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Abstract: Background: Analysis of volatile metabolites derived from the human breath or biofluids 

provides noninvasive means of detecting and monitoring diseases that occur throughout the body. Dis-

eases arise from different mechanisms that cause alterations in normal physiological processes. 

Mechanisms of disease (pathogenesis) result in the production of unique mixtures of abnormal volatile 

organic compounds (VOCs), referred to as disease biomarker metabolites when associated with spe-

cific diseases. Regardless of where disease biomarkers originate in the body, they are picked up by the 

circulatory system and eventually expelled out through the lungs. Analysis of complex mixtures of 

disease biomarkers provides effective diagnostic clues for detecting the presence of specific disease 

processes occurring in the body.  

Methods: Recent progress in the development of electronic-nose (e-nose) applications and technolo-

gies for clinical examinations and human disease diagnoses are reviewed. 

Results: Metabolomics has been useful in identifying biomarkers and mechanisms of disease, but is 

often time-consuming and not easily applied to disease diagnosis. E-nose devices are relatively new 

gas-sensing technologies that are small, simple, portable and particularly useful for noninvasive early 

disease detection. Some major advantages of using e-noses for disease diagnoses are that they provide 

quicker, more efficient diagnostic results and cause less stress, anxiety, and no pain to patients. 

Conclusion: Recent advancements in the use of e-nose devices to detect complex mixtures of disease 

biomarkers are providing the great potential for these instruments to facilitate and accelerate point-of-

care clinical disease diagnoses. 

Keywords: Aroma signature patterns, breathprints, disease biomarkers, electronic aroma detection, e-nose, metabolomics. 

1. INTRODUCTION 

 The use of noninvasive methods for disease detection 
increasingly is becoming the new trend and goal of many 
progressive diagnostic laboratories and clinics worldwide. 
Some keys reasons for this significant shift in diagnostic 
approaches are that most current conventional chemical 
analysis technologies, still widely used for clinical diagnos-
tics, are very expensive, time-consuming, highly sophisti-
cated (requiring highly-trained laboratory scientists), and 
often result in delays in diagnoses and treatments for dis-
eases [1-4]. Other important reasons for shifts toward nonin-
vasive methods include the need to move away from clinical 
procedures that are painful to patients or cause anxiety that 
preclude their participation in early prophylactic disease 
screenings. 

*Address correspondence to this author at the USDA Forest Service, South-
ern Hardwoods Laboratory, P.O. Box 227, Stoneville, MS, USA, 38703-

0227; Tel: +1-662-686-3180; Fax: +1-662-686-3195;  
E-mail: dwilson02@fs.fed.us 

 The detection and identification of disease biomarker 
metabolites recently have become a popular way of studying 
and diagnosing diseases because this approach allows for a 
logical chemical connection and explanation for the effects 
of disease mechanisms in altering normal biochemical cellu-
lar process and metabolic pathways in the body. These proc-
esses often result in the appearance of abnormal profiles 
(types and quantities of cellular metabolites) in diseased pa-
tients. Use of the metabolomics-approach to early disease 
detection, involving quantification of the increases or de-
creases in types and amounts of cellular metabolites, has 
been quite useful in identifying many potential biomarkers of 
disease and determining which metabolic pathways are asso-
ciated with changes in the production of volatile organic 
metabolites (VOMs) and non-volatile organic metabolites 
(NVOMs) due to the presence of disease [5]. Similar ap-
proaches of early disease diagnoses, using disease finger-
printing, are being developed and applied to the human im-
mune system in order to decode DNA sequences in immune 
cells that code for specific immunoglobulin proteins (they 
produce) which are conformational matches to antigenic sites 
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on specific types of microbial pathogens that cause certain 
diseases [6]. The main advantages of early disease detection 
using these approaches are obtaining  precise knowledge of 
whether infection has already occurred (well in advance of 
symptom development), the type of invading microbe, the 
specific strain of microbial pathogen involved, and early 
indications of the most likely effective treatments if avail-
able.  

 Applications of electronic-nose (e-nose) devices for 
clinical disease diagnoses continue to be developed with 
increasing impetus as growing evidence indicates that dis-
ease biomarkers are more optimally detected and recognized 
in aggregation, within complex gaseous mixtures, using e-
nose sensor arrays, pattern-recognition algorithms and statis-
tical discrimination procedures [7]. Rather than relying on 
complex chemical analysis methods to identify individual 
disease biomarker metabolites in human samples, e-nose 
instruments may be used to determine disease states by rec-
ognizing and distinguishing aggregate patterns of specific 
mixtures of volatile organic compounds (VOCs) released 
into the headspace from diagnostic samples. Considerable 
evidence has shown that single-biomarker approaches to 
identifying disease are, in most cases, oversimplified and 
ineffective in providing reliable diagnoses with the exception 
of certain single-metabolite associated genetic (metabolic) 
disorders [8]. Similar difficulties in achieving unequivocal 
diagnoses from metabolomics-type approaches alone, have 
demonstrated the need for simpler, more effective methods 
that can be readily used by physicians and clinical laboratory 
technicians to provide rapid, reliable results for real-time 
diagnostic point-of-care testing (POCT). 

 This review provides a thorough comparison of me-
tabolomic versus electronic-nose technologies for their utili-
ties, strengths and weaknesses in providing useful informa-
tion for clinical diagnoses; and a summary of international 
research showing current progress in the development of 
electronic-nose diagnostic methods for clinical practice. 

2. EARLY DISEASE DETECTION 

 Early detection of disease always is of paramount impor-
tance in disease diagnostics because it allows for earlier and 
more effective treatments with greatly improved prognoses 
for patient recovery [1, 8, 9]. This is particularly true in the 
case of systemic infections (sepsis) by morbific pathogens 
where a swift diagnosis can mean the difference between life 
or death for critically ill patients [10]. In these cases, the 
identification of specific strains of a microbial pathogen is 
critical for application of the appropriate antimicrobial ther-
apy to check and kill the invading microbe. 

 Other instances where rapid diagnoses are essential occur 
when a serious disease has progressed to advanced stages, 
requiring an effective treatment to be applied immediately if 
there is to be any chances for successful patient recovery. In 
this case, there is no time for a delayed diagnosis through 
conventional methods involving the slow culturing and iden-
tification of microbial pathogens, or complicated and time-
consuming chemical-analysis approaches requiring extensive 
sample preparation and highly-trained laboratory personnel. 
Instead, a real-time rapid and reliable diagnostic approach is 

essential for allowing the application of immediate curative 
treatments [8, 11, 12]. 

3. DISEASE BIOMARKERS 

  Analysis of specific combinations of VOCs present in 
complex gaseous mixtures of exhaled breath and in the head-
space of human biofluid samples, including blood 
(plasma/serum), saliva, semen, sputum, and urine, provides a 
snapshot view of the overall physiological state of the body 
at the moment the samples were collected [1, 11]. A smaller 
subset of key volatiles, the unique biomarker metabolites 
present in the human breath and biofluids, potentially pro-
vide even more information about the healthful or pathologi-
cal state of the body by virtue of their sources, whether de-
rived from normal physiological pathways or from altered, 
abnormal pathways associated with disease processes. Con-
sequently, volatile biomarkers can provide very effective 
clues about specific physiological processes, either benign or 
adverse, that exist in specific organs or compartments of the 
body [1, 8, 12]. Metabolomics have been used to study a 
wide range of diseases and identify numerous biomarker 
metabolites associated with specific diseases, including both 
infectious and noninfectious types [2, 5, 10, 11]. This ap-
proach has provided greater understanding of normal cellular 
metabolic pathways and new important clues of the mecha-
nisms by which normal physiological pathways in healthy 
individuals are affected by disease processes to generate ab-
errant volatile biomarkers of disease in ill patients. 

 Metabolic fingerprinting of many major diseases through 
the identification of key biomarker metabolites, produced as 
a consequence of disease-process effects on cellular meta-
bolic pathways, has generated a wealth of information to 
characterize the chemical changes associated with various 
types of infectious diseases. Most microbial pathogens, as 
causal agents of disease, depend on the host’s genetic ma-
chinery and metabolic pathways in order to replicate and 
multiply by utilizing host metabolites (from cellular path-
ways) as sources of energy and building materials for both 
anabolic and catabolic activities. Some examples of the 
many types of VOMs, produced by disease processes, which 
have been identified as significant biomarkers for the detec-
tion of different categories of specific infectious diseases are 
summarized in Table 1. The types and chemical classes of 
important volatile disease biomarkers, identified through 
metabolomics, have provided significant insights into the 
specific metabolic pathways affected by the unique disease 
processes caused by different categories of microbial patho-
gens. Differences in the types of VOMs produced by differ-
ent microbial types indicate differences in the mechanisms of 
disease used to exploit cellular processes. Viruses usually 
take over the genetic-replication processes of host cells for 
virion replication, whereas pathogenic bacteria, fungi, and 
protozoa produce enzymes, toxins, polysaccharides, and 
other pathogenic determinants to initiate disease processes 
that target and affect different types of cellular pathways.  

 Some of the main metabolic pathways affected by micro-
bial pathogens include amino acid, fatty acid, lipid, nucleo-
side, glucose, phospholipid, steroid, and hormone metabo-
lism as well as glycolysis and tricarboxylic acid (TCA) cy-
cles [5]. Alterations in these metabolic cycles, caused by 
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Table 1. Volatile organic metabolites (VOMs) identified as significant biomarkers for detection of specific infectious diseases. 

Disease Type Disease Name Pathogen N= Method Model Sample  VOMs 
Most Significant Biomarkers 

(Chemical Class Abbrev.) 
Refs. 

Bacterial Gastritis, ulcer H. pylori 20 H-NMR Gerbils Urine 8 

cis-aconitate (tca) 

Indoxyl sulfate (aad) 

Proline (aa) 

Hippurate (bcad) 

[13] 

 Tuberculosis 
M. tubercu-

losis 
95 GC-MS Human Sputum 22 

D-glucosamine (as) 

N-acetylglucosamine (as) 

D-glucupyranose (ms) 

D-glucupyranoside (gsd) 

2-deoxy-D-erythro-pentitol (sa) 

D-galactose-6-deoxy (ms) 

[14] 

  
M. tubercu-

losis 
136 UPLC-MS Human Serum 20 

Inosine (ns) 

Hypoxanthine (pud) 

Glycylalanine (aad) 

5-oxoproline (aad) 

[15] 

  
M. tubercu-

losis 
20 GC-MS Human Serum 9 5-oxoproline (aad) [16] 

 Salmonellosis 
S. typhi-

murium 
20 GC-MS Mice Gut 5 

Lactose (ds) 

Melibiose (ds) 

Raffinose (ts) 

Fucose (ms) 

Galactinol (sa) 

[17] 

 
Staphylococco-

sis 
S. aureus 30 H-NMR Mice Urine 4 

1-methylnicotinamide (vba) 

3-methyl-2-oxyvalerate (cad) 

2-oxoisocaproate (cad) 

n-isovaleroylglycine (aad) 

[18] 

  S. aureus 17 H-NMR Mice Serum 5 

Acetone (ket) 

3-hydroxybutyrate (bhca) 

2-hydroxybutyrate (bhca) 

Creatine (cad) 

Isobutyrate (ca) 

[19] 

 Streptococcosis 
S. pneumo-

niae 
30 H-NMR Mice Urine 5 

Ethanolamine (pad) 

Fucose (ms) 

Creatine (cad) 

Taurine (aad) 

[18] 

  
S. pneumo-

niae 
17 H-NMR Mice Serum 6 

Hippurate (bcad) 

Glucose (ms) 

Pyruvate (ca) 

2-oxoglutarate (dca) 

Citrate (tca) 

Fumarate (dca) 

[19] 

(Table 1) Contd... 
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Disease Type Disease Name Pathogen N= Method Model Sample  VOMs 
Most Significant Biomarkers 

(Chemical Class Abbrev.) 
Refs. 

  
S. pneumo-

niae 
86 H-NMR Human Urine 27 

Carnitine (aad) 

Acetylcarnitine (aad) 

myo-Inositol (sa) 

3-hydroxybutyrate (bhca) 

Taurine (aad) 

[20] 

Fungal Aspergillosis A. fumigatus 46 GC-MS Human Breath 1 2-pentylfuran (fd) [21] 

Protozoa Cerebral malaria P. berghei 86 
H-NMR, 

P-MRS 
Mice Brain 5 Glutamine (aa) [22] 

  P. berghei 4 H-NMR Mice Plasma 5 
Lactate (ca) 

Pyruvate (ca) 
[23] 

  P. berghei 4 H-NMR Mice Urine 4 

Pipecolic acid (had) 

Phenylacetylglycine (aad) 

Dimethylamine (sda) 

[23] 

 Malaria 
P. falcipa-

rum 
3 LC-MS Cell 

Erythro-

cyte 
9 

�-ketoglutarate (cad) 

5-methylthioadenosine (ns) 
[24] 

  P. vivax 54 H-NMR Human Urine 2 
Pipecolic acid (had) 

Ornithine (aa) 
[25] 

 Trypanosomiasis T. brucei 25 H-NMR Mice Urine 7 

4-hydroxyphenylacetate (bcad) 

4-hydroxyphenylpyruvate (bcad) 

Phenylpyruvate (bcad) 

[26] 

  T. brucei 24 H-NMR Mice Urine 10 

3-carboxy-2-methyl-3-oxo-   

propanamine (pad) 

Tryptophan (aa) 

3-methyl-2-oxovalerate (cad) 

D-3-hydroxybutyrate (bhca) 

4-hydroxyphenylacetate (bcad) 

[27] 

Schistosome Schistosomiasis 
S. japoni-

cum 
60 H-NMR Human 

Urine, 

plasma 
9 3-ureidopropionate (aad) [28] 

  S. mansoni 52 UPLC-MS Human Urine 1 Phenylacetylglycine (aad) [29] 

  S. mansoni 20 CE Human Urine 20 

Phenylacetylglycine (aad) 

2-hydroxyphenylacetate (aad) 

4-hydroxyphenylacetate (aad) 

Phenylalanine (aad) 

[30] 

  S. mansoni 20 H-NMR Human Urine 22 

p-cresol glucuronide (bcd) 

Phenylacetylglycine (aad) 

Hippurate (bcad) 

2-oxoadipate (dca) 

[31] 

  S. mansoni 20 
H-NMR, 

CPMG 
Human Plasma 2 

D-3-hydroxybutyrate (bhca) 

Glycerophosphorylcholine (pcd) 
[31] 

  S. mansoni 20 H-NMR Human Fecal 1 5-aminovalerate (cad) [31] 

(Table 1) Contd… 
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Disease Type Disease Name Pathogen N= Method Model Sample  VOMs 
Most Significant Biomarkers 

(Chemical Class Abbrev.) 
Refs. 

Viral Hepatitis B CHBV 28 H-NMR Human Serum 6 

Glucose (ms) 

Alanine (aa) 

Valine (aa) 

Glutamine (aa) 

[32] 

  CHBV 24 UPLC-MS Human Urine 4 

Biotin sulfone (vbd) 

5-oxy-heneicosanoic acid (fad) 

Glucosaminide (asd) 

2-methylhippuric acid (bcad) 

[33] 

 Hepatitis C HCV 14 UPLC-MS 
Tree 

shrew 
Serum 7 

Arachidonic acid (ofa) 

Taurocholic acid (chod) 

2-octenoylcarnitine (aad) 

[34] 

 
Cytomegalic 

Disease 
HCMV 23 H-NMR Human Urine 5 

3-hydroxybutyrate (bhca) 

3-aminoisobutyrate (aad) 
[35] 

 Hepatitis E HEV 44 H-NMR Human Plasma 4 

Isoleucine (aa) 

Glycerol (sa) 

Acetone (ket) 

[36] 

  HEV 34 H-NMR Human Urine 7 

1-methylnicotinamide (vbd) 

1-methylhistidine (aad) 

3-aminoisobutanoic acid (cad) 

Biopterin (pd) 

Adenosine (pn) 

Imidazole (dad) 

Salicyluric acid (bad) 

[36] 

 Simian AIDS SIV 8 LC-MS Monkey CS-fluid 4 
Carnitine (aa) 

Acylcarnitine (aad) 
[37] 

Chemical class abbreviations of biomarker VOMs: aa = amino acid; aad = amino acid deriv.; al = alcohol; as = amino sugar; asd = amino sugar deriv.; bad = benzoic acid deriv.; bcad 
= benzene carboxylic acid deriv.; bcd = benzene cresol deriv.; bd = benzene deriv.; bhca = beta-hydroxy carboxylic acid; cad = carboxylic acid deriv.; chod = cholesterol deriv.; dad = 
diazole deriv.; dca = dicarboxylic acid; ds = disaccharide; fad = fatty acid deriv.; fd = furan derivative; gsd = glycoside deriv.; had = heterocyclic amine deriv.; ket = ketone; ms = 

monosaccharide; ns = nucleoside; ofa = omega fatty acid; pad = primary amine deriv.; pca = phosphorylcholine deriv.; pd = pterin deriv.; pn = purine nucleoside; pud = purine deriv.; 
sa = sugar alcohol; sda = secondary amine; tca = tricarboxylic acid; ts = trisaccharide; vbd = vitamin B deriv. 

 

various disease processes, produce biomarker metabolites 
that are usually derivative compounds of the unique set of 
metabolite intermediates produced by each respective path-
way affected. For example, disease processes affecting 
amino acid metabolism produce amino acid derivatives spe-
cific to the particular amino acid metabolic pathway altered, 
whereas diseases affecting lipid metabolism tend to produce 
fatty acid derivatives. Diseases affecting the Kreb cycle 
pathways tend to produce various carboxylic acid (CA) de-
rivatives, (e.g. benzene-CA, beta-hydroxy-CA, mono-CA, 
di-CA, or tri-CA) or organic acids, as VOMs. Similarly, dis-
ease effects on sugar metabolism give rise to mono-, di-, and 
tri-saccharide derivatives, or more oxidized sugar alcohol 
derivatives, whereas effects on nucleoside metabolism pro-
duce primarily purine derivatives. 

 Different categories of microbial pathogens cause differ-
ent chemical effects on individual metabolic pathways often 
resulting in uniquely different types and classes of potential 
VOMs that may be identified as potential biomarkers associ-
ated with the unique diseases caused by individual patho-

gens. In other cases, the effects of disease processes by dif-
ferent types of microbial pathogens can give rise to some of 
the same biomarker metabolites, but usually in different 
VOM combinations and quantities, depending on the particu-
lar pathogen or type of disease each cause and the organ sys-
tem affected. 

4. BIOMARKER CATEGORIES 

 All biomarkers identified in association with specific 
health conditions, disease states, and physiological status 
which are affected by many measurable chemical parame-
ters, may be divided into two main types: endogenous and 
exogenous biomarkers based on the origin of individual 
VOCs detected. Endogenous VOM biomarkers are those that 
originate within the body either from normal physiological 
pathways, from modified disease-related pathways, or from 
the metabolisms of invading microbes. Exogenous biomark-
ers are VOCs that originated from sources external to the 
body and entered into the body through inhalation, ingestion, 
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absorption through the skin, or some other means. Some 
have suggested that exogenous biomarkers cannot be direct 
indicators of infectious diseases, but might serve as disease-
predisposition biomarkers [38, 39].  

 Numerous subcategories of endogenous and exogenous 
biomarkers have been identified through metabolomics and 
metabonomics that provide different types of information 
about a patient’s physiological stages and overall state of 
health. Some of these other identified categories of biomark-
ers, including predisposition, disease, pathogen and gut-flora 
biomarkers, will be examined individually in the following 
discussions relative to their significance and nature in asso-
ciation with disease detection and diagnosis. 

 Disease-predisposition biomarkers are VOCs that origi-
nate from behavioral (often habitual), genetic or environ-
mental factors or chemical exposures that can predispose 
individuals to certain types of diseases. Predisposition bio-
markers can arise in individuals that are overweight or have 
high blood pressure, smokers, alcoholics, drug users, and 
those with oxidative, mental or physical stresses. For exam-
ple, the appearance of specific biomarkers in the breath air of 
chronic smokers, particularly those suffering from epider-
moid laryngeal carcinomas (ELC), were found to be differ-
ent from breath biomarkers associated with the disease itself 
[40]. This study revealed four biomarker compounds related 
to cigarette consumption that suggested smoking is a predis-
position to ELC disease. They found four predisposition 
biomarkers related to smoking including benzene, furalde-
hyde, 4-isobutyl-1-(1-dydroxyethyl)-benzene, and 2,3,5-
trimethylhexane. Seven disease biomarkers were found in 
ELC patients who were nonsmokers in less advanced stages 
of the disease, and the most significant biomarkers identified 
were ethanol and 2-butanone. 

 Disease biomarkers are VOMs that result from alterations 
in normal metabolic pathways due to the disease process 
(pathogenesis). Some scientists include among disease bio-
markers those metabolites produced and released directly by 
microbial pathogens themselves that have been closely corre-
lated with the disease by etiological and metabolomic stud-
ies. Other scientists separate disease biomarkers from micro-
bial metabolites, but include only metabolites originating 
from the host which are induced by or resulting directly from 
pathogenesis. 

 Pathogen biomarkers are mostly volatile metabolic mark-
ers produced directly by the unique biochemical pathways of 
microbial pathogens, whether bacterial, viral, fungal, proto-
zoa, nematode, or schistosome origin. Many of these VOCs 
are secondary metabolites not required for normal cellular 
processes. In addition, each microbial species has a distinct, 
unique set of metabolic pathways for anabolic and catabolic 
processes that generate specific mixtures of species-specific 
VOCs that may be detected for diagnostic purposes. The 
distinct volatile biomarkers produced by six of the most 
abundant pathogenic bacteria causing human sepsis, includ-
ing Staphylococcus areus, Streptococcus pneumoniae, En-
tercoccus faecalis, Pseudomonas aeruginosa, Klebsiella 
pneumonia, and Escherichia coli were identified and evalu-
ated recently for diagnostic accuracy in critically ill patients 
[10]. Species-specific and strain-specific biomarkers often 

provide information useful for more effective treatments 
against specific pathogen subtypes. 

 Gut-microflora biomarkers are VOMs that are produced 
by new or different microbes that arise or predominate in the 
gut due to perturbations of gut microbiota communities by 
pathogens or as a result of disease. These changes in bacteria 
present in the gut result from changes in pH, nutrients, or 
other chemical factors within the gut as a consequence of 
infectious diseases, particularly diseases affecting or occur-
ring in the intestine that give rise to new types of VOCs rep-
resentative of the different metabolic pathways utilized by 
these new gut microflora. A recent study showed that 
changes in the gut environment caused by Salmonella typhi-
murium-infection favored increased growth of different gut 
microflora that produced greater quantities of certain saccha-
rides, such as melibiose and fucose moieties in the infected 
gut, which also favor growth of the pathogen in the gut dur-
ing intestinal infection [17]. 

5. FACTORS AFFECTING BIOMARKER PRESENCE 

 There are numerous factors and variables that can affect 
VOC profiles derived from analysis of volatile metabolites in 
exhaled breath or the headspace of biofluids. Factors such as 
genetic predispositions, diet, exercise, stress, immune and 
infection status, drug use, smoking, alcohol consumption, 
overall physiological and health, and many other factors may 
affect metabolic processes that generate VOMs in the body 
[41]. These factors can influence the presence and relative 
quantities of non-invasive biomarkers used in early disease 
detection. Thus, attempts to standardize the conditions under 
which VOC profiles are examined is critical to properly 
identifying true biomarkers of disease. A recent study by 
Bikov [42] examined the effect of different breath parame-
ters, such as exhalation flow and breath-hold, on levels of 
measurable gases in exhaled breath. They found that these 
exhalation parameters may significantly affect VOC levels 
(and resulting VOC profiles) from proton transfer reaction 
mass spectrometry (PTR-MS) analyses of expired air associ-
ated with lung diseases. 

 The human body produces and releases thousands of 
VOCs that have been identified from healthy human indi-
viduals and a comprehensive list was recently compiled in a 
compendium based on location and sources in the body [43]. 
The assemblage of all currently known VOCs produced by 
the body, collectively referred to as the volatome, were as-
signed CAS registry numbers and named according to a 
common convention. The components of this list were cate-
gorized based on chemical class or functionality. The results 
of this work led to some significant revelations. No ester 
VOCs were found in urine, but high numbers of esters were 
found in feces. Relatively few VOCs were found in blood 
compared to the large number of VOCs identified in the hu-
man breath. The large number of volatiles identified from 
skin was found to be related to the methodologies used for 
detection. Phillips [44] reported a list of the most prevalent 
VOCs in the breath of healthy humans. Broza [45] devised a 
new methodology for profiling body chemistry by analyzing 
the volatile fraction from various body fluids using gas 
chromatography-mass spectrometry (GC-MS) in combina-
tion with two cross-reactive e-noses, a 19-sensor organically 
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stabilized spherical gold nanoparticle (GNP) e-nose, and a 6-
sensor random networks single-walled carbon nanotube 
(RN-SWCNT) e-nose. By simultaneous VOC-detection from 
breath and skin samples, they obtained complementary, non-
correlated information of the body’s volatile metabolites 
profile. They proposed that this methodology could provide 
more accurate monitoring of pathological changes in the 
body than information derived from a single body fluid. In-
formation from these type studies have provided invaluable 
baseline information of healthy individuals that can be used 
to compare with VOCs produced by patients in various dis-
eased states in order to better understand pathological 
mechanisms and processes.  

6. METABOLOMICS OR ELECTRONIC-NOSE? 

 Some researchers have suggested that metabolomics is 
particularly useful for disease diagnosis and prognosis due to 
the high reproducibility of nuclear magnetic resonance 
(NMR)-based techniques, the utility in biomarker discovery 
and for investigating disease processes for a number of ma-
jor diseases, the relatively low expensive on a per-sample 
cost basis, and the wide range of biofluid sample types that 
may be analyzed [11]. NMR and GC-MS metabolomic ap-
proaches also allow the detection of abnormal changes in 
NVOMs due to disease conditions. However, several impor-
tant disadvantages of metabolomics methods have been iden-
tified such as the difficulty in achieving reliable diagnoses 
based on the quantification of relatively few biomarkers, the 
large variability that can arise from external stimuli (e.g. 
diet, lifestyle, physical activity, sample collection and prepa-
ration methods) not related to the disease condition, and the 
small number (<100) metabolites that can be detected with 
this approach. These problems have prompted many clinical 
diagnosticians and medical researchers with more applied 
objectives (workable POCT clinical procedures) to seek new 
methods that take into account all potential biomarkers as 
one complete disease signature or VOC profile in order to 
develop better approaches to using biomarker data in more 
reliable, timely, and effective ways.  

 Electronic-nose instruments and devices of numerous 
types and operational mechanisms have been tested for 
POCT clinical applications, including disease detection and 
diagnosis, based on the detection of complex gaseous VOC 
mixtures in sample headspace [1, 8, 12, 46]. VOCs generally 
are defined as organic compounds having molecular weights 
up to 300 Daltons and boiling points no greater than 250 °C 
at standard temperature and pressure (STP) [46]. E-nose in-
struments are ideal for profiling the VOC composition of 
complex gas mixtures because these devices identify and 
recognize aggregate patterns of VOCs present rather than 
identify individual compounds present in the sample mixture 
[7, 47]. Consequently, e-nose systems utilize and rely on 
pattern recognition algorithms and application-specific refer-
ence databases representing unique VOC patterns derived 
from the analysis of gaseous samples collected from patients 
with known diseases. The unique aroma signatures, derived 
from the aggregate outputs of sensor arrays, provide the pat-
terns characteristic of the unique VOC mixtures present in 
breath and headspace samples taken from biofluids of dis-
eased patients. Disease-specific e-nose databases of VOC 
patterns derived from samples of patients with known dis-

eases provide diagnostic reference aroma signature patterns 
to which air samples from patients with unknown diagnoses 
may be compared. 

 Some distinct disadvantages of e-nose approaches to dis-
ease detection include the inability to detect changes in 
NVOMs (a limitation of only detecting changes in VOMs), 
variable physiological factors affecting VOC metabolite pro-
files of individual patients, the possible occurrence of multi-
ple simultaneous diseases in the body, and variabilities in the 
body chemistries (composite metabolisms) of patients with 
the same disease. These variables require the use of applica-
tion-specific reference databases (ASRDs) for e-nose recog-
nition of each specific disease in order to overcome detection 
limitations. The construction of effective ASRDs (with suffi-
cient discrimination power) should involve the input of nu-
merous replication databases of healthy and diseased VOC-
signature patterns from individual patients, representing the 
full range of patient-associated variability factors, in defining 
diseased vs. healthy metabolic states.  

 The metabolomics approach to disease detection relies on 
identified changes in the types and amounts of VOCs present 
in the sample. The metabolomics process of disease detec-
tion becomes quite complicated when numerous biomarkers 
are involved, requiring complex statistical analyses and 
mathematical models to determine the significance of the 
biomarkers used in detecting disease. Theoretically, the 
greater the number of disease-specific biomarkers identified, 
the greater the probability that the disease is present. How-
ever, this determination often requires very extensive data 
analysis and interpretation to arrive at a conclusive diagno-
sis. By contrast, the e-nose takes into account all types of 
disease-associated and pathogen biomarkers present and 
produces a signature by virtue of the sensor array output that 
generates a single aroma pattern that can be compared 
against known diagnostic signature patterns in disease-
specific reference databases. Some nonspecific biomarker 
metabolites have been associated with different diseases, 
suggesting similar mechanisms of disease, although it is 
quite rare for there to be a large percentage overlap of all 
identified biomarkers for different diseases [8]. Recognized 
disease biomarkers, by definition, should be sufficiently spe-
cific and unique to particular diseases or very closely-related 
diseases. Thus, VOC signature patterns (aroma profiles), 
based on sensor array outputs in response to the complex 
mixture of all VOCs and biomarker metabolites present in 
the sample analyte, usually are sufficiently unique for e-nose 
discrimination of different diseases, particularly when using 
ASRDs.  

 Another advantage of e-nose analysis is the capability of 
taking into account differences in relative molar ratios of 
VOCs present in very complex gaseous mixtures by defining 
aroma signatures using ASRDs. For example, two separate 
complex mixtures containing exactly the same combination 
of VOCs but with different molar ratios of individual com-
ponents, will result in different e-nose signature patterns as 
defined by the multisensor array [47]. Consequently, this 
capability of e-nose instruments to account for differences in 
the relative quantities of individual VOCs present in diag-
nostic samples (as a result of disease) covers one of the key 
functions of metabolomics analyses. Of course, e-nose sen-
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sor arrays also measure differences in VOC components that 
are members of different chemical classes as determined by 
the range of sensitivity of each sensor in the sensor array. 
Individual sensors in the e-nose can be selected based on 
sensitivity to certain chemical classes and modified to target 
the range of biomarker metabolites most associated with 
particular diseases. This allows the development of applica-
tion-specific e-nose instruments, utilizing ASRDs, designed 
to detect specific diseases which reduce costs and increases 
effectiveness of diagnosis for the particular disease the e-
nose was designed to detect. 

7. E-NOSE APPLICATIONS IN DISEASE DIAGNOSES 

 Electronic-nose devices, containing multisensory arrays 
composed of cross-reactive sensors, are particularly suit-
able for recognizing specific complex mixtures of VOC 
metabolites, such as noninvasive biomarkers present in 
exhaled air or in the headspace of biofluids, because these 
instruments are designed to detect unique aroma patterns 
associated with precise VOC mixtures rather than deter-
mine the exact chemical composition of the gaseous mix-

ture [46]. E-nose devices can be designed for specific ap-
plications by careful and precise selection of sensor array 
components that are most sensitive and discriminating of 
VOCs from specific chemical classes [47]. Consequently, 
knowledge of the specific combination of biomarkers asso-
ciated with a disease, once known, can be used to configure 
the instrument to very effectively detect a particular disease 
of interest, based on discrimination of sensory responses 
from normal or healthy controls. In this way, application-
specific e-nose methods can be established to detect and 
diagnose specific diseases for which the instrument was 
specifically designed. 

 Discoveries of new potential clinical applications of elec-
tronic-nose devices have expanded dramatically since these 
instruments were first developed in the mid-1980s. E-nose 
devices have been tested for the detection of VOC patterns 
and biomarker signatures for numerous noninfectious dis-
eases of the lungs, breast, bowels, colon, ovaries, prostate, 
and upper respiratory tract including asthma, cystic fibrosis 
(CF), inflammatory arthritis (IA), obstructive sleep apnoea 
(OSA), primary ciliary dyskinesia (PCD), and various types 

Table 2. Recent testing of electronic-nose devices to detect VOC aroma signatures for noninfectious diseases. 

Disease Name Location Sample Type N= E-nose Model Sensor Type and No.
a
 Refs. 

Asthma Lung Exhaled breath 40 Bloodhound 114 CP 14 [48] 

BAD Bowel Urine 110 Fox 4000 MOS 18 [49] 

Cancer Breast Exhaled breath 22 Experimental GNP 14 [50] 

 Breast Exhaled breath 244 BreathLink GC + SAW 1 [51] 

 Colon Exhaled breath 26 Experimental GNP 14 [50] 

 Colon Fecal 157 Cyranose 320 CP 32 [52] 

 Lung Exhaled breath 30 Experimental GNP 14 [50] 

 Lung Cell lines 36 Experimental GNP 18 [53] 

 Lung Exhaled breath 30 LibraNose QMB 8 [54] 

 Lung Exhaled breath 229 Experimental CSA 24 [55] 

 Ovaries Ovarian tissue 162 TSG 2600 MOS 16 [56] 

 Prostate Exhaled breath 18 Experimental GNP 14 [50] 

 Prostate Urine 74 ChemPro 100i IMS 1 [57] 

CF Upper airway Exhaled breath 85 Cyranose 320 CP 32 [58] 

 Upper airway Exhaled breath 48 Cyranose 320 CP 32 [2] 

IA Joints Exhaled breath 60 Cyranose 320 CP 32 [59] 

OSA Upper airway Exhaled breath 60 Cyranose 320 CP 32 [60] 

 Upper airway Exhaled breath 36 Cyranose 320 CP 32 [61] 

PCD Upper airway Exhaled breath 42 Cyranose 320 CP 32 [58] 

 Upper airway Exhaled breath 48 Cyranose 320 CP 32 [2] 

aSensor type abbreviations: CSA = colorimetric sensor array; CP = conducting polymer; GC = gas chromatograph, GNP = gold nanoparticle; IMS = ion-mobility spectrometry; MOS 
= metal oxide semiconductors; QMB = quartz crystal microbalance; and SAW = surface acoustic wave. 
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of cancer (Table 2). These tests have involved analyses of 
exhaled breath, fecal, urine, tissue samples, and diseased cell 
lines as sources of VOCs for e-nose analyses. The specific 
types of e-nose technologies used for non-infectious disease 
detection have included primarily conducting polymer (CP), 
gold nanoparticle (GNP), metal oxide semiconductors 
(MOS), quartz crystal microbalance (QMB), and surface 
acoustic wave (SAW) e-nose sensor types. 

 Electronic-nose devices also have been tested for the 
detection and diagnosis of infectious diseases caused by mi-
crobial pathogens (bacterial, fungal, and protozoa), based on 
analyses of VOC patterns and unique biomarker signatures 
of headspace volatiles from blood, exhaled breath, urine, and 
microbial cultures using carbon nanofiber (CNF), CP, and 
MOS sensor arrays (Table 3). The complex VOC signatures 
derived from exhaled breath and headspace volatiles derived 
from biofluids sampled from patients with infectious disease 
contain VOMs derived from the unique metabolic pathways 
of the microbial pathogens themselves and from alterations 
in human-host cellular pathways as a consequence of spe-
cific microbial disease processes. Thus, infectious diseases 
tend to produce more complex and various types of VOMs 
(more diverse chemical classes) than non-infectious diseases 
due to the added components of VOM products from the 
unique metabolic pathways of microbial pathogens. Most 
VOC biomarker metabolites of microbes have been identi-
fied for bacterial pathogens, yet relatively few biomarkers 
have been identified for pathogenic fungi [70]. 

CONCLUSION 

 Metabolomic methods and approaches will continue to 
be utilized to help identify key metabolites as potential dis-

ease biomarkers for major diseases, including the most sig-
nificant chemical components of metabolic fingerprints, 
and for elucidating the mechanisms of disease processes. 
These are the greatest strengths of metabolic approaches 
which are most useful as basic research tools for disease 
discovery and understanding mechanisms of disease proc-
esses and their effects on normal physiological pathways 
involved in cellular processes. Nevertheless, the utility of 
metabolomic approaches for real-time diagnoses of dis-
eases in POCT clinical situations are somewhat limited due 
to the time requirement for such sophisticated chemical 
analyses to be completed and the inability of analyzing 
diagnostic samples as aggregate or whole complex VOC 
mixtures to produce composite volatile signatures or aroma 
profiles. The metabolic response of human hosts to differ-
ent pathogens and diseases often overlaps or is sufficiently 
onerous or complex to render metabolomic analysis (of 
relatively few biomarker metabolites) insufficient for diag-
noses. A much simpler and easier approach using elec-
tronic-nose devises is more appropriately designed for 
rapid analyses of complex gaseous mixtures, such as in 
exhaled breath samples to produce “breathprints” or unique 
volatile patterns, and can be used to identify specific dis-
eases and provide medical personnel with timely informa-
tion reliable for accurate diagnoses without having to send 
diagnostic samples to the laboratory for chemical and cul-
ture analysis. Great strides recently have been made in de-
veloping e-nose technologies for rapid POCT for diagnoses 
in clinical settings for numerous diseases. The many types 
of e-nose technologies will continue to be improved with 
more clinical testing and as procedures for use of these in-
struments are standardized and refined for a wide range of 
diseases and clinical applications. 

Table 3. Recent testing of electronic-nose devices to detect VOC aroma signatures for infectious diseases. 

Disease 

Type 
Disease Name Pathogen Location Sample Type N= E-nose Model 

Sensor Type 

and No.
a
 

Refs. 

Bacterial Microbial infections Various 
Upper air-

way 
Exhaled breath 192 Cyranose 320 CP 32 [62] 

 Microbial infections Various Foot Cultures 350-750 Cyranose 320 CP 32 [63] 

 Microbial infections Various Urinary Cultures 101 IMS Cell-eNose IMS 8, MOS 6 [64] 

 Salmonellosis Salmonella spp. Blood Flagellin >103 DR-ADF MOS-BS [65] 

 Tuberculosis M. tuberculosis Lung Exhaled breath 194 DiagNose MOS 12 [66] 

 
Urinary tract infec-

tions 

Escherichia coli, 

Proteus spp., 

Staphylococcus 

spp. 

Urinary Urine 25, 45 
Bloodhound 

BH114 
CP 14 [67] 

Fungal Aspergillosis Aspergillus spp. Lung Exhaled breath 46 Cyranose 320 CP 32 [68] 

Protozoa Malaria P. falciparum Blood 
Biological anti-

gen solution 
usb Experimental CNF-BS [69] 

aSensor type abbreviations: CP = conducting polymer; CNF-BS = carbon nanofiber biosensor; IMS = ion-mobility spectrometry; MOS = metal oxide semiconductors. 
bus = unspecified. 
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LIST OF ABBREVIATIONS 

ASRDs = Application-Specific Reference Databases 

BAD = Bile Acid Diarrhea 

BS = Bio Sensor 

CE = Capillary Electrophoresis 

CF = Cystic Fibrosis  

CHBV = Chronic Hepatitis B Virus 

CNF = Carbon Nanofiber 

CP = Conducting Polymer 

CPMG = Carr-Purcell-Meiboom-Gill (NMR) 

CSA = Colorimetric Sensor Array 

E-nose = Electronic Nose 

ELC = Epidermoid Laryngeal Carcinomas 

GC-MS = Gas Chromatography-Mass Spectrometry 

GNP = Gold Nanoparticle 

HCMV = Human Cytomegalovirus 

HCV = Hepatitis C Virus 

HEV = Hepatitis E Virus 

IA = Inflammatory Arthritis  

IMS = Ion-Mobility Spectrometry 

LC = Liquid Chromatography 

MOS = Metal Oxide Semiconductors 

NMR = Nuclear Magnetic Resonance 

NVOMs = Non-Volatile Organic Metabolites 

OSA = Obstructive Sleep Apnoea  

PCD = Primary Ciliary Dyskinesia 

P-MRS = Phosphorus Magnetic Resonance 
Spectroscopy 

POCT = Point-of-Care Testing 

PTR-MS = Proton Transfer Reaction Mass Spec-
trometry  

QMB = Quartz Crystal Microbalance  

RN-SWCNT = Random Networks Single-Walled Carbon 
Nanotube  

SAW = Surface Acoustic Wave 

SIV = Simian Immunodeficiency Virus 

STP = Standard Temperature and Pressure 

UPLC = Ultra-Performance Liquid Chromatogra-
phy 

VOCs = Volatile Organic Compounds  

VOMs = Volatile Organic Metabolites 
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