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In light of Earth's changing climate and growing human population, there is an urgent need to improvemonitor-
ing of natural and anthropogenic disturbances which effect forests' ability to sequester carbon and provide other
ecosystem services. In this study, a two-step modeling approach was used to map the type and timing of forest
disturbances occurring between 1984 and2010 in ten Landsat scenes located indiverse forest systems of the con-
terminous U.S. In step one, Random Forest (RF) models were developed to predict the presence of five forest dis-
turbance agents (conversion, fire, harvest, stress and wind) and stable (i.e. undisturbed) forest. Models were
developed using a suite of predictors including spectral change metrics derived from a nonparametric shape-re-
stricted spline fitting algorithm, as well as several topographic and biophysical variables which potentially influ-
ence the initiation and/or spread of forest disturbance agents. Step two involved applying a rule-based model to
the spectrally-based shape parameters (e.g. shape type, year and duration) to assign a year to the disturbance
types and locations predicted in step one. Out of bag (OOB) predictions from RF showed that across the ten
scenes, overall agreement was highest when only causal agent was considered (avg = 80%, min = 69%, max
=86%), andwas lowest when both agent and year (within±1 of the reference date)were required to be correct
(avg=71%,min=56%,max=80%). Across scene omission and commission errors forfire and stable forest clas-
ses weremostly around 10% to 20%, respectively. Harvests were alsomodeledwell, as five of nine test scenes had
error rates b26%. Accuracy of the wind and stress classes were much more variable with model errors ranging
from24% to 88%. The years assigned by the rule-basedmodelwere reasonably accurate, as 88% of all disturbances
were assigned a year that fell within ±2 years of the reference date. Fire disturbances were assigned the correct
year 78% of the time, followed by harvest (69%) and conversion (54%). Although 17% and 63% of wind and stress
disturbances were under-estimated by 5 or more years, the impact on overall accuracy was nominal given these
two classes only accounted for roughly 5% of all disturbances. Our results also revealed that causal agent models
summarized to broader disturbed/not disturbed classes were as accurate as models specifically constructed to
predict binary disturbance, thus there appears to beno advantage tomodeling disturbance prior to assigning cau-
sality. A relative evaluation ofmean decrease in accuracy fromRF showed that although awide range of predictor
variables contributed to the successful modeling of causal agents and stable forest (e.g. patch metrics, forest oc-
currence, and topography), disturbance variables (e.g. MTBS) and spectral changemetrics (e.g. absolute and rel-
ative magnitude) were by far the most important. Modeled causality maps and annual disturbance rates were
examinedand found to be in good agreementwith existing literature and other published data sets. Lastly, results
are used to make recommendations for mapping forest disturbance agents nationally across the U.S.
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1. Introduction and objectives

Forests support life and human society by providing critical ecologi-
cal, social and economic benefits, including cleanwater, oxygen,wildlife
habitat, recreation, carbon storage and a variety of forest products. In
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theUnited States, forests occupy roughly one third of the total land base,
and although the amount of forestland has remained relatively stable
over the last century (Oswalt et al., 2014) there is growing evidence
that rising temperatures have led to more frequent and intense forest
disturbance events (Westerling et al., 2006; van Mantgem et al., 2009;
Allen et al., 2010; Peterson et al., 2012; Cohen et al., 2016). Given that
both anthropogenic and natural disturbances shape forest composition,
structure, and function, there will likely be increasing socioeconomic
consequences associated with widespread declines in forest health
(Weed et al., 2013; Anderegg et al., 2013). Recent studies have already
found evidence of reduced tree growth (Williams et al., 2010), increases
in species turnover dynamics (Zhu et al., 2014) and declines in water
quantity (Mikkelson et al., 2011) and quality (Mikkelson et al., 2013)
in response to climate-induced forest die-off. Additionally, increasing
rates of disturbance will also pose significant challenges to land man-
agers who seek adaptation strategies to ensure sustainability, genetic
diversity and resiliency of forest ecosystems (Spittlehouse and
Stewart, 2003).

With temperatures (IPCC, 2014) and human populations (Raftery et
al., 2012) both projected to rise in the future, forests will continue to be
transformed by climate and human-induced forcings. As these changes
could potentially trigger shifts and or loss of human and biotic popula-
tions (Aral, 2014), there is anurgent need to advance our understanding
of the causes and consequences of disturbance through space and time.
Since disturbance occurs at a variety of spatial and temporal scales, and
across a range of magnitudes, an improved monitoring strategy will
likely require some combination of field measurements (which can
identify localized impacts including below canopy and understory ef-
fects) and repeated observations from remote sensing satellites
(which can detect upper canopy effects over large areas on an annual
basis). Ideally, field plots and satellite image time series will form an in-
tegrated system where observations from each data stream are lever-
aged in a way that helps inform or improve estimates from the other
(e.g. see Schroeder et al., 2014). Thus, in addition to improving field
data there are several reasons for also seeking better map-based distur-
bance products as they facilitate spatial pattern analysis, can reduce fine
scale errors in spatially explicit biogeochemical models (e.g. BiomeBGC,
Carnegie-Ames-Stanford Approach or CASA, also see Williams et al.,
2014 and Gu et al., 2016), and can be used to develop strata to reduce
variance of plot-based estimates via post-stratification (McRoberts et
al., 2005). Therefore the focus of this paper is on producing improved
disturbancemaps which can accurately resolve the spatiotemporal pat-
terns of change caused by different agents over the last quarter century.

To date, several automated mapping algorithms have been devel-
oped which are capable of detecting disturbance from the spectral sig-
nal taken from multiple Landsat images (e.g. Vegetation Change
Tracker or VCT, Huang et al., 2010a; Landsat-based detection of Trends
in Disturbance and Recovery or LandTrendr, Kennedy et al., 2010; Con-
tinuous Change Detection and Classification or CCDC, Zhu et al., 2012;
and others including Vogelmann et al., 2012 and Brooks et al., 2014).
Though these algorithms are applied to image stacks of varying density
(e.g. annual stacks of growing season images vs. denser stacks using all
available images) and use different statistical approaches (e.g. adaptive
thresholding, linear segmentation, Fourier curve fitting) they all tend to
output maps which resolve the timing and, in some cases, the spectral
magnitude of disturbance. Although several studies havemapped causal
agents in the U.S. with Landsat scale data, most have been limited to
smaller geographic areas. For example, Neigh et al. (2014a) produced
maps of insect and harvest classes for four Landsat scenes covering the
deciduous forests of the north central U.S. and more recently Neigh et
al. (2014b) and Kennedy et al. (2015) produced maps of multiple
agent classes for several Landsat scenes in the Pacific Northwestern
U.S. Owing to the difficulty of separating different change types with
purely automated algorithms, the one commonality shared among the
aforementioned studies is that they all used some type of supervised ap-
proach (e.g.maximum likelihood, RandomForest) tomap causal agents.
The relative success of these studies suggests that different types of for-
est disturbance invoke distinct enough spectral patterns to be accurate-
ly separated into unique classes. Yet, several opportunities for
advancement remain.

For example, no single spectral band or index consistently responds
to all types of disturbance. Schroeder et al. (2012) demonstrated that in
the boreal forests of Canada, spectral data from Landsat's shortwave-in-
frared region (i.e. band 5) could be used to accurately separate wildfires
and clearcut harvests while data from near-infrared indices (e.g. NDVI)
could not. More recently, Cohen et al. (2016) highlighted the need for
analysts to view multiple spectral bands and indices when manually
interpreting Landsat data for the presence of disturbance. This study
also points out that automated algorithms which use only one spectral
band or index (Vogelmann et al., 2012; Kennedy et al., 2010) often
have higher omission and commission mapping errors. Thus incorpo-
rating metrics derived from multiple spectral bands and indices may
lead to improved results.

Another opportunity derives from the fact that certain types of forest
disturbance are influenced by topographic and biophysical factors
which are not inherently captured by optical remote sensing data
(Reams et al., 2010). For example, topographic orientation can influence
the intensity and spread of wild-fires (Linn et al., 2007), can exacerbate
drought conditions leading to higher rates of beetle-induced tree mor-
tality (Christiansen et al., 1987), and can increase a stands susceptibility
to lightning strikes andwind-throw (Foster, 1988), thus there are sever-
al reasonswhy including spatial variableswhich describe local topogra-
phy (e.g. elevation, slope and aspect derived from DEM's), patch
geometry (e.g. harvests tend to be smaller and geometrically shaped
vs. fires which are often bigger and irregularly shaped) and species oc-
currence (e.g. Ruefenacht et al., 2008) may help improve the classifica-
tion of certain disturbance types (e.g. see Hermosilla et al., 2015).

As other countries have begun producing regional and national scale
maps of various forest disturbance agents (e.g. see Hermosilla et al.,
2015 andWhite et al., 2017 – Canada; Haywood et al., 2016 – Australia;
Potapov et al., 2015 – Europe) there is high demand for a similar, consis-
tently developed U.S. product. Therefore, the overarching objective of
this paper is to test a systematic approach which can integrate informa-
tion from Landsat and other data sources to produce changemaps in dif-
ferent forest regions found across the U.S. Extending the work
performed under the National Aeronautics and Space Administration
(NASA) andNorth American Carbon Program's (NACP), NorthAmerican
Forest Dynamics (NAFD) project (Goward et al., 2008), a series of pilot
tests were conducted over ten Landsat scenes representing diverse for-
est types and disturbance regimes found across the country. Our objec-
tives were to:

1. Evaluate the potential for mapping five different forest disturbance
agents (conversion, fire, harvest, stress and wind) and for mapping
areas of undisturbed (or stable) forest using a systematically
employed, empirical modeling approach.

2. Determine if complex agent models are as accurate at locating non-
attributed change as simpler, binary disturbed/not disturbed (DND)
models.

3. Determine which predictor variables are most useful for modeling
forest disturbance agents at the national scale.

4. Make recommendations to enhance operational development of a
consistent, U.S. national forest disturbance mapping product.

2. Methods

2.1. Study area

To ensure our mapping approach was tested in a variety of different
environments we used a national MODIS-based forest type map
(Ruefenacht et al., 2008) and a national integrated forest disturbance
map (see Schleeweis et al., 2013, Fig. 5) to select 10 Landsat scenes
which represent a diverse array of forest types and disturbance
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processes (e.g. harvesting, fire, insect, hurricane, and urbanization). We
divided the 10 scenes so that both the eastern and western regions of
the country were equally represented. The locations of the selected
Worldwide Reference System (WRS2) Landsat path rows are shown
in Fig. 1. The boundaries of each scene reflect the coincident area shared
by all the Landsat images in each time series stack (described later in
Section 2.2.2.). Estimates of total forest cover (derived as the percentage
of forest area divided by the total scene area from initial VCTmaps), and
major species groups and disturbance processes found in each Landsat
test scene are summarized in Table 1.

2.2. Data

2.2.1. Reference data
Since disturbance is a rare event which typically impacts b3% of for-

est area per year (Masek et al., 2013) two types of sampling were used
to record reference information for each of the ten Landsat test scenes.
First, using an initial VCT map we used stratified sampling to randomly
distribute 120 “probabilistic” sample plots across two strata - areas
mapped as stable forest (i.e. areas that remained forest across the entire
time series) and disturbed forest. Next, these one-pixel sample plots
were analyzed by a human interpreter using the TimeSync reference
data collection protocol outlined in Cohen et al. (2010). Briefly, this pro-
cess involved using a trained analyst to manually record forest distur-
bances based on evidence gleaned from simultaneous inspection of
annual Landsat images and spectral trajectories, high resolution aerial
photos (e.g. National Aerial Imagery Program or NAIP, Google Earth)
and ancillary GIS data from the Monitoring Trends in Burn Severity
(MTBS, Eidenshink et al., 2007) and LANDFIRE (Vogelmann et al.,
2011) programs. Since areas disturbed prior to the start of the time se-
ries (referred to as recovery), and other infrequently observed distur-
bance types (described below) were excluded from the analysis some
scenes had slightly fewer than 240 probabilistic samples.

Second, a set of “supplemental” disturbance observations were de-
rived using ancillary data from the LANDFIRE events database (http://
Fig. 1. Location of the ten Landsat test scenes used in this study. The scene boundari
www.landfire.gov/publicevents.php), U.S. Forest Service – Forest Inven-
tory and Analysis (FIA; https://www.fia.fs.fed.us/) plots, and in some
cases from purposive sampling of known disturbance areas. The FIA
plots and LANDFIRE pixels that agreed with an initial VCT disturbance
map were then inspected by a human interpreter to ensure type and
timing of disturbance were correctly assigned, and to ensure there
was a minimum of 1500 m (or 50 pixels) between plots to avoid auto-
correlation issues (e.g. initial trials indicated that selecting too many
pixels from the same disturbance patch negatively impacted model ac-
curacy). Overall, the number of supplemental disturbance samples se-
lected for each test scene varied based on the availability of the
ancillary data sets (e.g. LANDFIRE data is more available on federal
lands, thus there is more data available for the 5 western scenes), as
well as the level of analyst tuning required to minimize effects of over
sampling the polygon data.

The two types of sampling were used to record reference informa-
tion for the following six forest classes:

1. Conversion – Areas where evidence of anthropogenic change has
shifted land use and/or land cover from forest to non-forest condi-
tions (e.g. installation or expansion of urban/residential areas, reser-
voirs, surface mines, golf courses, ski areas, airports, oil and gas
infrastructure, agriculture areas, etc.).

2. Fire – Areaswhere evidence of fire exists regardless of cause (natural
or anthropogenic). Note, post-harvest site preparation fires were re-
corded in TimeSync but were not used in the causal agent models.

3. Harvest – Areaswhere trees have beenmechanically severed and re-
moved and where land use was and remains forest.

4. Stress – Areas where stressors such as insects, disease, drought, and
acid rain result in slow canopy degradation leading to leaf area loss
and/or tree mortality.

5. Wind – Areas where trees are damaged or killed by hurricanes, tor-
nados, and other severe wind storms.

6. Stable – Areas of established forest which remain spectrally undis-
turbed throughout the image time series.
es reflect the coincident area shared by all the images in each time series stack.

http://www.landfire.gov/publicevents.php
http://www.landfire.gov/publicevents.php
https://www.fia.fs.fed.us


Table 1
Description of the forest cover (fromVegetation Change Tracker, VCTHuanget al., 2010a), forest species groups (fromRuefenacht et al., 2008), anddisturbance processes (fromSchleeweis
et al., 2013) found in each of the ten Landsat test scenes.

Region Path/row State(s) Forest (ha) % Forest Major forest species group Major disturbance processes

East p12r28 ME 2,075,725 92 Maple/Beech/Birch; Spruce/Fir Harvest
East p14r32 PA/NJ 1,734,740 60 Loblolly/Shortleaf Pine; Oak/Hickory Harvest, Insect, Urbanization
East p16r37 SC 1,752,164 59 Loblolly/Shortleaf Pine; Oak/Gum/Cypress Harvest, Hurricane, Fire, Urbanization
East p24r37 AR/LA 2,298,087 83 Loblolly/Shortleaf Pine; Oak/Gum/Cypress; Oak/Hickory Harvest, Urbanization
East p27r27 MN 1,895,981 87 Aspen/Birch; Spruce/Fir Harvest, Insect, Urbanization
West p35r32 CO 306,502 33 Fir/Spruce/Mountain Hemlock; Aspen/Birch; Pinyon/Juniper Insect, Fire, Harvest
West p36r37 AZ 767,817 26 Pinyon/Juniper; Western Oak; Ponderosa Pine Fire, Urbanization
West p41r29 ID 1,516,895 60 Douglas-fir; Fir/Spruce/Mountain Hemlock; Lodgepole Pine Fire, Insect
West p43r33 CA/NV 1,287,693 43 California Mixed Conifer; Fir/Spruce/Mountain Hemlock; Pinyon/Juniper Harvest, Fire, Insect, Urbanization
West p45r30 OR 1,846,855 62 Douglas-fir; Fir/Spruce/Mountain Hemlock; Ponderosa Pine Harvest, Insect, Fire
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Five other types of forest disturbance were also recorded but be-
cause the number of observations was too low (e.g. forest altered by de-
bris flows, volcanic activity, flooding, and “other” unknown causes) or
because spectral confusion was too high (e.g. initial tests indicated
that mechanical treatments such as chaining, brush saw and mastica-
tion could not be reliably separated from harvesting) these classes
were not included in the causal agent models. Forest recovery was
also recorded, but due to the variably small number of observations at
the scene level, we opted to use the VCT output directly to map this
class, as it's been shown to reliably capture the distinct pattern (or
trend) of increasing spectral greenness which typically follows a pre-
time series disturbance (Zhao et al., 2016).

Both the probabilistic and supplemental sampling approaches re-
corded multiple disturbances per plot, however, we only use the
“greatestmagnitude” events (see Table 2), primarily because our distur-
bance metrics from the Landsat shape-fitting algorithm only capture
one change event per pixel. As the greatest magnitude disturbance is
one of themost important factors in altering forest structure and carbon
storage potential (Dale et al., 2001), the presented approach still repre-
sents a useful mechanism for spatially identifying locations where dif-
ferent forest disturbance agents may have impacted the carbon cycle.

2.2.2. Landsat time series
Four processing steps were used to produce the annual image stacks

for the ten Landsat scenes used in this study. First, near cloud free images
falling within the peak growing season window (i.e. June–September)
were selected from the Landsat Thematic Mapper (TM) and Enhanced
Table 2
The number of probabilistic (P) and supplemental (S) reference samples by agent class for
each of the ten Landsat test scenes. Agents shaded in gray were not used in the Random
Forest (RF) models.

East
p12r28 p14r32 p16r37 p24r37 p27r27 East total

P S P S P S P S P S P S

Conversion 0 11 28 13 13 13 5 12 2 18 48 67

Fire 0 0 0 31 7 63 0 24 0 20 7 138

Harvest 115 9 19 1 121 7 144 7 74 71 473 95

Stable 113 0 164 0 78 0 81 0 150 0 586 0

Stress 0 0 2 1 0 0 0 0 1 2 3 3

Wind 0 0 0 0 7 31 0 1 0 25 7 57

Sample total 228 20 211 45 226 114 230 43 226 134 1,121 356

Scene total 248 256 340 273 360 1,477

West
p35r32 p36r37 p41r29 p43r33 p45r30 West total

P S P S P S P S P S P S

Conversion 0 14 2 11 0 13 2 11 0 16 4 65

Fire 25 58 46 50 106 55 20 157 31 19 228 339

Harvest 14 19 1 2 7 49 81 185 82 4 185 259

Stable 114 8 163 0 82 0 116 0 99 0 574 8

Stress 77 14 16 0 34 2 4 0 2 2 133 18

Wind 0 0 0 0 0 0 0 0 0 0 0 0

Sample total 230 113 227 61 229 119 219 353 212 39 1,117 685

Scene total 343 288 348 572 251 1,802
Thematic Mapper (ETM+) satellite records (see Huang et al., 2009 for
more details). Second, the Landsat Ecosystem Disturbance Adaptive Pro-
cessing System (LEDAPS, Masek et al., 2006) was used to atmospherically
correct the images and convert them from digital numbers to earth sur-
face reflectance. Third, a cloud clearing algorithm (see Schleeweis et al.,
in press) was used to replace anomalous pixels (e.g. cloud, shadow, scan
line corrector drop out) with clear observations from other peak growing
season images collected fromwithin the same year (Huang et al., 2010b).
After these initial steps some of the scenes still had years with unaccept-
able amounts of obscured pixels, thus the number of images comprising
each of the ten stacks varied from a low of 23 to a maximum of 27
(Table 3). The fourth step involved calculating three spectral vegetation
indices including the Forestness Index (FI, Huang et al., 2008, 2009), the
Normalized Burn Ratio (NBR, Key and Benson, 2005), and the Normalized
Difference Vegetation Index (NDVI, Rouse et al., 1973). To ensure the
spectral data and vegetation indices responded to disturbance in the
same numerical direction the NBR and NDVI images were multiplied by
−1, followed by the addition of a constant value large enough to prevent
negative numbers. After processing, trajectories of Landsat band 5 (B5)
and the three vegetation indices (FI, NBR and NDVI) were individually
used in the shape-fitting algorithm to derive pixel-level change metrics
for use as predictor variables in our causal agent models.
2.2.3. Shape-fitting metrics
Adapted from the nonparametric statistical literature (Meyer,

2008; Meyer, 2013) the shape-fitting algorithm (Moisen et al.,
2016) is based on the assumption that the trend in each pixels spec-
tral trajectory is “smooth”, and that a simple quadratic regression
spline can be used to estimate these trends. The key difference in
this approach is that to avoid over-fitting the often noisy spectral sig-
nal, the spline functions are constrained to adhere to six predefined
“shape” patterns, which were identified according to known re-
sponses of the chosen spectral bands/vegetation indices to a range
of natural and anthropogenic disturbance events (e.g. see Kennedy
et al., 2007 Fig. 3). The six shape types used in this study (and the
ecological behavior ascribed to each) are defined as follows (see
Fig. 2 for graphical examples):

1. Flat – indicates a forest in stable condition.
2. Decreasing – indicates a young forest which is accumulating leaf area

and/or biomass, potentially in a state of recovery from a past distur-
bancewhich occurred prior to the beginning of the image time series.

3. Jump – captures short duration, abrupt changes in forest structure or
canopy cover typically resulting from harvests or wildfires.

4. Vee – indicative of recovering or stable forests which begin to expe-
rience a gradual loss of leaf area or increasing tree mortality such is
common with insect, disease and drought damage.

5. Inverted Vee – represents forests which begin the time series as sta-
ble but then begin a gradual decline in leaf area or structure followed
by a gradual period of recovery.



Table 3
The date range and number of images in each test scene's Landsat time series.

Year # Images Date range

p12r28 24 1985, 1987–1991, 1993–2010
p14r32 27 1984–2010
p16r37 26 1984, 1986–2010
p24r37 25 1986–2010
p27r27 23 1986–1988, 1990–1997, 1999–2010
p32r35 26 1984, 1986–2010
p36r37 26 1984, 1986–2010
p41r29 26 1985–2010
p43r33 27 1984–2010
p45r30 26 1985–2010
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6. Increasing – this linear shape reflects forests which are experiencing
long, gradual declines in leaf area and/or canopy structure often
resulting from slowactingdisturbanceswhich occur early (or before)
the beginning of the time series.
The R statistical package “ShapeSelectForest” (Meyer et al., 2015),

freely available on the Comprehensive R Archival Network (or CRAN),
was used to fit all six of the constrained spline shapes to every forest
pixel identified by VCT. For each of the four spectral trajectories used,
the shape with the lowest sum of squares error (including a penalty
for complexity based on the number of degrees of freedom from the
model fits) was selected as the “best” shape. Because of random error
(i.e. outliers due to atmospheric attenuation and noise) and differences
in spectral response, the pixel-level shapes selected for each band/index
were often different. After determining the best shape fits, metrics de-
scribing the trajectory pattern were also calculated for every pixel.
These included the year of detected change (which is used in step two
of our modeling process to assign timing of disturbance), twomeasures
of change magnitude (i.e. absolute and relative spectral change), dura-
tion (i.e. the number of years or image intervals the detected spectral
change lasted for), and the annual rates of growth and recovery before
and after a detected spectral change (referred to as pre-rate and post-
rate). Because the vee and inverted vee shapes are non-linear, the
change point denoted as an upward trend in the model often occurred
prior to the actual event in the forest canopy. To account for this lag
Fig. 2. The six pre-defined “shape” patterns used in the shape-fitting algorithm. Shapes depic
Although examples are shown in units of Landsat band 5 reflectance, the algorithm was also r
we adjusted the change points for these shapes to better reflect the
pointwhere the spectral response begins to accelerate in the upwarddi-
rection (e.g. see stress signatures, Schroeder et al., 2014 Fig. 6f). Overall,
the shape-fitting process yielded 24 disturbance metrics which were
used to predict causal agent groups and 4 metrics which were used in
the rule-based model to assign disturbance timing. For more details
on the constrained spline fitting procedure, including computational
notation and use of degrees of freedom constraints see Meyer (2013)
and Moisen et al. (2016).

2.2.4. Additional predictor variables
Several other spatial datasetswere also used asmodel predictor var-

iables. To account for topographic effects we included elevation (30 m
resolution National Elevation Dataset or NED), and derived variables in-
cluding slope (in degrees) and cosine/sine transformed aspect (Beers et
al., 1966). Coarse resolution maps of forest probability of occurrence
(Blackard et al., 2008) and forest types (Ruefenacht et al., 2008) derived
from 250 m MODIS imagery (downscaled to 30 m) were included to
help account for broad scale differences in species disturbance dynam-
ics. We downloaded and rasterized the vector-based fire burn perime-
ters from MTBS (Eidenshink et al., 2007) and developed a cumulative
presence-absence layer for fires occurring between 1984 and 2010.
When used as a predictor, this 30 m fire perimeter mask still allowed
smaller fires to be predicted outside, and unburned areas to be predict-
ed inside, the MTBS burn perimeters. Similarly, we also used two 30 m
cumulative presence-absence masks of forest disturbance developed
from the VCT annual disturbance maps (1984–2010, Huang et al.,
2010a) and the annual global forest change product (2000–2010,
Hansen et al., 2013). Finally, to take advantage of geometric patterns
of different disturbance types (e.g. harvests tend to be smaller and geo-
metrically shaped compared to fires which are often larger and irregu-
larly shaped) we used a 3 × 3 moving window segmentation
algorithm to group VCT pixels that were disturbed in the same year
into discrete patches. For each of these derived disturbance patches
we calculated geometry metrics including area, perimeter, fractal di-
mension, and shape index (see p. 88–108 in McGarigal et al., 2012).
For a complete list of all 37 predictor variables see Electronic Supple-
ment, Table S1.
t known spectral patterns caused by disturbance agents and mature undisturbed forests.
un on FI, NBR and NDVI trajectories.
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2.3. Mapping disturbance agents and undisturbed forest classes

2.3.1. Step 1: empirical modeling of causal agents and stable forest
The first step of our two-step modeling approach involved building

temporally indifferent Random Forest (RF, Breiman, 2001) models to
empirically predict the presence of five disturbance agents (conversion,
fire, harvest, stress, wind) and stable (i.e. undisturbed) forest. Models
were built individually for each of the ten Landsat scenes using the R
statistical package ModelMap (Freeman et al., 2014) available on the
Comprehensive R Archive Network (or CRAN). ModelMap offers a sim-
plified interface for creating complex RF models explicitly for spatial
map production. To facilitate the needs of our study,ModelMapwas up-
dated with several new features including the ability to simultaneously
model multi-categorical response variables. Models were constructed
using the default setting of 500 trees per forest, while the number of
predictor variables used to determine the node splits in each tree was
set to six (i.e. the square root of the total number of predictor variables).
Since there is no accuracy penalty in RF for using correlated variableswe
opted to use all 37 predictors despite varying levels of observed correla-
tion. Although correlated predictor variables complicate analysis of var-
iable importancewe do use a rank scoring systembased on the RFmean
decrease in accuracy metric to explore the “relative” importance of five
more general predictor groups (discussed below in Section 2.6). Be-
cause the scene-specific response data were inmost cases highly imbal-
anced (i.e. one or more agent classes were significantly more prevalent
than the others) a down sampling approach (e.g. see Freeman et al.,
2012; Mellor et al., 2015) was used to compensate for RF's tendency
to predict more prevalent response classes (Weiss and Provost, 2003).
This involved systematically reducing the number of observations of
themost prevalent agents, while maintaining the same relative propor-
tion of all other classes observed in each scene. Since the down sampled
observationswere selected at random for each of the 500 trees generat-
ed in RF, all of the reference data were eventually used to train the
models. To create the agent maps, we applied the RF models to the spa-
tial predictor layers using the raster package (via ModelMap) in R.

2.3.2. Step 2: rule-based assignment of disturbance year
The second step of ourmodeling approach involved assigning a year,

duration and magnitude to the empirically predicted disturbances
identified in step one. Using the flat2parameter function in
ShapeSelectForest a series of decision rules were applied to the shape
number, year, magnitude and duration outputs from the shape fitting
algorithm (described above in Section 2.2.3.). The first two rules
assigned pixels with no disturbance a year, duration, and magnitude
of zero. These included both pixels predicted as stable in the agent
map, as well as pixels which had flat or decreasing shapes in all four
spectral bands. In the event that RF predicted a disturbance, but all
four spectral inputs yielded flat or decreasing shapes, the agent map
was recoded to stable forest (note b0.12% of pixels were impacted
across the ten scenes). The third rule assigned pixels predicted as stress
themedian year, duration andmagnitude of all the shapes thatwere not
labeled flat or decreasing. Lastly, the fourth rule assigned year, duration
andmagnitude to all other disturbance classes. Since these disturbances
occurred abruptly in the temporal domain we took the median from
only the jump shapes if possible. If none of the remaining shape outputs
were jumps, themedianwas derived using the vee, inverted vee and in-
creasing shape types.

2.4. Quality assessment of causal agent and stable forest models

To evaluate the quality of the temporally indifferent causal agent
models, the out of bag (OOB) predictions from each scene's RF model
were used to derive various measures of agreement for the disturbance
and stable forest classes. Because the OOB observations are not used for
model training, these estimates are essentially cross-validated accuracy
estimates (Cutler et al., 2007). Due to the limited number of
probabilistically collected reference samples we use all the OOB predic-
tions from the reference data, including both the probabilistic and pur-
posively sampled plots to assess “model quality”. Since this assessment
is based on a non-probabilistic sample we are not constructing esti-
mates for inference. Rather, we are reporting the metrics on how well
the model predicted over the “population” of training plots, each one
excluded from the model-fitting through the OOB process. For the dis-
turbance agents, overall agreement was derived in three different
ways. The first way required both the causal agent to be correct and
the disturbance year to be assigned within ±1 year of the reference
date,while the other twoways required only the agent or year to be cor-
rect but not the other. In addition, the OOB commission and omission
errors are presented graphically to help visualize geographic differences
across the diverse set of Landsat scenes. Lastly, the causal agent OOB
predictions were generalized to the disturbed/not disturbed (DND)
level and compared with output from binary RF models specifically
trained to predict DND classes. The binary models were setup using
the same RF parameters (e.g. number of trees, node splitting rules)
and predictor variables used for the multiclass agent models described
above in step one (see Section 2.3.1.).
2.5. Quality assessment of forest disturbance year model

To assess the quality of the disturbance year model (applied in step
two) we plotted frequency histograms which show the percentage of
disturbed plots that fall within different time intervals of the reference
data. These plots of observedminus predicted disturbance year are plot-
ted into 11 bins (ranging from −20 to +20 years) for each of the five
agent classes, as well as for all disturbances grouped across the entire
data set. These yearly comparisons are based solely on the 1639 distur-
bance plots that were modeled correctly by RF (i.e. diagonal columns in
the agreement matrices shown in Electronic Supplement, Table S2).
2.6. Predictor variable importance

To help gauge the relative importance of the various predictor vari-
ableswe took themeandecrease in accuracy,which is ameasure of how
much more helpful than random a particular variable is at classifying
the data, and assigned the top ten predictors in each scene a score of 1
(assigned to the 10th most important variable) to 10 (assigned to the
most important variable). These relative ranking scores were then
summed across the test scenes and plotted graphically to help assess
the importance of five more broadly defined predictor groups (spectral
metrics, patch geometry, forest occurrence, disturbance and topogra-
phy). To avoid issues with correlated variables, focus was placed on an-
alyzing the contributions of the suite of variables within each of these
more general predictor groups.
2.7. Spatial and temporal patterns of forest disturbance agents

A series of maps and figures are presented to highlight the spatial
and temporal patterns of disturbance resolved by our two-step model-
ing approach. For each of the test scenes, annual rates of disturbance
(derived as the area of disturbed forest divided by total forest area)
are plotted for the period 1985–2009 (note the first and last years
were modeled less accurately so are omitted for clarity). Prior to calcu-
lating disturbance rates, the area mapped for each agent class was ad-
justed for error using the probabilistic sample plots (e.g. see Olofsson
et al., 2014). Because the disturbance agents were originally modeled
in a temporally indifferent fashion, the adjusted area was spread evenly
across the years of each scenes image time series. Due to the limited
number of samples only the agent classes with 5 or more probabilistic
samples were adjusted for error (see Table 2).
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3. Results

3.1. Quality assessment of causal agent and stable forest models

3.1.1. Overall agreement
Using the OOB predictions from RF three measures of overall agree-

ment (1. agent & year ±1, 2. agent only, and 3. year ±1 only) were de-
rived for the ten Landsat test scenes (Fig. 3). The results showed that
agreement was highest when only causal agent was considered (avg
= 80%, min = 69%, max = 86%), and was lowest when both agent
and year (within ±1 of the reference date) were required to be correct
(avg = 71%, min = 56%, max = 80%). Only two scenes (p14r32 and
p43r33) had higher agreement at the year ±1 only level, suggesting
that in most cases, timing of disturbance was more difficult to assign
then disturbance causality.

3.1.2. Model errors
Taken from each scenes agreement matrix (Electronic Supplement,

Table S2), the omission and commission errors showed that fire and sta-
ble forest were consistently modeled well across all the test scenes. In
fact, of the five disturbance agents tested, the fire class had the lowest
error rates, which were on average b15% (Fig. 4). The stable forest
class also performed well, with an average across scene error rate of
only 18% (Fig. 4). Although the model errors for fire and stable forest
were fairly well balanced (i.e. omission and commission were generally
within±5% of one another) therewas a slight tendency for disturbance
to be confusedwith stable forest. The remaining disturbance classes had
average to low accuracies. For example, although the harvest class
yielded b25% error formore than half of the nine test scenes, two scenes
(p16r37 and p35r32) had error rates approaching 40%, and one scene
(p14r32) had 100% error (Fig. 4). The conversion class also yielded high-
ly variable results, with error rates ranging anywhere from 0% to 77%.
Additionally, the model errors for conversion were generally not well
balanced, especially in three of the western scenes (p41r29, p43r33,
and p45r30 Fig. 4). Stress and wind were both modeled rather poorly
with error rates ranging from 29% to 88% and 24% to 60%, respectively.
On average, omission rates for stress andwindwere 20% higher than er-
rors of commission.

3.1.3. Binary disturbance comparison
To determine if any disturbance information was lost by modeling

causality directlywe compared the results from the agentmodels (sum-
marized to the DND level) with the output from RF models specifically
trained to predict binary disturbance. Overall agreement and kappa re-
sults showed that the causal agent models were equally, or slightly
more accurate than the simpler binary disturbance models (Table 4).
In fact, the generalized causal agent models had slightly higher overall
agreement in five of the scenes and higher kappa in six of the scenes. In-
terestingly, most of these scenes with higher agreement (three out of
Fig. 3. Three levels of overall agreement derived using the out of bag (OOB) predictions
from each test scenes Random Forest (RF) model.
five) and kappa (four out of six) were located in the eastern region.
Only one test scene (p41r29) had slightly better results for the binary
disturbance model.

3.2. Disturbance year model errors

Frequency histograms showing the distribution of observed minus
predicted disturbance year for each of the five agent classes (Fig. 5a)
showed that fire had the most accurate year assignment, with 78% of
its disturbances assigned the correct year by our model. The harvest
and conversion classes also had relatively high percentages with 69%
and 53% of its disturbances assigned the correct year, respectively. The
fire, harvest and conversion classes also had fairly well balanced errors,
as most disturbances were only off by ±2 years of the reference date.
On the other hand, the years assigned to stress and wind were much
less accurate, with only 3% and 28% of their respective disturbances
assigned the correct year by our model. Errors for stress and wind
were also heavily skewed, such that most years were considerably
under estimated. Although 72% of the wind disturbances had their
years under assigned, the vast majority (55%) were only off by two
years. In contrast, 83% of the stress disturbances were under assigned,
however 20% of these were off by 10 years, and 31% were off by 20 or
more years.

Despite the fact our rule-based model consistently under esti-
mated the disturbance year for two of the five agent classes, the im-
pact across the entire dataset wasmuch less significant given the low
overall number of wind and stress disturbances compared to the
other agent types (Table 2). For example, Fig. 5b shows the distribu-
tion of observed minus predicted disturbance year with the histo-
gram computed as a percentage of total disturbance from all ten
test scenes (n = 1639). Since wind (n = 29) and stress (n = 70)
only make up roughly 6% of the total observations, nearly 70% of all
correctly classified disturbances were assigned the right year by
our model. Also, across the entire data set the errors are low and nor-
mally distributed, such that most of the disturbances (88%) fall with-
in ±2 years of the reference date.

3.3. Predictor variable importance

Since RF splits predictor importance equally among highly correlat-
ed variables (Freeman et al., 2015) we opted to group the 37 individual
predictors into five broader classes (e.g. spectral metrics, patch geome-
try, forest occurrence, disturbance and topography, Electronic Sup-
plement, Table S1) for further analysis. By constraining most of the
importance splitting to variables within the same group (e.g. see cor-
relation plots, Electronic Supplement, Fig. S2), we were able to more
generally evaluate which variables were most useful for predicting
forest disturbance agents. Based on RF mean decrease in accuracy,
21 variables had at least one scene where they were among the top
ten most important predictors. These 21 predictors included vari-
ables from all five general predictor groups (i.e. spectral metrics,
patch geometry, forest occurrence, disturbance and topography).
The importance value rank scores (Fig. 6) show that across all ten
test scenes MTBS was, in a relative sense, the most important predic-
tor variable. With a rank score of 50 in the west and 33 in the east,
MTBS was the most important predictor in all five western test
scenes, and in 3 out of 4 eastern test scenes. The spectral metrics
were the next most important group of predictors, with four individ-
ual variables having rank scores N30. All of the highest ranking spec-
tral metrics were some form of change magnitude (see b5mag.abs,
fimag.abs, nbrmag.abs, and nbrmag.rel, Fig. 6). The only other spec-
tral metrics to achieve a top ten ranking were the post disturbance
recovery rates, although except for NBR post rate in the east region
(rank score = 24), most of these were minimally impactful (i.e.
had low rank scores in only one or two scenes). Although the area
and perimeter variables from the patch geometry group were



Fig. 4.Model errors of omission and commission for the five disturbance agents and stable forest.
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found to be important in several of the scene models (7 and 4, re-
spectively), both tended to fall toward the lower end of the impor-
tance scale (average across scene importance b 3). Conversely, the
forest occurrence group was generally unimportant at the region
level (rank score east = 8 and west = 11), however it was the
third most important variable in two of the three scenes were it
made the top ten list (p14r32 and p35r32). The only variable in the
topography group to make the top ten list was elevation, where it
was found moderately important (rank score = 4) in two of the
western test scenes (p35r32 and p36r37).

3.4. Spatiotemporal patterns of forest disturbance agents

3.4.1. Annual disturbance rates
The agent and year maps were combined to derive annual rates of

disturbance for each of the ten Landsat test scenes. Computed as the
yearly percentage of forest area impacted by thefive disturbance agents,
these rates (shown in Fig. 7a–e) were highly variable across space and
time. For example, although conversion and wind (Fig. 7a and e) both
had equally low average across scene rates of disturbance (0.08%/yr),
the patterns of conversion were persistently low (i.e. all b0.60%/yr)
and relatively steady across time, whereas wind had rates near 0% for
all years except for one large event in 1990. The next highest average
Table 4
Overall agreement and kappa for binary disturbance models and for causal agent models
generalized to the disturbed/not disturbed (DND) level. Models with the highest accuracy
are denoted in bold italic.

Overall agreement Kappa

Scene Binary DND
model

Causal agent model
– DND

Binary DND
model

Causal agent model
– DND

p12r28 0.83 0.83 0.66 0.66
p14r32 0.85 0.87 0.67 0.72
p16r37 0.85 0.85 0.58 0.59
p24r37 0.87 0.89 0.68 0.73
p27r27 0.86 0.87 0.71 0.74
p32r35 0.73 0.78 0.40 0.52
p36r37 0.85 0.85 0.70 0.70
p41r29 0.91 0.89 0.75 0.73
p43r33 0.95 0.95 0.85 0.85
p45r30 0.89 0.90 0.77 0.78
across scene rates of disturbance were fire and stress (0.33%/yr and
0.74%/yr, respectively), both of which had temporal patterns defined
by large episodic events. Not surprisingly, the scenes in the eastern re-
gion had much lower annual rates of fire (maximum of 0.45%) than
those in the western region (maximum of 10.29%). Unlike fire, which
mostly had rates hover near 0% except for large fire years, stress
remained relatively consistent (i.e. 0.50%–1.00%/yr) except for three
distinct peaks in 1991, 1995, and 2007. Lastly, with an average across
scene rate of 1.07%/yr the harvest class (Fig. 7c) had the highest overall
rates through time. Despite three scenes which had very low rates
across the entire study period (e.g. p14r32, p35r32, and p41r29 never
exceeded 0.60%/yr) most hovered around 1.00%–2.00%/yr. Notable ex-
ceptions were the large peak in p16r37 which reached a high of
6.00%/yr in 1990, and the distinct trends of increasing rates in p24r37
between 1992 (1.14%/yr) and 2000 (4.75%/yr) and in p45r30 between
1986 (0.65%/yr) and 1991 (3.75%/yr). Overall, the average annual rate
of harvesting was nearly three times higher in the eastern test scenes.
3.4.2. Spatial predictions of causal agents
Maps of forest disturbance agents and stable forest are shown for

each of the ten Landsat test scenes (see Electronic Supplement, Fig.
S1) and for select geographic subsets, which highlight various successes
of the employed mapping approach (Fig. 8a–h). Maps of conversion
show that forest area was lost to a number of different anthropogenic
activities such as residential development (Fig. 8d) and open pit mining
(Fig. 8e). Fires were well resolved resulting in high levels of spatial and
temporal agreement with MTBS (Fig. 8c). Harvest maps were able to
separate forest management activities from land use conversion (Fig.
8a), as well as resolve differences in land owner response to federal
land management policy (discussed below). Although our model pre-
dictions for stress and wind were not overly accurate at the pixel-scale
the maps produced for these agents still yielded realistic predictions
which agreed well with other published data sets. For example, model
predations for stress were well aligned with the boundaries of cumula-
tive mortality (1991–2010) derived from the U.S. Forest Service, insect
detection survey (IDS) maps (Fig. 8b). Similarly wind, which was only
observed in p16r37 along the Atlantic coast of South Carolina, was
found to be in relatively good agreement with a previously published
map depicting impacts of Hurricane Hugo (see Rittenhouse et al.,
2010, Fig. 8f).



Fig. 5. a and b. Frequency histograms showing the observed (from the reference data)minus predicted (from the rule-basedmodel) year of disturbance plotted as a percentage of a.) each
agent class, and b.) total disturbance from across the ten Landsat test scenes. Note only the correctly classified disturbance plots from step one (n = 1639) are used in these graphs.
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4. Discussion

4.1. Causal agent and stable forest model quality

In general, the developed causal agent models performed well, as
eight out of the ten Landsat test scenes had overall agreement N80%
(see agent only results, Fig. 3). Not surprisingly, the two scenes with
the greatest abundance of subtler, more difficult to classify disturbances
(i.e. p16r37 wind and p35r32 stress) also had the two lowest levels of
overall agreement (69% and 73%, respectively). Although two scenes
had higher agreement at the year only level, most of the models per-
formed better when only the agent class was considered (Fig. 3). Re-
quiring both the agent and year to be assigned correctly yielded
overall agreements that were on average 10% lower than those at the
agent only level. Based on the performance of our disturbance year
model (discussed below) this discrepancy could likely be negated sim-
ply by increasing the temporal window of acceptability to ±2 years. Al-
though requiring disturbance year to bewithin±1 year of the reference
date is a commonly applied threshold used to account for gaps in image
acquisition, the temporal window of acceptability can be modified to
adjust accuracy to meet the needs of different users.

At the agent class level, errors of omission and commission (Fig. 4)
indicate that fire and stable forest were consistently modeled well
across all of the test scenes. Other agents however performedmore var-
iably. Our ability to predict agent classes such as conversion, stress and
wind, which had some of the highest error rates, was undoubtedly com-
promised by a lack of reference data. In fact, without the addition of the
supplemental data (described above in Section 2.2.1.) several of the
agents would not have had enough data to include in our analysis (e.g.
Fig. 6. Predictor variable importance rank scores derived using the mean decrease in
accuracy metrics from the ten scene-level Random Forest (RF) models. Scene-level rank
scores are summarized by the east and west regions described in Table 1. A description
of the predictor variables (x-axis) can be found in the Electronic Supplement, Table S1.
most of the wind data in p16r37 came from FIA plots). Another positive
result was classes with the largest errors, nearly all had higher rates of
omission (Fig. 4), thus prediction levelswere conservative,which is typ-
ically preferred to the converse where too many pixels are incorrectly
classified into one particular class. Furthermore, most of the classifica-
tion error arose due to confusion between different agent classes (see
agreement matrices, Electronic Supplement, Tables S2) rather than
commission with undisturbed forest. Thus, in the future focus can be
placed on improving separation of the disturbance agents, particularly
those that occur less frequently (Table 2). That said, care must also be
taken to improve separation of subtler disturbances (e.g. stress and
wind) from stable forest, as the scenes with the highest prevalence of
these agents (e.g. p16r37, p35r32, p41r29) also had the highest rates
of stable forest commission error.

Prior to conducting this study, one area of uncertainty was whether
modeling causal agents directly would negatively impact the detection
of unattributed disturbance (i.e. binary disturbed/not disturbed forest).
Our results (Table 4) showed that causal agent models perform as well,
or slightly better thanmodelswhich directly predict binary disturbance,
thus it may not be necessary to model disturbance prior to assigning
causality. Thisfinding is further reinforced by the fact that the global for-
est change and VCT disturbance maps were not found to be important
predictors of causality in ourmodels (Fig. 6).Moving forward it is useful
to know that empiricalmodels can focus on prediction of causalitywith-
out sacrificing detection of more general disturbance patterns.
4.2. Disturbance year assignment

Although the rule-based model used in step two of our approach
performed well for abruptly occurring change agents, it did struggle to
assign the proper onset year of subtler changes such as stress and
wind (Fig. 5a). This is not entirely surprising as the temporal onset of
subtler lower magnitude disturbances are often difficult to quantify
even with high resolution imagery. In addition, the non-linear spline
functions (e.g. vee and invented vee shapes, Fig. 2) used to assign distur-
bance years to areas of predicted stress, tended to find breakpoints in
the spectral response prior to the actual event occurring in the forest
canopy. Although we attempted to adjust the change points to account
for this lag, our adjustmentswere clearly insufficient, as the annual rates
of stress were on average underestimated by 10 or more years. For ex-
ample, in p35r32 our predicted stress rate peaked in 1995 (Fig. 7d),
however the Colorado State Forest Service (CSFS) estimates that in
this area mortality from mountain pine beetle actually peaked in 2008
(Colorado State Forest Service, 2015).While this lack of temporal agree-
ment is disappointing, we do note that our predictions did yield a sim-
ilar bell shaped pattern as the CSFS estimates, thus there is hope that
more realistic temporal patterns can be resolved with additional modi-
fications to the shape-fitting algorithm.



Fig. 7. a–e. Annual rates of a.) conversion, b.) fire, c.) harvest, d.) stress, and e.) wind predicted for each of the ten Landsat test scenes.

Fig. 8. a–h. Examples of causal agent maps showing a.) conversion along the US/Canadian border, b.) stress in the Rocky Mountains, CO c.) fires in central ID d.) residential development in
Phoenix, AZ, e.) open pitmining in centralMN, f.)winddamage in SC and g.) harvests in central OR. Inset h. highlights the spatial impact of usingMTBS as a predictor variable in RandomForest.
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Despite these challenges our rule-based model did perform well
when viewed as a percentage of all disturbances from across the ten
test scenes (Fig. 5b). As 88% of the correctly classified agents received
a year that was within ±2 years of the reference date, the approach
was sufficiently accurate to allow quantification of highly realistic tem-
poral patterns of disturbance formost agent classes. Further analysis re-
vealed that many of the largest temporal discrepancies occurred on
plots withmore than one disturbance, thus it's likelymany of the errors
were the result of the shape-fitting algorithmdetecting a secondary dis-
turbance instead of the greatest magnitude change as was intended.
Therefore, expanding our approach to include multiple disturbances
(e.g. see double jump shape in Moisen et al., 2016) may help improve
temporal assignment accuracy in future applications.

4.3. Predictor variable importance

Correlation plots (see Electronic Supplement, Fig. S2) showed that
several of the individual predictor variables were strongly related,
thus a rank scoring system was used to gauge the relative importance
of five more broadly defined predictor groups (i.e. spectral metrics,
patch geometry, forest occurrence, disturbance and topography). Al-
though variables from all 5 predictor groups were deemed important
in at least one scene-level model, our results showed that the MTBS
(disturbance group) and change magnitude (spectral metric group)
variableswere by far themost important predictors (Fig. 6). In thewest-
ern region,where fires were larger and occurredmore frequently,MTBS
helped separate fires from other disturbance agents with similar change
magnitudes. For example, in p45r30 the MTBS predictor helped reduce
false predictions of fire in areas of low intensity, partial harvesting (e.g.
see black arrows, bottom panel Fig. 8h). There was a tradeoff however,
as employingMTBS as a predictor also resulted in fewer harvest predic-
tions inside the MTBS burn perimeters (e.g. see black arrow, top panel
Fig. 8h). In the east, using MTBS as a predictor helped overcome a pau-
city of fire reference samples (Table 2),which ultimately allowed our RF
models to spatially predict some fire in known locations (e.g. see
p14r32, p16r37 and p24r27, Electronic Supplement, Fig. S1). Although
we opted to use MTBS as a predictor, the modeling process is flexible,
thus future applications can weigh these costs when determining how
best to leverage national datasets in predictive disturbance models.

The changemagnitude spectralmetricswere also found to be impor-
tant predictors of disturbance causality (Fig. 6), however due to the
strong linear relationship among these variables (see Electronic Supple-
ment, Fig. S2) we do not draw any formal conclusions as to which spe-
cific measure (i.e. absolute or relative) or spectral region (i.e. B5, FI,
NDVI and NBR) contributed the most to the RF models. Nonetheless, it
is clear that all four spectral bands/indices contributed useful informa-
tion to the RFmodels and that changemagnitude is the spectral variable
most strongly related to disturbance causality. Though the patch geom-
etry, forest occurrence, and topographypredictor groupswere generally
less important they did contribute some significant information to a few
of the scene-level RF models (Fig. 6). Aside from patch geometry, these
variables tended to be less correlated with the other predictor groups
(see Electronic Supplement, Fig. S2), thus they did offer unique informa-
tion, which was occasionally important depending on the region of in-
terest (e.g. elevation was important in two western scenes with
mountainous topography).

4.4. Spatiotemporal patterns of forest disturbance agents

4.4.1. Annual rates of disturbance
Reliably separating disturbed and undisturbed areas (Table 4)

allowed accurate characterization of regional and landscape scale dis-
turbance dynamics occurring across the ten Landsat test scenes. Quanti-
fying annual rates separately for each agent type (Fig. 7a–e) allowed
cyclically episodic events (e.g. Fire, Fig. 7b) to be quantified and assessed
separately from less frequently occurring events like hurricanes (e.g.
Wind, p16r37 Fig. 7e). Despite some inaccuracies in assigning timing
to the subtler change types (e.g. stress and wind, see Fig. 5a), the
agent specific temporal profiles revealed interesting differences be-
tween natural events, which tended to cause distinct pulses of change
(e.g. Fire Fig. 7b, Stress Fig. 7d and Wind Fig. 7e), versus human driven
events, which were often more consistent and steady through time
(e.g. Conversion Fig. 7a, Harvest Fig. 7c).

A closer look reveals most of the temporal patterns resolved by our
approach are in strong agreementwith extant data. For example, the av-
erage peak year of conversion from our model estimates is 1995 ±
4 years (see Electronic Supplement, Fig. S3), which is in strong agree-
ment with the 1994 peak in urban sprawl estimated by Barrington-
Leigh and Millard-Ball (2015) and the 1992–1997 peak in forest lost
to development taken from the 2010 Natural Resources Conservation
Service (NRCS), National Resources Inventory (NRI) report (U.S. Dept
Agriculture, 2013). In p45r30, predicted rates of harvesting generally
agree with timber harvest records reported by the Oregon Department
of Forestry (see Gale et al., 2012), which show that most federal land
owners significantly ramped up harvesting just prior to the 1994 North-
west Forest Plan, while non-federal owners showed no apparent trend
before or after the policy was enacted (see Electronic Supplement, Fig.
S4). Rates of stress were well aligned with the recent forest decline
rate reported by Cohen et al. (2016). Although our model results and
those from Cohen et al. (2016) show broadly similar extensification
rates for stress (~2.0%/yr), our estimates peak much too early due to
the non-linear shape models (Fig. 2), which were used to assign timing
to our predicted disturbances (discussed above in Section 4.2.). In
p16r37 our modeled rates of wind and harvest were well aligned with
Forest Service reports (e.g. see Sheffield and Thompson, 1992 and
Hook et al., 2009) showing high rates of wind damage and salvage log-
ging occurred immediately after Hurricane Hugomade land fall in 1989
(captured here in 1990 due to the timing of available imagery).

4.4.2. Spatial patterns of disturbance
Despite varying degrees of pixel-level agreement (Figs. 3 and 4) the

developed causal agentmaps resolved highly realistic spatial depictions
of the five causal agent classes. One important outcome was our ability
to separate conversion (or forest lost to other land uses) from other an-
thropogenic disturbances such as forest harvesting (e.g. see conversion,
Fig. 8a, d and e). Although the area converted each yearwas quite small,
the long term effects are much more persistent than for other distur-
bance types. For example, our estimates suggest that across the ten
test scenes 2150 km2 (or 830 mile2) of forest was lost to other land
uses during the 26-year period of our study. Although most of these
areas represent permanent and/or long term shifts away from predom-
inate forest cover, we do recognize a small portion will become
revegetated (e.g. through surface mining reclamation) and thus, will
need to be reexamined in the future to determine if forest conditions
are eventually regained.

Given the comprehensive quality of MTBS we wanted our fire pre-
dictions to be in line with this high quality data set, yet still have the
flexibility of picking up smaller fires which were less than its minimum
mapable size threshold (i.e. 405 ha in the west and 202 ha in the east).
Of the 712 fire reference plots (Table 2), only 96 were from non-MTBS
fires, mostly brought in from the LANDFIRE supplemental training
data. Overall, our models correctly classified 40% of these smaller fires
compared to 94% of theMTBS fires. Considering only 13% of the fire ref-
erence plots contained smaller, non-MTBS fires, this level of perfor-
mance is not entirely unexpected, however it does underscore the
need for more reference samples, especially given that many of the
rarer disturbance types (e.g. fire and stress in the east and conversion
in the west) were underrepresented by our probabilistic stratified sam-
pling approach.

Harvest maps resolved interesting spatial patterns, such as in
p12r28, where roughly similar harvesting rates in the U.S. and Canada
have led to noticeably different spatial patterns of disturbance (see
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Electronic Supplement, Fig. S5). For example, the larger cut blocks used
on the U.S. side have, over time, produced a more contiguously
fragmented landscape compared to the Canadian side, where smaller,
more dispersed cut blocks have yielded more diffuse spatial patterns.
Similar spatial patterns were also seen in p45r30, where lower annual
harvesting rates on U.S. Forest Service (USFS) lands have resulted in
more distributed patches, compared to the larger isolated areas of inten-
sively cutover forest typically found on private timberlands (Fig. 8g).

Maps of stress, although not highly accurate at the pixel scale (Fig.
4), did yield realistic spatial depictions which were mostly in good
agreement with the aerially acquired IDS data (Fig. 8b). Although the
percentage of spatial alignment was relatively low (p35r32 = 45%,
p41r29 = 22% and p36r37 = 8%) caution should be taken as the IDS
data are polygon-based, and thus represent only a partial indicator of in-
sect activity for a given year (Meddens et al., 2012). Wind, which was
mainly observed in p16r37, was found to be in relatively good agree-
ment with a Landsat disturbance map specifically aimed at quantifying
the impacts of Hurricane Hugo on migratory bird habitat (see
Rittenhouse et al., 2010 and http://earthobservatory.nasa.gov/IOTD/
view.php?id=43382). Fig. 8f shows that both the previously published
map (in brown) and the wind predictions from our model (in pink) fell
mostly to the right of the hurricane track.

4.5. National implementation and future improvements

One of the main outcomes of this study is the improved knowledge
of our capacity to model different forest disturbance agents, which can
now be extended to the rest of the U.S. Moving forward one of the big-
gest challenges will be collecting enough reference data at the national
scale to sufficiently capture rare disturbance events. The fact a stratified
sample fell short of suitably capturing all the disturbance agents in our
scene-based study (e.g. lack of conversion, stress and wind in the east
and conversion and stress in the west) reinforces how much data will
be needed nationally, especially considering that over the last quarter
century nearly two thirds of U.S. forests have remained undisturbed
(e.g. see http://landsat.gsfc.nasa.gov/?p=11565). This issue is further
compounded when reference plots are distributed randomly across
the landscape, which is preferred for ease of statistical estimation, yet
problematic for capturing rare classes. Probabilistic samples also tend
to have more noise as they often fall on edges and transitional bound-
aries (resulting in mixed pixels), which in turn makes themmore diffi-
cult to classify correctly. As our study demonstrates, potential exists to
farm supplemental training data from other outside data sources, how-
ever there will always be a need for probability-based samples as they
form the basis for assessing map quality (Olofsson et al., 2014) and for
producing design-based statistical estimates (e.g. see Schroeder et al.,
2014 and Cohen et al., 2016). The importance and need for annual refer-
ence data is readily apparent as efforts are underway to collect a nation-
ally consistent, time series reference data set which, along with the
Landsat archive will form the basis for several U.S. federal land change
monitoring programs (e.g. U.S. Forest Service – Landscape ChangeMon-
itoring System (LCMS, https://www.fs.fed.us/rmrs/groups/landscape-
change-monitoring-system-lcms-science-team and U.S. Geological Sur-
vey – Land ChangeMonitoring, Analysis and Projection (LCMAP, http://
www.earthobservations.org/documents/meetings/201605_lcc/
201605_lcc_usgs_climate_land_use_change.pdf).

Once enough data have been collected the next issuewill be the scal-
ability of the RF models to new areas. Here we developed and applied
models directly to individual Landsat scenes, however as we begin
modeling over larger spatial domains inevitably models will have to
be extrapolated into areas where no reference data are available. Initial
testing using data from this study suggests that both mixing data from
different scenes and applying data to newunseen areaswill undoubted-
ly change the amount of disturbance predicted by RF. In fact, our obser-
vation was that RF seems rather sensitive to changes in input training
data and spatial predictor data, thus some experimentation will be
needed to determine the appropriate spatial domain for developing
and applying models over larger areas (e.g. by ecoregions, mapping
zones, tiles, etc.). Deriving the necessary national scale predictor vari-
ables will also take some computational effort, especially for time series
algorithmswhich iteratively fit statistical models to every Landsat pixel.
Here we used output from our shape-fitting algorithm, as well as from
VCT and the global forest change product as predictor variables in our
RF models. In the future, including metrics derived from other change
detection algorithms (e.g. LandTrendr – Kennedy et al., 2010;
CCDC – Zhu et al., 2012) may help improve results. Our analysis of
predictor variable importance, clearly showed that the spectral dis-
turbance metrics often had the most predictive power, especially
those related to change magnitude. Interestingly the most impor-
tant spectral metric tended to vary by test scene, further reinforcing
the need to utilize metrics derived frommultiple spectral bands and
vegetation indices.

Future improvements, include updating the shape-fitting algo-
rithms ability to capture the acceleration point of subtle disturbances
which should help yield more accurate temporal estimates of when
insect and disease outbreak begin. Another future improvement
would be the addition of a double jump shape, which can capture
multiple disturbances in one trajectory (e.g. see Moisen et al.,
2016). Capturing subtle changes before and after higher magnitude
events will remain challenging, however with more frequent obser-
vations coming from new (e.g. Sentinel-2) and future (e.g. Landsat 9
and 10) moderate resolution earth observing satellites there will
soon be even more data available to fill image gaps, which in turn
should help resolve the timing of consecutive disturbance events.
On the other hand, expanding prediction to include multiple distur-
bance classes will also further heighten the need for more reference
data. Given that only 8% of our 2400 stratified reference plots
contained more than one disturbance event and some agents oc-
curred at rates b0.05% annually (e.g. see conversion, Fig. 7a), it will
likely require large sample sizes (if simple random sampling is
used) or explicit targeting through some combination of stratified
and purposive sampling to adequately capture certain types of
disturbance.
5. Conclusion

The presented two-step modeling approach yielded highly informa-
tive annual estimates of several different types of causal agents affecting
U.S. forests. The time series shape-fitting algorithm produced highly in-
formative change metrics for multiple Landsat spectral inputs, which
proved to be important predictors of different types of disturbance.
The results indicate that at the pixel-scale, both the temporally indiffer-
ent predictions of causal agents (Electronic Supplement, Table S2, and
Fig. 4) and the rule-based assignment of disturbance year (Fig. 5)
were in good agreementwith the reference data. In fact, when sufficient
reference data were available for training andmodel testing, five differ-
ent types of forest disturbance (conversion, fire, harvest, stress and
wind) could be accurately separated from stable (undisturbed) forest,
leading to improved spatial and temporal characterizations of when
and where different agents are impacting the forested landscape. Al-
though this study involved a limited number of test sites, the forest
types and disturbance regimes tested were sufficiently diverse to
allow guidance on several issueswhichmay potentially affect future na-
tional disturbance mapping efforts (e.g. reference data collection, em-
pirical modeling criteria, predictor variable importance, expected
accuracies and potential usage of spatial and temporal causality out-
puts). Futureworkwill focus on improving the spectral characterization
of change captured by the shape-fitting algorithm, as well as on the col-
lection of a nationally consistent reference data set which can facilitate
seamless monitoring of land use and land cover changes occurring
across all cover types, including non-forest.

http://earthobservatory.nasa.gov/IOTD/view.php?id=43382
http://earthobservatory.nasa.gov/IOTD/view.php?id=43382
http://landsat.gsfc.nasa.gov/?p=11565
https://www.fs.fed.us/rmrs/groups/landscape-change-monitoring-system-lcms-science-team
https://www.fs.fed.us/rmrs/groups/landscape-change-monitoring-system-lcms-science-team
http://www.earthobservations.org/documents/meetings/201605_lcc/201605_lcc_usgs_climate_land_use_change.pdf
http://www.earthobservations.org/documents/meetings/201605_lcc/201605_lcc_usgs_climate_land_use_change.pdf
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242 T.A. Schroeder et al. / Remote Sensing of Environment 195 (2017) 230–243
Acknowledgements

This research was funded by NASA's Terrestrial Ecology Program
through the North American Forest Dynamics (Phase 3) project and
NASA's Carbon Cycle and Ecosystems Focus Area (NNH11AR29I). Addi-
tional support was provided by the U.S. Forest Service Geospatial Tech-
nology Applications Center (GTAC) and the Interior West Region of the
U.S. Forest Service, Forest Inventory and Analysis (FIA) program.We al-
so gratefully acknowledge assistance provided by the scientists and staff
at NASA's Earth Exchange (NEX) and theUniversity ofMaryland, aswell
as the TimeSync interpretation team at the Laboratory for Applications
of Remote Sensing in Ecology (LARSE), a U.S. Forest Service – Pacific
Northwest Research Station and Oregon State University partnership.
The corresponding author also wishes to recognize contributions by
ASRC Federal InuTeq and the USGS Landsat program.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.rse.2017.03.033.
References

Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M.,
Kitzberger, T., Rigling, A., Breshears, D.D., Hogg, E.H., Gonzalez, P., Fensham, R.,
Zhang, Z., Castro, J., Demidova, N., Lim, J.-H., Allard, G., Running, S.W., Semerci, A.,
Cobb, N., 2010. A global overview of drought and heat-induced tree mortality reveals
emerging climate change risks for forests. For. Ecol. Manag. 259, 660–684.

Anderegg, W.R.L., Kane, J.M., Anderegg, L.D.L., 2013. Consequences of widespread tree
mortality triggered by drought and temperature stress. Nat. Clim. Chang. 3, 30–36.

Aral, M.M., 2014. Climate change and persistent high temperatures: does it matter? Front.
Environ. Sci. 2 (45), 1–8.

Barrington-Leigh, C., Millard-Ball, A., 2015. A century of sprawl in the United States. Proc.
Natl. Acad. Sci. 112 (27), 8244–8249.

Beers, T.W., Dress, P.E., Wensel, L.C., 1966. Aspect transformation in site productivity re-
search. J. For. 64, 691.

Blackard, J., Finco, M., Helmer, E., Holden, G., Hopppus, M., Jacobs, D., et al., 2008. Mapping
U.S. forest biomass using nationwide forest inventory data and moderate resolution
information. Remote Sens. Environ. 112, 1658–1677.

Breiman, L., 2001. Random forests. Mach. Learn. 45 (1), 5–32.
Brooks, E.B., Wynne, R.H., Thomas, V.A., Blinn, C.E., Coulston, J.W., 2014. On-the-fly mas-

sively multitemporal change detection using statistical quality control charts and
Landsat data. IEEE Trans. Geosci. Remote Sens. 52, 3316–3332.

Christiansen, E., Waring, R.H., Berryman, A.A., 1987. Resistance of conifers to bark beetle
attack: searching for general relationships. For. Ecol. Manag. 22, 89–106.

Cohen, W.B., Yang, Z., Stehman, S.V., Schroeder, T.A., Bell, D.M., Masek, J.G., Huang, C.,
Meigs, G.W., 2016. Forest disturbance across the conterminous United States from
1985–2012: the emerging dominance of forest decline. For. Ecol. Manag. 360,
242–252.

Cohen,W.B., Yang, Z., Kennedy, R., 2010. Detecting trends in forest disturbance and recov-
ery using yearly Landsat time series: 2. TimeSync — tools for calibration and valida-
tion. Remote Sens. Environ. 114, 2911–2924.

Colorado State Forest Service, 2015. Report on the Health of Colorado's Forests: 15 years
of Change. https://csfs.colostate.edu/media/sites/22/2016/02/ForestHealthReport-
2015.pdf.

Cutler, D.R., Edwards Jr., T.C., Beard, K.H., Cutler, A., Hess, K.T., Gibson, J., Lawler, J.J., 2007.
Random forests for classification in ecology. Ecology 88 (11), 2783–2792.

Dale, V.H., Joyce, L.A., McNulty, S., Neilson, R.P., Ayres, M.P., Flannigan, M.D., Hanson, P.J.,
Irland, L.C., Lugo, A.E., Peterson, C.J., Simberloff, D., Swanson, F.J., Stocks, B.J.,
Wotton, M., 2001. Climate change and forest disturbances. Bioscience 51 (9),
723–734.

Eidenshink, J., Schwind, B., Brewer, K., Zhu, Z.L., Quayle, B., Howard, S., 2007. A project for
monitoring trends in burn severity. Fire Ecol. Spec. Issue 3, 3–21.

Freeman, E.A., Moisen, G.G., Coulston, J.W., Wilson, B.T., 2015. Random forests and sto-
chastic gradient boosting for predicting tree canopy cover: comparing tuning pro-
cesses and model performance. Can. J. For. Res. 45, 1–17.

Freeman, E.A., Frescino, T.S., Moisen, G.G., 2014. ModelMap: an R package for model cre-
ation and map production. https://cran.r-project.org/web/packages/ModelMap/
vignettes/VModelMap.pdf.

Freeman, E.A., Moisen, G.G., Frescino, T.S., 2012. Evaluating effectiveness of down-sam-
pling for stratified designs and unbalanced prevalence in Random Forest models of
tree species distributions in Nevada. Ecol. Model. 233, 1–10.

Foster, D.R., 1988. Species and stand response to catastrophic wind in central New En-
gland, USA. J. Ecol. 76 (1), 135–151.

Gale, C.B., Keegan, C.E., Berg III, E.C., Daniels, J., Christensen, G.A., Sorenson, C.B., Morgan,
T.A., Polzin, P., 2012. Oregon's forest products industry and timber harvest, 2008: in-
dustry trends and impacts of the great recession through 2010. USDA Forest Service
PNW-GTR-868 (55 pp.).
Goward, S.N., Masek, J.G., Cohen, W., Moisen, G., Collatz, G.J., Healey, S., Houghton, R.A.,
Huang, C., Kennedy, R., Law, B., Powell, S., Turner, D., Wulder, M.A., 2008. Forest dis-
turbance and North American carbon flux. EOS Trans. 89 (11), 105–106.

Gu, H., Williams, C.A., Ghimire, B., Zhao, F., Huang, C., 2016. High-resolution mapping of
time since disturbance and forest carbon flux from remote sensing and inventory
data to assess harvest, fire and beetle disturbance legacies in the Pacific Northwest.
Biogeosciences 13, 6321–6337.

Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, A., Tyukavina, A., Thau,
D., Stehman, S.V., Goetz, S.J., Loveland, T.R., Kommareddy, A., Egorov, A., Chini, L.,
Justice, C.O., Townshend, J.R.G., 2013. High-resolution global maps of 21st-century
forest cover change. Science 342, 850–853.

Haywood, A., Verbesselt, J., Baker, P.J., 2016. Mapping disturbance dynamics in wet
sclerophyll forests using time series Landsat. Int. Arch. Photogramm. Remote. Sens.
Spat. Inf. Sci.:633–641 (XLI-B8). 10.5194/isprs-archives-XLI-B8-633-2016.

Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., 2015. Regional detec-
tion, characterization, and attribution of annual forest change from 1984 to 2012
using Landsat-derived time-series metrics. Remote Sens. Environ. 170, 121–132.

Hook, D.D., Buford, M.A., Williams, T.M., 2009. Impact of Hurricane Hugo on the South
Carolina coastal plain forest. In: Haymond, J.L., Hook, D.D., Harms, W.R. (Eds.), Hurri-
cane Hugo: South Carolina Forest Land Research and Management Related to the
Storm. USDA Forest Service GTR SRS-5 (540 pp.).

Huang, C., Goward, S.N., Masek, J.G., Thomas, N., Zhu, Z., Vogelmann, J.E., 2010a. An auto-
mated approach for reconstructing recent forest disturbance history using dense
Landsat time series stacks. Remote Sens. Environ. 114, 183–198.

Huang, C., Thomas, N., Goward, S.N., Masek, J.G., Zhu, Z., Townshend, J.R.G., Vogelmann,
J.E., 2010b. Automatedmasking of cloud and cloud shadow for forest change analysis.
Int. J. Remote Sens. 31, 5449–5464.

Huang, C., Goward, S.N., Masek, J.G., Gao, F., Vermote, E.F., Thomas, N., Schleeweis, K.,
Kennedy, R.E., Zhu, Z., Eidenshink, J.C., Townshend, J.R.G., 2009. Development of
time series stacks of Landsat images for reconstructing forest disturbance history.
Inter. J. Digit. Earth 2, 195–218.

Huang, C., Song, K., Kim, S., Townshend, J.R.G., Davis, P., Masek, J.G., Goward, S.N., 2008.
Use of a dark object concept and support vector machines to automate forest cover
change analysis. Remote Sens. Environ. 112, 970–985.

Intergovernmental Panel on Climate Change, 2014. Climate change 2013: the physical sci-
ence basis. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J.,
Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (Eds.), Contribution of Working Group 1 to
the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cam-
bridge University Press, Cambridge, UK and New York, NY, USA.

Kennedy, R.E., Yang, Z., Braaten, J., Copass, C., Antonova, N., Jordan, C., Nelson, P., 2015. At-
tribution of disturbance change agent from Landsat time-series in support of habitat
monitoring in the Puget Sound region, USA. Remote Sens. Environ. 166, 271–285.

Kennedy, R.E., Yang, Z., Cohen, W.B., 2010. Detecting trends in forest disturbance and re-
covery using yearly Landsat time series: 1. LandTrendr — temporal segmentation al-
gorithms. Remote Sens. Environ. 114, 2897–2910.

Kennedy, R.E., Cohen, W.B., Schroeder, T.A., 2007. Trajectory-based change detection for
automated characterization of forest disturbance dynamics. Remote Sens. Environ.
110, 370–386.

Key, C.H., Benson, N.C., 2005. Landscape assessment: remote sensing of severity, the Nor-
malized Burn Ratio. FIREMON: fire effects monitoring and inventory system. In:
Lutes, D.C. (Ed.), USDA Forest Service General Technical Report RMRS-GTR-164-CD,
pp. LA1–LA51 (Ogden, UT).

Linn, R., Winterkamp, J., Edminster, C., Colman, J.J., Smith, W.S., 2007. Coupled influences
of topography and wind onwildland fire behaviour. Int. J. Wildland Fire 16, 183–195.

Masek, J.G., Goward, S.N., Kennedy, R.E., Cohen, W.B., Moisen, G.G., Schleeweis, K., Huang,
C., 2013. United States forest disturbance trends observed using Landsat time series.
Ecosystems 16, 1087–1104.

Masek, J.G., Vermote, E.F., Saleous, N.E., Wolfe, R., Hall, F.G., Huemmrich, K.F., Feng, G.,
Kutler, J., Teng-Kui, L., 2006. A Landsat surface reflectance dataset for North America,
1990–2000. IEEE Geosci. Remote Sens. Lett. 3, 68–72.

McGarigal, K., Cushman, S.A., Ene, E., 2012. FRAGSTATS v4: Spatial Pattern Analysis Pro-
gram for Categorical and Continuous Maps. University of Massachusetts, Amherst
http://www.umass.edu/landeco/research/fragstats/fragstats.html.

McRoberts, R.E., Wendt, D.G., Liknes, G.C., 2005. Stratified estimation of forest inventory
variables using spatially summarized stratifications. Silva Fenn. 39 (4), 559–571.

Meddens, A.J.H., Hicke, J.A., Ferguson, C.A., 2012. Spatiotemporal patterns of observed
bark beetle-caused tree mortality in British Columbia and the western United States.
Ecol. Appl. 22, 1876–1891.

Mellor, A., Boukir, S., Haywood, A., Jones, S., 2015. Exploring issues of training data imbal-
ance and mislabeling on random forest performance for large area land cover classi-
fication using the ensemble margin. ISPRS J. Photogramm. Remote Sens. 105,
155–168.

Meyer, M.C., Liao, X., Freeman, E.A., Moisen, G.G., 2015. ShapeSelectForest: shape selection
for Landsat time series of forest dynamics. CRAN Package Version. 1, p. 1.

Meyer, M.C., 2013. A simple new algorithm for quadratic programming with applications
in statistics. Commun. Stat. Simul. Comput. 42 (5), 1126–1139.

Meyer, M.C., 2008. Inference using shape-restricted regression splines. Ann. Appl. Stat. 2
(3), 1013–1033.

Mikkelson, K.M., Dickenson, E.R.V., Maxwell, R.M., McCray, J.E., Sharp, J.O., 2013. Water-
quality impacts from climate-induced forest die-off. Nat. Clim. Chang. 3, 218–222.

Mikkelson, K.M., Maxwell, R.M., Ferguson, I., Stednick, J.D., McCray, J.E., Sharp, J.O., 2011.
Mountain pine beetle infestation impacts: modeling water and energy budgets at
the hill-slope scale. Ecohydrology 6 (1), 64–72.

Moisen, G.G., Meyer, M.C., Schroeder, T.A., Toney, C.J., Liao, X., Schleeweis, K., Freeman,
E.A., 2016. Shape selection in Landsat time series: a tool for monitoring forest dynam-
ics. Glob. Chang. Biol.

http://dx.doi.org/10.1016/j.rse.2017.03.033
http://dx.doi.org/10.1016/j.rse.2017.03.033
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0005
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0005
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0010
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0010
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0015
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0015
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0020
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0020
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0025
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0025
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0030
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0030
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0030
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0035
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0040
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0040
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0040
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0045
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0045
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0050
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0050
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0050
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0055
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0055
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0055
https://csfs.colostate.edu/media/sites/22/2016/02/ForestHealthReport-2015.pdf
https://csfs.colostate.edu/media/sites/22/2016/02/ForestHealthReport-2015.pdf
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf9000
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0065
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0065
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0070
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0070
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0075
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0075
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0075
https://cran.r-project.org/web/packages/ModelMap/vignettes/VModelMap.pdf
https://cran.r-project.org/web/packages/ModelMap/vignettes/VModelMap.pdf
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0085
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0085
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0085
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0090
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0090
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0095
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0095
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0095
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0100
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0100
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0105
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0105
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0105
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0105
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0110
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0110
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0120
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0120
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0120
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0125
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0125
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0125
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0125
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0130
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0130
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0130
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0135
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0135
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0140
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0140
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0140
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0145
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0145
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0150
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0150
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0150
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0150
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0150
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0155
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0155
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0155
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0160
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0160
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0160
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0165
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0165
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0165
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0170
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0170
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0170
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0170
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0175
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0175
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0180
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0180
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0185
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0185
http://www.umass.edu/landeco/research/fragstats/fragstats.html
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0195
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0195
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0200
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0200
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0200
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0205
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0205
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0205
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0205
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0210
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0210
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0215
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0215
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0220
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0220
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0225
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0225
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0230
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0230
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0235
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0235


243T.A. Schroeder et al. / Remote Sensing of Environment 195 (2017) 230–243
Neigh, C.S.R., Bolton, D.K., Diabate, M., Williams, J.J., Carvalhais, N., 2014a. An automated
approach to map the history of forest disturbance from insect mortality and harvest
with Landsat time-series data. Remote Sens. 6, 2782–2808.

Neigh, C.S.R., Bolton, D.K., Williams, J.J., Diabate, M., 2014b. Evaluating an automated ap-
proach for monitoring forest disturbances in the Pacific Northwest from logging,
fire and insect outbreaks with Landsat time series data. Forests 5, 3169–3198.

Olofsson, P., Foody, G.M., Herold, M., Stehman, S.V., Woodcock, C.E., Wulder, M.A., 2014.
Good practices for estimating area and assessing accuracy of land change. Remote
Sens. Environ. 148, 42–57.

Oswalt, S.N., Smith, W.B., Miles, P.D., Pugh, S.A., 2014. Forest resources of the United
States, 2012: a technical document supporting the Forest Service 2015 update of
the RPA Assessment. USDA Forest Service GTR WO-91. U.S. Department of Agricul-
ture, Forest Service, Washington Office, Washington, D.C. (218 pp.).

Peterson, T.C., Hoerling, M.P., Stott, P.A., Herring, S. (Eds.), 2012. 2013: Explaining events
of 2012 from a climate perspective. Bull. Am. Meteorol. Soc. 94 (9), pp. S1–S74.

Potapov, P.V., Turubanova, S.A., Tyukavina, A., Krylov, A.M., McCarty, J.L., Radeloff, V.C.,
Hansen, M.C., 2015. Remote Sens. Environ. 159, 28–43.

Raftery, A.E., Li, N., Ševčiková, H., Gerland, P., Heilig, G.K., 2012. Bayesian probabilistic pop-
ulation projections for all countries. Proc. Natl. Acad. Sci. 109 (35), 13915–13921.

Reams, G.A., Brewer, C.K., Guldin, R.W., 2010. Remote sensing alone is insufficient for
quantifying changes in forest cover. Proc. Natl. Acad. Sci. 107 (38), 145.

Rittenhouse, C.D., Pidgeon, A.M., Albright, T.P., Culbert, P.D., Clayton, M.K., Flather, C.H.,
Huang, C., Masek, J.G., Radeloff, V., 2010. Avifauna response to hurricanes: regional
changes in community similarity. Glob. Chang. Biol. 16, 905–917.

Rouse, J.W., Hass, R.H., Schell, J.A., Deering, D.W., 1973. Monitoring vegetation systems in
the Great Plains with ERTS. 3rd ERTS Symposium, pp. 309–317 (NASA SP-351, 1).

Ruefenacht, B., Finco, M.V., Nelson, M.D., Czaplewski, R., Helmer, E.H., Blackard, J.A.,
Holden, G.R., Lister, A.J., Salajanu, D., Weyermann, D., Winterberger, K., 2008. Conter-
minous U.S. and Alaska forest typemapping using Forest Inventory and Analysis data.
Photogramm. Eng. Remote Sens. 74 (11), 1379–1388.

Schleeweis, K., Goward, S.N., Huang, C., Dwyer, J.L., Rishmawi, K., Lindsey, M.A., Michaelis,
A., Masek, J.G., 2017. Selection and quality assessment of Landsat data for the North
American Forest Dynamics (NAFD) forest history maps of the U.S. Inter. J. Digit.
Earth (in press).

Schleeweis, K., Goward, S.N., Huang, C., Masek, J.G., Moisen, G., Kennedy, R.E., Thomas,
N.E., 2013. Regional dynamics of forest canopy change and underlying causal process-
es in the contiguous U.S. J. Geophys. Res. Biogeosci. 118, 1035–1053.

Schroeder, T.A., Healey, S.P., Moisen, G.M., Frescino, T.S., Cohen, W.B., Huang, C., Kennedy,
R.E., Yang, Z., 2014. Improving estimates of forest disturbance by combining observa-
tions from Landsat time series with U.S. Forest Service Forest Inventory and Analysis
data. Remote Sens. Environ. 154, 61–73.

Schroeder, T.A., Wulder, M.A., Healey, S.P., Moisen, G.G., 2012. Mapping wildfire and
clearcut harvest disturbances in boreal forests with Landsat time series data. Remote
Sens. Environ. 115, 1421–1433.
Sheffield, R.M., Thompson, M.T., 1992. Hurricane Hugo effects on South Carolina's forest
resources. USDA Forest Service GTR SE-284 (35 pp).

Spittlehouse, D.L., Stewart, R.B., 2003. Adaptation to climate change in forest manage-
ment. BC J. Ecosyst. Manag. 4 (1), 1–11.

U.S. Department of Agriculture, 2013. Summary Report: 2010 National Resources Inven-
tory, Natural Resources Conservation Service, Washington, DC, and Center for Survey
Statistics and Methodology. Iowa State University, Ames, IA http://www.nrcs.usda.
gov/Internet/FSE_DOCUMENTS/stelprdb1167354.pdf.

van Mantgem, P.J., Stephenson, N.L., Byrne, J.C., Daniels, L.D., Franklin, J.F., Fulé, P.Z., et al.,
2009. Widespread increase of tree mortality rates in the Western United States. Sci-
ence 323 (5913), 521–524.

Vogelmann, J.E., Xian, G., Homer, C., Tolk, B., 2012. Monitoring gradual ecosystem change
using Landsat time series analyses: case studies in selected forest and rangeland eco-
systems. Remote Sens. Environ. 122, 92–105.

Vogelmann, J.E., Kost, J.R., Tolk, B., Howard, S., Short, K., Chen, X., Huang, C., Pabst, K.,
Rollins, M.G., 2011. Monitoring landscape change for LANDFIRE using multi-temporal
satellite imagery and ancillary data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 4
(2), 252–264.

Weed, A.S., Ayres, M.P., Hicke, J., 2013. Consequences of climate change for biotic distur-
bances in North American forests. Ecol. Monogr. 83 (4), 441–470.

Weiss, G.M., Provost, F., 2003. Learning when training data are costly: the effect of class
Distribution on tree induction. Artif. Intell. Res. 19, 315–354.

Westerling, A.L., Hidalgo, H.G., Cayan, D.R., Swetnam, T.W., 2006. Warming and earlier
Spring increase western U.S. forest wildfire activity. Science 313, 940–943.

White, J.C., Wulder, M.A., Hermosilla, T., Coops, N.C., Hobart, G.W., 2017. A nationwide an-
nual characterization of 25 years of forest disturbance and recovery for Canada using
Landsat time series. Remote Sens. Envrion. 194, 303–321.

Williams, C.A., Collatz, G.J., Masek, J., Huang, C., Goward, S.N., 2014. Impacts of disturbance
history on forest carbon stocks and fluxes: merging satellite disturbance mapping
with forest inventory data in a carbon cycle model framework. Remote Sens. Environ.
151, 57–71.

Williams, A.P., Allen, C.D., Millar, C.L., Swetnam, T.W., Michaelsen, J., Still, C.J., Leavitt, S.W.,
2010. Forest responses to increasing aridity and warmth in the southwestern United
States. Proc. Natl. Acad. Sci. 107 (50), 21289–21294.

Zhao, F.R., Meng, R., Huang, C., Zhao, M., Zhao, F.A., Gong, P., Yu, L., Zhu, Z., 2016. Long-
term post-disturbance forest recovery in the greater Yellowstone ecosystem analyzed
using Landsat time series stack. Remote Sens. 8 (11):898. http://dx.doi.org/10.3390/
rs8110898.

Zhu, K., Woodall, C.W., Ghosh, S., Gelfand, A.E., Clark, J.S., 2014. Dual impacts of climate
change: forest migration and turnover through life history. Glob. Chang. Biol. 20,
251–264.

Zhu, Z., Woodcock, C.E., Olofsson, P., 2012. Continuous monitoring of forest disturbance
using all available Landsat imagery. Remote Sens. Environ. 122, 75–91.

http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0240
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0240
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0240
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0245
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0245
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0245
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0250
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0250
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0255
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0255
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0255
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0255
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf9005
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf9005
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0260
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0265
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0265
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0270
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0270
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0275
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0275
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0280
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0280
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0285
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0285
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0285
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0290
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0290
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0290
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0295
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0295
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0300
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0300
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0300
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0305
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0305
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0305
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0310
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0310
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0315
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0315
http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1167354.pdf
http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1167354.pdf
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0325
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0325
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0330
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0330
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0330
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0335
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0335
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0335
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0340
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0340
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0345
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0345
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0350
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0350
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf9010
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf9010
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf9010
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0355
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0355
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0355
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0355
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0360
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0360
http://dx.doi.org/10.3390/rs8110898
http://dx.doi.org/10.3390/rs8110898
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0370
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0370
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0370
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0375
http://refhub.elsevier.com/S0034-4257(17)30137-2/rf0375

	Testing a Landsat-�based approach for mapping disturbance causality in U.S. forests
	1. Introduction and objectives
	2. Methods
	2.1. Study area
	2.2. Data
	2.2.1. Reference data
	2.2.2. Landsat time series
	2.2.3. Shape-fitting metrics
	2.2.4. Additional predictor variables

	2.3. Mapping disturbance agents and undisturbed forest classes
	2.3.1. Step 1: empirical modeling of causal agents and stable forest
	2.3.2. Step 2: rule-based assignment of disturbance year

	2.4. Quality assessment of causal agent and stable forest models
	2.5. Quality assessment of forest disturbance year model
	2.6. Predictor variable importance
	2.7. Spatial and temporal patterns of forest disturbance agents

	3. Results
	3.1. Quality assessment of causal agent and stable forest models
	3.1.1. Overall agreement
	3.1.2. Model errors
	3.1.3. Binary disturbance comparison

	3.2. Disturbance year model errors
	3.3. Predictor variable importance
	3.4. Spatiotemporal patterns of forest disturbance agents
	3.4.1. Annual disturbance rates
	3.4.2. Spatial predictions of causal agents


	4. Discussion
	4.1. Causal agent and stable forest model quality
	4.2. Disturbance year assignment
	4.3. Predictor variable importance
	4.4. Spatiotemporal patterns of forest disturbance agents
	4.4.1. Annual rates of disturbance
	4.4.2. Spatial patterns of disturbance

	4.5. National implementation and future improvements

	5. Conclusion
	Acknowledgements
	Appendix A. Supplementary data
	References


