a function of sum of two components, Fevap (t)
and Frain (t), that account for loss due to ET and recharge due
to rainfall, respectively. The ODE governing the dynamics of
WT is written as

F tð Þ ¼ Fevap tð Þ þ Frain tð Þ: ð2Þ

We assumed Fevap (t) accounting for the changes in WT
due to the ET, has the following form:

Fevap tð Þ ¼ −α1 � PET tð Þ �WT0 if WT tð Þ > WT0

−α1 � PET tð Þ �WT tð Þ if WT tð Þ≤WT0

�
; ð3Þ

where, α1 andWT0are parameters to be determined from the
fit to the empirical data. The parameter α1 (> 0) is related to
the average rate of water transfer in the soil. It represents the

Fig. 1 Location map of Turkey Creek watershed (shown in green boundary line) with its USGS (WS78) gauging station. Shown are also the ground
water well locations within it
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ability of the Broot zone^ to supply water to the vegetation
through the soil, somewhat similar to upward flux property
of the soil (Skaggs 1978). The parameter WT0 is a depth
measured from the bottom of the effective root depth (RD)
of the trees to the impervious layer (Fig. 3).

Conceptually, as long as WT is within the RD, WT (t) =
WT0 and the absolute value of Fevap (t) will be larger than
when the WT (t) ≤WT0 in Eq. 3. In other words, it is as-
sumed that groundwater, as a surrogate of soil moisture, is
uptaken by the roots at a constant rate as long as WT >WT0.
During this condition WT in RD zone is lowering due to the
ET process independently of the height of WT, and is pro-
portional to the saturated root zone depth above WT0.
However, when WT drops down to the WT0 level or the
bottom of the effective RD, the lowering of WT level rate
slows down potentially due to limited soil upward flux.

Accordingly, the rate at which groundwater is uptaken from
the WT0 level and below in the soil profile is assumed
proportional to the WT level. The rationale for this assump-
tion is that below the threshold depth of WT0 the density of
roots is much lower than in the upper effective RD. The
water uptake rate is then assumed to be proportional to the
remaining portion of roots extended through the lower
groundwater level (Fig. 3). According to Eqs. 2 and 3, if
there is no supply of rainfall (recharge), the lowering of WT
follows the exponential-like dependence when WT ≤WT0,

similar to Callahan et al. (2012) who tested a one-
parameter exponential decay rate model to predict WT
recession period without rainfall in summer of 2007 for
three soils (Goldsboro, Rains, and Lenoir) on this watershed.
For this reason WT cannot drop below the bottom impervi-
ous layer.

Fig. 2 Four ground water wells
(Rains, Lynch, Golds, and Lenoir)
on four soil types (Rains,
Lynchburg, Goldsboro, and
Lenoir) Turkey Creek watershed
(WS 78)

Table 1 Soil hydrologic characteristics of four major soils (SCS 1980) and well locations

Soil Series Family Taxomomy Drainage Class Hydrologic
Soil Group

Vegetation Well Coordinates,
m

Well Elevation,
m

Rains Fine Loamy,
siliceous

thermic Typic
Paleaquults

Poorly drained B/D Longleaf/Loblolly 622,058.489 (X)
3,663,916.241 (Y)

10.952

Lynchburg Fine loamy,
siliceous

thermic Aeric
Paleaquults

Somewhat poorly drained C Longleaf/Loblolly
& others

618,761.156 (X)
3,664,684.061 (Y)

9.645

Goldsboro Fine Loamy,
siliceous

thermic Aeric
Paleudults

Moderately well drained B Loblolly 620,208.389 (X)
3,665,482.055 (Y)

10.297

Lenoir Clayey, mixed thermic Aeric
Paleaquults

Somewhat poorly drained D Longleaf/Loblolly
& others

620,193.194 (X)
3,665,163.871 (Y)

10.394
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The second component, Frain (t), of F (t) in Eq. 2 describes
the changes in WTcaused by infiltration of the rain water into
the soil profile recharging the groundwater, and has the form

Frain tð Þ ¼ α2 1−α3 � PET tð Þ½ � � RF tð Þ; ð4Þ
where the parameter α2 characterizes both effective per-
meability of the soil for the rainfall water to infiltrate and
the ability of the soil to store and redistribute the rainfall
water. In our case (Eq. 4) it raises the WT in the soil
profile based on soil drainable porosity, defined as the
pore volume of water that is removed (or added) when
the water table is lowered (or raised) in response to grav-
ity and in the absence of evaporation. The second term in
the bracket, a product of α3 and PET (t), accounts for the
overall decrease of the rainwater flux on the way from the
surface to the WT level potentially caused by the ET and
drainage processes, if any. We also assumed no change in
water table at the location due to insignificant spatial var-
iability in aerial rainfall as stated above. Also, we
employed an assumption that when WT reaches the
ground surface it does not rise further due to rain
(Fig. 3). That is, α2 = 0 when WT (t) = D , where
D = (WT0 + RD) denotes the depth of the soil measured
from the impervious layer to the ground surface. The pa-
rameter α3 accounts for the losses of rainfall water infil-
trating the soil due to the ET. In other words, it is as-
sumed that the rainfall water lost on its path from the
surface to the bottom of the soil layer is proportional to
the amount of RF and the PET, with the proportionality
coefficient equal to α3. The parameters α2 and α3 have
positive values that are to be determined from the fit to

the empirical data. The discretized form of ODE (Eq. 1)
integrated with Eqs. 2 to 4 are provided at the end as
Supporting Information. The differential equation Eq. 1
can be rewritten in the following discretized form:

WT tið Þ ¼ WT ti−1ð Þ þ F ti−1ð ÞΔt: ð5aÞ

In Eq. 5a time, ti, is dimensionless and is expressed in the
number, i, of days elapsed, that is Δt = 1. Eq. 5a can be trans-
formed into the following iterative scheme:

WT ið Þ ¼ WT i–1ð Þ þ F int ið Þ; ð5bÞ
where i runs from 1 to n, with n being the number of days
in the period of time investigated, and WT(0) is an initial
level of the WT. WT (i) denotes here the value of the WT
on the i-th day, and Fint (i) represents the total flux of
water integrated over the period of time from (i-1)-th to
i-th day. Importantly, in Eq. 5b both quantities WT (i) and
Fint (i) are expressed in the units of length. For the sake of
simplicity, in Eq. 2 the subscript Bint^ is dropped and Fint

is identified with F. It is expressed in terms of RF and
PET data that are, respectively, daily-integrated values of
rainfall and potential evapotranspiration measured in mm.
The dimensions of the coefficients α1 and α3 in Eqs. 3
and 4 are mm−1, while the coefficient α2 is dimensionless.

By performing the subsequent iterations of Eq. 5b one
obtains values of WT (i) for all days, based only on the
initial value of WT, WT(0), and the daily values of RF
(i) and PET (i). The four model parameters, α1, α2, α3,
and WT0, are determined from the fit to the empirical
data (which is measured daily water table WT in this
case) using calibration procedure for a 3-year period de-
scribed in Supporting Information below that also de-
scribes two different validation periods with additional
6.5 year data.

After determining the values of the parameters α1, α2, α3,
andWT0, the model evaluation procedure is performed. In this
process, the measured values, WTemp (i), for both the calibra-
tion period and validation periods are compared graphically
with those calculated numerically by the calibratedmodel, and
performance evaluated by using statistical criteria of average
absolute daily deviation (AADD), the coefficient of determi-
nation r2, and Nash-Sutcliffe Efficiency (NSE) parameters
calculated as follows:

AADD ¼ 1

n
∑n

i¼0 WT ið Þ−WTemp ið Þj j; ð6Þ

r2 ¼ ∑n
i¼1 WTemp ið Þ−WTmeanð Þ WT ið Þ−WTmean

cal

� �� �2
∑n

i¼1 WTemp ið Þ−WTmeanð Þ2∑n
i¼1 WT ið Þ−WTmean

cal

� �2 ð7Þ

NSE ¼ 1−
∑n

i¼1 WTemp ið Þ−WTcal ið Þð Þ2

∑n
i¼1 WTemp ið Þ−WTmean

emp

� �2 ð8Þ

Fig. 3 Schematic diagram of model parameters in a forest soil profile to
impervious layer beneath it
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Results and Discussion

Rainfall and Potential Evapotranspiration

Annual rainfall data measured at the TC rain gauge and esti-
mated Penman-Monteith (P-M) PET for a 10-year period from
January 2006 to December 2015 are presented in Fig. 4.

Annual rainfall varied from 994mm in 2006 to 2243mm in
2015 wet year with an extreme rainfall event in October, with
a 10-year average of 1381 mm. Clearly, years 2006 and 2007
in the calibration period and 2010 to 2012 in the validation-1
period were relatively drier with lower rainfall than the 10-
year average resulting in deeper WT depths. This was consis-
tent with estimated annual P-M PET which were higher in
2006 and 2007 of calibration and 2010 to 2012 of
Validation-I period compared to the 10-year average of
1133 mm. Rainfall in all three years (2013–2015) of the
Validation-II period were higher than the 10-year average
and opposite was the case with the annual P-M PET and the
water table depths as will be shown below.

Model Evaluation

Calibration

Data in Fig. 5 (a–d) compare measured and predicted daily
water depths for all fours soils (Goldsboro, Rains, Lenoir, and
Lynchburg) in response to daily rainfall for the period from
July 2006 to June 2009 calibration period with both relatively
dry and wet years. Clearly, the model predicted WT, in gener-
al, was able to capture the response of all rainfall events, much
better during the wet winter periods with increased WT levels
than for lower WT levels during growing seasons with high
PET demands on all four soil types. However, the graphical
comparisons as well as the computed model performance sta-
tistics in Table 2 revealed that the model performed much
better for the three poorly to somewhat poorly drained soils,

Rains, Lenoir, and Lynchburg (Fig. 5b–d) than for the mod-
erately well drained Goldsboro soil (Fig. 5a), results for which
yielded substantially larger values of AADD and smaller
values of the r2 and NSE than for the remaining three soils
(Table 2). Even poorer results were obtained for the validation
periods, especially for the Goldsboro soil as will be shown
below. This is likely because ofmuch larger drainable porosity
of Goldsboro with sandy soil at lower depths with only a little
response to rainfall that the model was unable to capture by its
α2 parameter (Eq. 4). We, therefore, concluded that the devel-
opedmodel in its current form is capable of capturing the daily
WT dynamics in response to rainfall and PET fairly well rath-
er for only poorly to somewhat poorly drained high WT soils
than well drained sandy soils.

This is somewhat consistent with observations made for
DRAINMOD model by Skaggs et al. (2012) who noted
that DRAINMOD developed specifically for poorly or ar-
tificially drained shallow WT lands may not work well for
naturally well drained deep WT soils, warranting a need for
other upland models for such situations. Furthermore, the
issues of accurately predicting WT at deeper depths in
shallow soil systems are not uncommon in the literature
(He et al. 2002; Diggs 2004; Lu et al. 2009; Dai et al.
2011; Ballard et al. 2011). This is likely due to the infil-
trated water possibly replenishing soil moisture in the pro-
file before making to the deep WT that all of these models
could not describe accurately.

We carried out the full model evaluation as a part of the
calibration for all the four soil types including Goldsboro.
Accordingly, the best fit model parameters (α1, α2, α3, and
WT0) for the remaining soils (Rains, Lenoir, and Lynchburg)
were also determined using the calibration procedure stated
above and listed in Table 2. Measured and predicted daily WT
depths shown in (b) - (d) plots of Fig. 5 for Rains, Lenoir, and
Lynchburg soils, respectively, for the calibration period indi-
cate that the model is capable to reproduce the observed daily
changes of WTmuch better for these soils than the Goldsboro

Fig. 4 Measured annual rainfall
and estimated Penman-Monteith
(P-M) PET for 2006–15 period

Wetlands

Author's personal copy



Fig. 5 Measured (blue solid line) and model predicted (red dotted line) daily WT depths for wells at (a) Goldsboro, (b) Rains, (c) Lenoir, and (d)
Lynchburg soils for July 2006 to June 2009 calibration period
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(Fig. 5a). The calculated statistics for the fits yielded r2 and
NSE values as high as 0.86 for Lynchburg and Rains with the
AADD within 16 cm. As per a statistical criterion introduced
by Skaggs et al. (2012), the results obtained for all types of
soils shown in Table 2, in terms of NSE, represent excellent
agreement between measured and predicted WT depths.

The fits yielded the threshold level, WT0, values in the
range from about 57 to 160 cm. The effective root depths
(RD), calculated as a difference between the depth of the soil,
D, andWT0 (Fig. 3), are also listed in Table 2. Importantly, the
model yielded reasonable thickness of the effective roots lay-
er, ranging from about 80 to 190 cm. All three parameters, α1,
α2, and α3, shown in Table 2 for Lenoir (group D) are clearly
smaller than those determined for Rains and Lynchburg soils
(group B/D and C, respectively), and for Goldsboro (group B)
(Table 1). Values of these parameters are directly proportional
to the permeability of the soil for soil water medium. For
example, α1 in Eq. 1 may represent an upward flux, ability
to transmit water vertically by tree roots for the uptake (or
transpiration from root zone), α2 may be an indicator of effec-
tive permeability of the soil for the rainfall water to infiltrate
and raise the WT depending on soil drainable porosity.
Finally, α3 may also represent loss of water vertically either
due to ET and/or vertical drainage downwards. Since an im-
pervious restrictive layer is assumed, loss of downward seep-
age to deep aquifer is negligible. Thus, the fact that the α1, α2,
and α3 appropriately reflect the differences in the rates of
water transmission by various pathways is physically remark-
able. Notably, the well-drained (Goldsboro) with deeper WT
depths (Fig. 5a) and the very poorly drained (Lenoir) soil with
shallower WT depths (Fig. 5c) are characterized, respectively,
by the thickest (190 cm) and the thinnest (80 cm) effective
roots layer. However, a large RD value for the poorly drained
Rains soil could not be explained. This is consistent with Dai
et al. (2010a) who found decreasing WT depths with an in-
crease in plant rooting depth, similar to the pattern reported by
Skaggs et al. (1991) in their simulation study using
DRAINMOD model for an Atlantic Coastal watershed in
North Carolina. Other literature also shows that the rooting
depths in upland well drained soils are generally deeper than

on the poorly drained soils where the tree roots have easy
access to water (Amatya and Skaggs 2001). These results
combined with the relatively high values of r2 and NSE
(Table 2) demonstrate that the proposed model is self-
consistent with an ability to capture processes by the calibrat-
ed parameters, and is suitable for reproducing daily changes of
WTon poorly drained shallowWTsoils just based upon daily
rainfall and PET as the key input variables.

Validation The graphical comparison between the measured
and predicted daily WT depths for all four soil types for two
separate validation periods (i) July 2009 – December 2012
(42 months), and (ii) January 2013 – December 2015
(36 months) as described earlier and characterized by different
soil moisture regimes as a result of rainfall and PET (Fig. 4)
are presented in Figs. 6(a–d) and 7(a–d), respectively. These
plots for four soils in each of the validation periods show that
the predictions of the model generally follow the measure-
ments without large differences especially for WT responses
to rainfall for shallowWTconditions than for the periods with
deeper WT, including the growing seasons with high ET de-
mands. In particular, Fig. 7(a) to (d) for the Validation-II show
that the model was able to capture the ponding periods includ-
ing for the October 3–4, 2015 extreme event quite well, with
the model yielding WT =D (Fig. 3).

Some discrepancies with higher prolonged ponded mea-
sured water tables compared to the predicted, particularly in
spring-summer of 2012 and 2014 in Rains soil, may also be
attributed to prescribed burning the area underwent potentially
reducing ET and increasing WT level. However, the model
substantially overpredicted WT depths for all soils during
drawdown of the summer-fall of both 2011 and 2012 of the
Validation-I period (Fig. 6a–d) and summer-fall of 2013 of
Validation-II, except for the Rains soil (Fig. 7a–d). For the
same two periods in Goldsboro soil, the model also exhibited
some discrepancies compared to measured data yielding rapid
response of the WT level to rainfall events, a characteristic of
drained soils (Skaggs et al. 2012). This observation is indica-
tive of the fact that the model does not perform better for
poorly drained soils with large drainable porosity, where such

Table 2 Fitted model parameters for four different soils along with the obtained effective roots depths and the corresponding values of r2, NSE, and
AADD for July 2006–June 2009 calibration period

Soil Type Depth to Imp
Layer cm

Fitted Model Parameters Effective Root
Depth cm

r2 NSE AADD cm

α1 × 10
−3 mm−1 α2 × 10

−1 α3 × 10
−2 mm−1 WT0 cm

Goldsboro 246.8 13.2 9.84 13.2 57.3 189.5 0.80 0.77 34.0

Rains 305.0 4.41 7.53 4.00 133.0 172.0 0.87 0.85 16.7

Lenoir 240.0 2.88 5.67 3.60 159.6 80.4 0.81 0.81 10.8

Lynchburg 234.6 5.50 8.61 4.84 134.3 100.3 0.87 0.87 14.0

The soil depth from the surface to the impervious layer is given in the second column
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abrupt rising and falling of the WT due to rainfall and ET/
drainage, respectively, occur rarely. As stated in DRAINMOD
(He et al. 2002; Skaggs et al. 2012) one way to address above
situation is to calibrate soil drainable porosity for various WT
depths. Perhaps because of those issues, the calculated aver-
age absolute daily deviation (AADD) between predicted and
measuredWT depths values, excluding those for well-drained
Goldsboro soil, ranged from 11 to 16 cm for the calibration
period, 30 to 40 cm for Validation-I, and 14 to 37 cm in
Validation-II periods (Table 3).

It was clear that these errors were larger during the relative-
ly dry Validation period-I with deeperWT depths compared to
those for the wetter Validation period-II, consistent with ear-
lier suggestion that the developed model performs poorer for
conditions with deeper WT depths. This is further supported
by the r2 and NSE values shown for all soil types for all
validation periods in Table 3, in which both the r2 and NSE
were lower for all soil types for Validation-I than those for the
Validation-II period. The AADD values obtained here even
for the Validation-II with wet conditions are indeed larger than
those found by Dai et al. (2011) for two nearby watersheds
(WS 77 andWS 80). The calculated r2 coefficients were found
to be in the range from 0.55 to 0.87 and the NSE values ranged
from 0.26 to 0.73 for the validation periods. Based on these
graphical and statistical results for both the 3-year calibration
and a full 6.5-year validation period in Table 3 the perfor-
mance of the four-parameter model driven by just daily rain-
fall and PETwas deemed satisfactory at least for shallow WT
conditions, providing validity of the model developed.

Our NSE values ranging from 0.77 to 0.86 obtained using
the relatively much simpler model (Tables 2 and 3) for four
different soils for the daily calibration period (Table 2) are
similar to or even slightly better than the values of 0.50 to
0.90 obtained by Dai et al. (2010a) for a one-year (2003)
calibration period for a nearby forested wetland watershed
(WS 80) using more complex process-based model
MIKESHE. However, our model performed somewhat poorly
for both of the validation periods yielding NSE values 0.29 to
0.57 for Validation-I and 0.37 to 0.53 for Validation-II com-
pared to 0.66 to 0.80 obtained by Dai et al. (2010a) for daily
validation period of 2004–2008. Similarly, our NSE values
were somewhat poorer than the values of 0.85 and 0.80 for
watershed WS 77 and WS 80 for 1992–1994 and 0.53 and
0.79 for 2005 to 2007 period reported by Dai et al. (2011) in
their another companion study also using MIKESHE model.
Interestingly, in their model comparison study for the same
watershed (WS 80), Dai et al. (2010b) reported a better per-
formance by the complex MIKESHE model than relatively
less parameter-intensive DRAINMOD (Skaggs 1978) in

which DRAINMOD yielded NSE values of −0.60 and 0.32
for daily WTat two well locations for 2003 to 2007 validation
period. A negative value of NSE for DRAINMOD applied
with a limited calibration indicates that using a measured
mean value is better than using the model predictions.
Similarly, our model performance statistics are similar or even
better than the results of NSE varying between −0.87 to 0.77
for the calibration and − 1.23 to 0.63 for the validation period
reported by Lu et al. (2009) using process based MIKESHE
model for nine ground water wells in a Florida wetland site.
Thus, we believe most of our predictions of daily WT are in
acceptable range, except for the well-drained Goldsboro soil,
based on the criteria of the AADD value within 20 cm and
NSE values >0.40 reported by Skaggs et al. (2012) for
DRAINMOD model. This result leads us to the conclusion
that the developed model in its current form is capable of
capturing the daily WT dynamics fairly well rather for only
poorly to somewhat poorly drained soils than well drained
soils.

Two-Step Sensitivity Analysis

A sensitivity analysis of the model parameters was carried out
for the Lynchburg soil for the three-year (2006–2009) calibra-
tion period. Sensitivity analysis provides insights into which
parameters (or processes) are most influential on certain mod-
el outputs (Pappenberger et al. 2008). Thus it is a useful guid-
ance for model calibration and validation, and can be used for
refining and improving model structure to reduce model com-
plexity (Sieber and Uhlenbrook 2005).

As a part of the overall sensitivity analysis we first exam-
ined the impact of changes in the daily model outputs (water
table in this case) due to change in the model parameters on
the calculated NSE statistics as the performance measure of
the overall model (Eq. 8). This procedure was similar to the
one used above to evaluate the model. The only difference
was that in this approach the value of the parameter/input data
of interest was modified one at a time while values of the other
remaining parameters and input data were unchanged. We
believe it is a novel approach as it can identify the ranges of
parameters or variables, when used in the model can yield; the
negative NSE values mean using a meanmeasured water table
data is a better predictor than using the model predictions with
such input parameter or variable.

In this approach, the parameter value was modified by
multiplying it by a numerical factor f that was varied from
0.3 to 1.7 to reflect the respective changes from 30 to 170%
of its original value. Similarly, daily values of each of the PET
and RF data were multiplied by this factor. Accordingly, the
response of change in each parameter, as reflected in the f
factor, to the corresponding calculated NSE statistics is pre-
sented in Fig. 8 for all model parameters and input data. The
results show that the model is most sensitive to the changes in

�Fig. 6 Measured (blue solid line) and predicted (red dotted line) daily
WT depths for wells at (a) Goldsboro, (b) Rains, (c) Lenoir, and (d)
Lynchburg soils for the 1st validation period (July 2009 – December
2012)
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the rainfall data and parameter α2 followed by the PET, and is
least sensitive to the parameter α3. It is also noted that NSE

exhibits identical dependence on the changes in RF and in α2.
The fact that RF data and α2 have the same effect on NSE is a

Fig. 7 Measured (blue solid line) and predicted (red dotted line) daily WT depths for wells at (a) Goldsboro, (b) Rains, (c) Lenoir, and (d) Lynchburg
soils for 2nd validation period (January 2013 – December 2015). Some WT data for Rains soil (B) is missing

Wetlands

Author's personal copy



specific feature of the model developed, and follows directly
from the form of Eq. 4 defining the component Frain of the
generic function F. RF data and α2 enter the model only
through the Frain component that is symmetric with respect
to RF and α2. Thus, keeping RF constant and changing α2

has identical effect on NSE as keeping α2 constant and chang-
ing RF. The input parameter α2 kind of reflects the infiltration
rate, a form of soil-water permeability affectingWT via lateral
drainage or seepage, and also drainable porosity. This linear
interaction between rainfall, soil infiltration, andWT response
after soil water redistribution may have been oversimplified in
this model as this is a nonlinear complex process (Skaggs et al.
2012; DHI 2005).

The other significant input variable is PET followed by α1,
the input parameter, potentially describing as the upward flux,
as vertical hydraulic conductivity. Apparently, the WT0 input
parameter, partially reflecting the depth from bottom of the
effective root zone to the impervious layer was least sensitive,
withα3 input parameter potentially defining the loss due to ET
and/or lateral drainage driven by soil saturated conductivity

literally insensitive. The fact thatα3 parameter is insensitive to
the model may be one of the potential weaknesses in this new
model of not being able to properly capture WT drawdowns,
as the loss by lateral drainage during high WT and or ET
during summer growing season can be large enough. Future
research with this model should possibly consider an additional
component reflecting lateral drainage in function F (Eq. 2) to
better capture drawdown and change in WT due to ET (Eq. 3)
or rainfall (Eq. 4) also as a function of drainable porosity (e.g.
specific yield, Sy), a measurable soil parameter. For example,
soils with a larger Sy value like Goldsboro soil responds slowly
to rainfall and ET and vice versa. Our findings of model
sensitivity of α1 parameter as transpiration loss from root
zone is consistent with Dai et al. (2010a) who noted that the
rooting depth was influential on predicting WT depth but did
not directly affect streamflow in the nearby watershed.

One novel part of using the NSE as an indicator of the
sensitivity of the model output due to the changes in model
inputs and variables can be illustrated using the blown up plot
inside the Fig. 8. The smaller blown up plot shows the NSE
values staying within 0.74 to 0.86 for the change in ranges of
model parameters and input variables from about −10% (0.90)
to +10% (1.10) from the baseline of 100% or unity, indicating
still a good performance of the model (Amatya and Skaggs
2001; Lu et al. 2009; Dai et al. 2010a, b; Skaggs et al. 2012)
even if the parameters or variables were set between −10 to
10% of the baseline value for this Lynchburg soil. The steeper
decline in NSE can be seen by decreasing than increasing the
initial value of WT0, which makes sense as the model did not
seem to do well for deeper water table conditions. Similarly,
the model yielded even negative NSE value when either RF or
α2 were reduced by 25% or more, again indicating the model
performance completely deteriorates for drier low rainfall con-
ditions as seen from the results. However, by increasing the
values up to about 25%, the NSE values were still positive.

To characterize the sensitivity of the model output to the
input parameters as the 2nd step, we investigated deviations of
the mean daily WT levels from the baseline scenario that were
caused by one-at- a time variation of the each of the four fitted
input parameters:α1,α2,α3, andWT0, and the input data RF (t)

Table 3 Values of the coefficients
r2, NSE, and AADD obtained for
two separate and one combined
model validation and procedures
for wells on four different poorly
drained soils

Soil Type Validation Period

July 2009 – December 2012 January 2013 – December 2015 July 2009 – December 2015

r2 NSE AADD cm r2 NSE AADD cm r2 NSE AADD cm

Goldsboro 0.78 0.59 38.9 0.55 0.25 45.1 0.74 0.50 43.7

Rains 0.62 0.46 34.9 0.87 0.73 18.4 0.66 0.53 28.7

Lenoir 0.55 0.29 30.4 0.83 0.64 13.4 0.65 0.44 23.3

Lynchburg 0.66 0.35 39.9 0.69 0.35 36.8 0.70 0.37 39.7

Fig. 8 Sensitivity analysis performed for Lynchburg soil. NSE as a
function of the factor f for the parameters α1, α2, α3, and WT0, and the
input data RF and PET. Dependence of NSE on f is identical for RF and
the parameter α2 (see the text for details). Inset: Behavior of the functions
NSE ( f ) in the region f = 1, close to the nominal values of the model
parameters and the input data
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and PET(t). The analysis was performed for the 2006–2009
period. The changes in the mean daily WT were quantified by
the percentage relative WT difference,|WTvar (i) – WTbase (i)/
WTbase (i)| × 100%, averaged over the analyzed period of time.
Here WTvar andWTbase denote WT levels calculated for altered
and fitted/original (base) values of the model parameters/input
data. The results are summarized in Table 4.

Our results of sensitivities of rain, PET, and α1 parameters
to dailyWTare also consistent with similar findings by Kim et
al. (2012) for DRAINMOD model for poorly drained soils
(Skaggs et al. 2012; Skaggs 1978).

We believe, our complete model validation using almost
10-years of data with observed climatic regimes from wet,
normal, and dry years relative to long-term average rainfall
(Fig. 4) addresses uncertainty due to climate variability, as
suggested by Amatya and Skaggs (2001). Yapo et al. (1996)
concluded that approximately 8 years of data are required to
obtain calibrations that are relatively insensitive to the period
selected. Although we believe the model is capable of simu-
lating daily WT dynamics on poorly drained high WT soils,
some of the large prediction errors even for poorly drained
soils during the validation periods (Table 2; Figs. 6 and 7)
were attributed to both modeling (suggested above) and mea-
surement errors. For example, because the WT response was
most sensitive to the rainfall, use of data from a single rain
gauge may have partially affected our results of WT predic-
tions, at least for the wells at Rains and Lynchburg soils which
are farther away from the rain gauge than the wells at Lenoir
and Goldsboro. Secondly, the use of P-M based grass-
reference PET found to be yielding slightly lower PET than
that for the forest reference (Amatya and Harrison 2016) may
have alsomade some influence although theWTresponse was
shown to be less sensitive to PET than the rainfall. The depth
to the impervious layer parameter (WT0) was also not actually
measured but assumed the same for all four well locations and
may introduce some errors in WT0 parameter. Furthermore,
some prediction errors may be due to the potential effects of

management practices like frequent prescribed burning that
may raise the waters tables that the model cannot consider.

Summary and Conclusions

In this study a numerical model governed by deterministic
ordinary differential equations (ODE) for simulating daily
WT depths on poorly drained high WT coastal soils was
developed and validated. It is solved numerically based
on an initial value of WT and daily values of rainfall
(RF) and potential evapotranspiration (PET) as the input
data. The numerical algorithm involves performing itera-
tive steps to calculate daily values of the WT level in a
given period of time until the sum of squared errors be-
tween the predicted and measured value is minimized.
There are only four model parameters to be determined
by fitting in the calibration procedure. Three of these pa-
rameters are mostly related to soil permeability (lateral
conductivity, upward flux, and vertical seepage of the in-
vestigated soils) and the fourth parameter describes effec-
tive thickness of the roots layer. Based on relatively poor
results of evaluation statistics it was concluded that the
developed model in its current form is not capable of
capturing the daily WT dynamics on well drained soils
like Goldsboro in this study or deep WT conditions.

The 3-year model calibration performed on WT depths for
three poorly drained soils yielded very reasonable fits to the
empirical data as shown by the values of r2 ranging from 0.81
to 0.89, the corresponding NSE values from 0.81 to 0.87, and
the AADD values from 11 to 17 cm. Importantly, the calibra-
tion also yielded reasonable values of the effective rooting
depths for three out of four soils. However, the model valida-
tion for one relatively drier and another relatively wetter peri-
od spanning 72 months altogether performed somewhat
poorer than the calibration period using the AADD statistic
which was as high as 40 cm for Lynchburg soil (particularly
during the relatively dry period), yet AADD was less than
18 cm for two soils (Rains and Lenoir) for the wetter second
validation period. The results suggest that the current model is
capable of predicting daily changes of WT level satisfactorily
for poorly-drained, high WT soils as indicated from r2 and
NSE values varying from 0.62 to 0.87 and 0.29 to 0.73, re-
spectively. These computed statistics were slightly better or
worse than the published data for similar other studies using
more complex process-based models. Additional multi-
site and multi-year validation of the model is strongly
recommended for building more confidence in this new
simple daily WT prediction model, which may find appli-
cations in wetland hydrology assessment due to land use
and climate change/variability, wetland restoration, septic
design systems, and other ecohydrologic studies on poor-
ly-drained, high WT soils.

Table 4 Mean percentage relative WT change due to variations in the
model parameters and input data calculated for the Lynchburg soil for the
period 2006–2009

Parameter/Input Data Mean Percentage Relative WT Change

Percentage of the Fitted/Original values
of the Parameter/Input Data

70 90 110 130

α1 23.1 7.7 7.4 21.4

α2, RF 28.6 8.2 6.0 13.6

α3 2.7 0.9 0.9 2.6

WT0 22.9 5.6 3.7 9.6

PET 25.2 8.6 8.4 23.7
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